
 
 

 

  
Abstract—In this paper, we propose a hybridization of 

electromagnetism-like mechanism (EM) and particle 
swarm optimization algorithm (PSO) algorithms to 
design the proposed functional-link based Petri recurrent 
fuzzy neural system (FLPRFNS) for application of 
nonlinear system control. The FLPRFNS has a TSK-type 
fuzzy consequent part which uses functional-link based 
orthogonal basis functions and a Petri layer is added to 
eliminate the redundant fuzzy rule for each input. In 
addition, the FLPRFNS is trained by a hybrid algorithm- 
modified EMPSO. The main modification is that the 
randomly neghiborhoodly local search is replaced by 
particle swarm optimization algorithm with an instant 
update particles velocity strategy. Each particle updates 
its velocity instantaneous- ly one by one and every 
particle can get best information from system. The 
modified EMPSO combines the advantages of multipoint 
search, global optimization, and faster convergence. 
Simulation results show that the modified EMPSO has 
the ability of golbal optimization, advantages of faster 
convergence and FLPRFNS has effect of higher 
accuracy. 

Index Terms—Electromagnetism-like mechanism, particle 
swarm optimization, functional link, fuzzy neural system, Petri 
net. 

I. INTRODUCTION 
Over the decades, a recurrent fuzzy neural network (RFNN) 

system is proposed to identify and control nonlinear systems 
[1]. Some other recurrent fuzzy neural systems also have 
been proposed for nonlinear systems design [2-5]. It has the 
ability of storing the past information of system. An 
alternative neural network structure, called functional link 
neural network (FLNN), has been developed to the 
well-known multilayer perception network with application 
to function approximation, pattern recognition and nonlinear 
channel equalization [6-9]. As the results of [7, 10], using the 
functional expansion can effectively increase the 
dimensionality of the input vector and selecting the 
trigonometric polynomial of orthogonal sine and cosine basis 
function while there are more than two input signals, the 
outer product terms would have better convergence results 
[7]. In order to improve the ability of function approximation 
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and have better convergence results, this study uses the 
functional link neural system to construct the TSK layer. For 
the last decades, Petri net (PN) has been developed into a 
powerful tool for modeling, analysis, control, optimization, 
and implementation of various engineering systems [11-13]. 
In order to reduce unnecessary compute and eliminate 
redundant fuzzy rules, we add Petri net into FLPRFNS. 

Recently, a novel meta-heuristic based, electromagnetism- 
like mechanism (EM), for global optimization was proposed 
[14-18]. EM algorithm is simulated the electromagnetism 
theory of physics by considering each particle to be an 
electrical charge. Subsequently, the movement of attraction 
and repulsion is introduced by Coulomb’s law. Obviously, it 
has advantages of multiple searches, global optimization, and 
evaluates many point simultaneously in searching space, they 
are more likely to find the better solution [16-18]. The 
particle swarm optimization (PSO) algorithm is easy to 
implement and has been empirically shown to perform well 
on many optimization problems [19-23]. Each member in the 
swarm adapts its search patterns by learning from its own 
experience and other members’ experiences. In PSO, a 
member in the swarm, called a particle, each particle has a 
fitness value and a velocity to adjust its flying direction 
according to the best experiences of the swarm to search for 
the global optimum in the solution space. However, a method 
of updating velocity strategy for PSO algorithm was 
proposed [22, 23]. In order to improve the performance of 
EM and enhance its convergent speed, a modified of update 
particle velocity strategy are adopted in the hybrid 
electromagnetism-like mechanism and particle swarm 
optimization algorithms for FLPRFNS designed. The instant 
update technique is merged into the hybrid algorithm for 
obtaining a better performance.  

The organization of this paper is as follows. Section II  
introduces FLPRFNS model. Section III introduces hybrid 
electromagnetism-like and particle swarm optimization 
algorithms. Section IV shows the simulation results and 
comparisons. Finally, the conclusion is given 

II. FUNCTIONAL-LINK BASED PETRI RECURRENT FUZZY 
NEURAL SYSTEM 

This section introduces the structure of functional-link 
neural system (FLNS) and the diagram of the proposed 
functional-link based Petri recurrent fuzzy neural system 
(FLPRFNS).  
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Figure 1: Diagram of combination of functional link neural 

system and FIR filter: m-dimensional input case. 
 

