
 

 

 

  

Abstract—Each D�A microarray experiment generates a 

large amount of gene expression profiles and it remains a 

challenge for biologists to robustly identify periodic gene 

expression profiles with certain noise level in the data. In this 

paper, we propose a new scheme with noise filtering technique 

to analyze the periodicity of gene expression base on singular 

value decomposition (SVD), singular spectrum analysis (SSA) 

and autoregressive (AR) model-based spectrum estimation. 

With the combination of these methods, noise can be filtered out 

and over 85% of periodic gene expression can be identified in 

mouse presomitic mesoderm transcriptome data set. 

 
Index Terms—Autoregressive (AR) model, D�A microarray 

gene expression data, singular value decomposition (SVD), 

singular spectrum analysis (SSA), time series analysis. 

 

I. INTRODUCTION 

DNA sequence is a succession of letters which carries the 

genetic information of living organism. A DNA microarray 

or DNA chip consists of an arrayed series of spots, each of 

which conveys a partition of DNA sequence. In the 

microarray experiment, thousands of gene expression levels 

are recorded simultaneously to study the functions of genes, 

the effects of certain therapy, illness, and developmental 

processes [1]-[2]. With microarray technology, genome gene 

expression data are been generated at rapid rate. Biologists 

are interested in identifying the characteristics, trends, and 

patterns of the gene expression profiles. However, each gene 

expression profile usually contains certain amount of noise. It 

remains a main challenge to identify periodic gene 

expression profiles especially when the number of data points 

is small and the level of noise is high. 

The microarray data used in this paper is recorded from 

the mouse presomitic mesoderm transcriptome [2] which is 

generated to study the developmental process of  mouse 

embryo. Presomitic mesoderm (PSM) is the embryonic tissue 

composed of mesoderm which is the source of muscle and 

bone and is divided into somites later during the 