A. Combination of Functional Link Neural System and FIR 
Filter 

 A functional expansion block is used to expand the 
dimension of the input pattern to enhance its representation in 
a high-dimensional space [6]. Fig. 2 depicts the block 
diagram of an m-dimensional input for combination of 
functional link neural system and FIR filter which is a 
single-layer network and is used for the consequent part of 
the proposed fuzzy neural system [9]. The FLPRFNS 
adequately utilizes the FLNS-FIR’s advantages and 
characteristics of FIR filter to further improve the 
performance.  

Consider an m-dimensional input pattern is defined as 
[ ]T
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Every input pattern is contained its past information and 
assumed there are n-1time delay input is in the form as 
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In this paper, we select m=2 to make every input of 
consequent part is contained its past information. Each set of 
basis functions for the FLNS-FIR is shown in Fig. 1, where 
the FLNS-FIR subsection consists of input and trigonometric 
polynomial basis function. By literature [7], the function 
expansion block comprises a subset of orthogonal sine and 
cosine basis functions if there are more than two input signals, 
it would have better convergence results.  
Therefore, the  basis functions 1X  are defined as 
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(3) 
where nmN ××= 31  is the number of basis functions from 
function expansion of input pattern. The linking weights of 
the FLNS subsection from function expansion 1X  is  
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where R is the rule number of fuzzy neural system. The FIR 
part of FLNS-FIR consists of  basis functions 2X  
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where nmN ×=2  is the number of basis functions for FIR 
filter. Similar to the FLNS part, the linking weights of the 
FIR filter is in the form as 
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Thus, we define 
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where ijw  is the corresponding linking weight. Respectively, 

jiNw )( 1+  is the corresponding link weight of FIR filter and 

)( 1 iN +φ  is the basis past information of input variables. 
Therefore, the overall output ju  of the FLNS is obtained by 

     jjj uuu 2111 )1( ×−+×= λλ                          (9) 
where 1λ  is a convex combination parameter and 

1λ =random(0, 1) which is chosen at initial and is a fixed 
value. The parameter 1λ  in (9) is to make extreme values of 

1λ  lead to either a pure FIR or pure FLNS system ( λ =1 and 
λ =0, respectively). If 1λ  is set to be a very small initial 
value, the occupied place is a transversal filter during training 
procedure.  
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Figure 2: Structure of the proposed FLPRFNS. 

 

B. FLPRFNS Structure 
A FLPRFNS is depicted in Fig. 2, which uses the 

FLNS-FIR to form the consequent part. That is, each fuzzy 
rule corresponds to a sub-FLNS-FIR, comparing a functional 
link. The FLPRFNS is composed of input layer, membership 
layer, rule layer, Petri layer, consequent layer and output 
layer. 

Layer 1 (Input Layer): In this layer, each node in this layer 
is only to transmit input values to the next layer directly, 
where xi(k), i=1, 2, …, n, represent the input variables. 

)()()1( kxkO ii = .                                   (10) 



 
 

 

Layer 2 (Membership Layer): Each fuzzy set ijA  here is 
described by a Gaussian membership function. Therefore,  
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As above, zj is the fuzzy input linguistic variable, 
( ) ( ) ( ) ( )kOkOz iijijj

12 1 +⋅−= θ , where ijm  and ijσ  are the mean 
and variance of the Gaussian membership function, 
respectively, of the jth term of the ith input variable ix . 

Layer 3 (Rule Layer): Nodes in layer 3 represent rule 
nodes. The product operator described above is adopted to 
perform the precondition part of the fuzzy rules. As a result, 
the output function of each inference node here is 
                          ∏=

i
ijj kOkO )()( )2()3( .                                  (12) 

)3(
jO  represents the firing strength of the corresponding rule. 
Layer 4 (Petri Layer): Layer 4 is a Petri layer. It is used for 

producing token makes use of competition laws as follows to 
select suitable fired nodes:  
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where tj is the transition and thd  is the selected threshold 
value which is set between 10-4 ~10-3 to eliminate redundant 
fuzzy rules as our experience.  

Layer 5 (TSK Layer): This layer performs the TSK part by 
FLNS-FIR. The output of this layer is  
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where ju represents the  jth output of the FLNS. Moreover, 
the output nodes of functional link neural network depend on 
the number of fuzzy rules of the FLPRFNS model. 

Layer 6 (Output Layer): The output layer acts as a 
defuzzifier as 
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where R is the fuzzy rule number and y is the output of the 
FLPRFNS. 

III. HYBRIDIZATION OF ELECTROMAGNETISM -LIKE AND 
PARTICLE SWARM OPTIMIZATION ALGORITHMS 

This section introduces the hybrid learning algorithm 
modified EMPSO for designing FLPRFNS. The modified 
EMPSO combines the advantages of EM and PSO algorithms 
to result faster convergence and accuracy. In addition, the 
instant update concept is implemented in EM and PSO for 
improving performance. Fig. 3 depicts the flow chart of the 
modified EMPSO algorithm. Our goal is to use the modified 
EMPSO to minimize the given cost function by adjusting the 
link weights in the consequent part and the parameters of the 
membership functions.  

At first, the initial particles are randomly selected from the 
feasible region of searching space and its initial position and 
velocity would be set. After initial particle produced, 
evaluation phase should be done. Each particle is evaluated 
and ranked by its root-mean-square-error value (RMSE). The 
particle having smallest RMSE value is selected to be gbest. 

After the first generation, each particle’s best individuality 
and the best particle in whole group would be produced. 
Started from the second generation, each particle would 
update its information by using the historical best 
information. While each particle updates its information, the 
newest best individual and the newest best particle in group 
would be obtained. Then, the instant update particles velocity 
strategy is operated. Detailed description for modified 
EMPSO is introduced as below.  
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Figure 3: Flow chart of modified EMPSO algorithm. 
 
The EMPSO for optimization problems is in the form of 

Minimize f(x) 
subject to x∈S,                                                                (16) 

where },...,1,,,{ nkuluxlxS kkkkk
n =ℜ∈≤≤ℜ∈= , n is 

problem dimension, and f(x) is the objective function, uk and 
lk are the corresponding upper bound and lower bound. Each 
particle x represents a solution with charge. 

Initialization: The modified EMPSO is utilized to find the 
optimal value [ ]Tm ****  , , , ωθσ  .Typically, initial particles are 
randomly chosen from a feasible solution region. Each pbest 
and gbest are set to be null (denoted by [ ]). Besides, the 
feasible region of solution for FLPRFNS parameters should 
be defined (i.e., uk and lk for m, σ, θ and w).  



 
 

 

Evaluation and Ranking: To evaluate the performance of 
each particle in training the FLPRFNS controller, we select 
the root-mean-square-error (RMSE) as realize. 
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where e denotes the approximated error and N denotes the 
data number.  

gbest and pbest Definition: Each particle is evaluated and 
all particles are ranked and indexed by the corresponding 
RMSE value. Finally, the particle having the minimal RMSE 
value is defined as gbest. The current best of particle is also 
defined.  

Local Search for the Modified EMPSO Algorithm: The 
local search phase is used to gather the local information for 
each particle xj. In order to reduce the computational 
complexity, we propose the modified EMPSO to enhance the 
performance. As shown in Fig. 3, after evaluation phase, each 
particle will update its velocity and position in local search 
procedure. Every particle updates its individual information 
and to be replaced if it has better individuality first. If it has 
better individuality then it would be substituted and new best 
individual particle would be produced; if it does not has 
better individuality then it still use original individual 
information and did not be updated. After determining of 
updating individual information or not, the new best 
individual particle would be determined whether it is used to 
update the best group particle or not.  

EM Operation- Total Force Calculation: In this phase, a 
charge is assigned for each particle which is like 
electromagnetic charge. The charge qi of particle xi is 
determined by [18] 
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As the electromagnetic theory, the force is inversely 
propositional to the distance between two particles and 
directly proportional to the product of their particles. Hence, 
the total force vector exerted on xi computed by the 
superposition principle as follows 
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After comparing the fitness function values, (i.e., f(x)), the 
direction of the forces between the particle and the others is 
selected. For two particles, the one has a better (smaller) 
fitness value attracts the other one. On the other hand, the 
particle with larger fitness value repels the others.  

EM Operation- Movement: After determining the total 
force vector Fi, particle xi moves in the direction of the total 
force by a random step length, i.e., 

RNG
F
Fxx

i

i
ii

||||
λ+= , i=1,2, …, m          (20) 

⎩
⎨
⎧

≤−
>−

=
0  if   ,
0  if   ,

i
kk

i
k

i
k

i
kk

Flx
Fxu

RNG , k=1,2, …, n      (21) 

where the random step length λ=random (0,1), and RNG is a 
vector whose components denotes the allowed feasible 

movement toward the upper bound, uk, or lower bound lk. The 
particle which was not updated in local search phase would 
be evaluated one by one and the particle has least RMSE 
value is defined xbest. The xbest is replaced gbest if its RMSE 
value is small than gbest and it would become the newest 
particle and also become the best group particle.  

Stop Criterion: In general, the stop criterion can be chosen 
as maximum generations or specification of control 
performance in RMSE. In this study, the maximum 
generations is used to be the stop criterion.  

IV. SIMULATION RESULTS 

In this example, we consider the tracking control of 
one-input-one-output nonlinear system and the plant is 
slightly different from that used in [10]. The plant is 
described by the different equation 
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The reference model is described by the following different 
equation , where 
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Note that system state is yp and tracking trajectory vector is yr. 
The inputs of FLPRFNS controller are yp and yr and the 
output is u. The output of the FLPRFNS controller is the 
control signal to the plant. The corresponding RMSE 
function of tracking error is defined 

RMSE:
2/1300
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To show the efficiency and effectiveness of the modified 
EMPSO, we have the comparison results of EM, PSO, 
EMPSO and GA algorithms. For the modified EMPSO 
algorithm, the following parameters are chosen 

- Maximum generations: 300 
- Particle number: 28 
- Control constant: 1 
- Positive constant C1: 2 
- Positive constant C2: 2 

The FLPRFNS’s initial parameters 21, , , , WWm θσ  are 
chosen randomly between [-1, 1] and the network structure is 

- Network structure: 2-10-5-5-5-1 
- Parameter number of FLPRFNS: 110 
- Rule number of FLPRFNS: 5 

 

 

Figure 4: The dynamic system control configuration with 
FLPRFNS controller. 
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Figure 5: The system trajectories after 300 generations (solid 
line: desired trajectory; dashed line: system actual output). 
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Figure 6: The comparison results of different network 

structure with the same number of turning parameters (the 
number of turning parameters: 154). 
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Figure 7: The comparison results of different network 
structure with the same rule number (rule number: 5). 

 
Table 1: The comparison results of different structure. 

Structure. Rule number The number of 
turning parameters RMSE 

5 35 0.382 
9 63 0.351 
10 70 0.337 
15 105 0.286 
16 112 0.273 

PRFNN 

22 154 0.398 
5 35 0.321 
9 63 0.296 
10 70 0.271 
15 105 0.239 
16 112 0.225 

RFNN 
 

22 154 0.365 
3 66 0.233 
5 110 0.192 FLPRFNS 

 
7 154 0.152 
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Figure 8: Comparison results of tracking error RMSE 

(dashed line: modified EMPSO, solid blue line: EMPSO, 
solid black line: EM, solid pink line: PSO and solid green line: 

GA). 
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Figure 9: Comparison results in RMSE versus evaluations for 

Example. 
 

Fig. 4 shows the dynamic system control configuration 
with FLPRFNS controller and Fig. 5 shows the system 
trajectories after 300 training cycles of Example: (solid line: 
desired trajectory; dashed line: system actual output). Fig. 6 
shows the comparison results of different network structure 
with the same number of turning parameters and Fig. 7 shows 
the comparison results of different network structure with the 
same rule number. We can observe that whether in the same 
number of turning parameters or in the same rule number, the 
FLPRFNS has better training results than RFNN and PFRNN. 
Detailed comparison results are introduced in Table1. Fig. 8 
shows the comparison results of tracking error RMSE for 
Example: (dashed line: modified EMPSO, solid blue line: 
EMPSO, solid black line: EM, solid pink line: PSO and solid 
green line: GA) and Fig. 9 shows the comparison results in 
RMSE versus evaluations for Example. From Fig. 5, we can 
observe that the system trajectory is good. Compare with 
other algorithms are shown in Fig. 8 and Fig. 9. The learning 
algorithm modified EMPSO has good performance in 
convergent speed and accuracy. 

V. CONCLUSION 
In this paper, a hybrid learning algorithm- modified 

EMPSO with an instant update strategy is proposed for 
functional-link based Petri recurrent fuzzy neural system 
designed. The modified EMPSO combines the advantages of 
multipoint search, global optimization, and faster 
convergence. It does not need any system gradient 
information and each particle (or charge) could obtain the 
newest information from individuality and group. In addition, 
the FLPRFNS uses linearly independent functions in a 



 
 

 

functional expansion and the consequent part of the proposed 
FLPRFNS is a nonlinear combination of input variables 
which enhances the performance of FLPRFNS. Simulation 
results were presented to show the effectiveness, accuracy 
and better convergent performance of the FLPRFNS and 
modified EMPSO algorithm. 
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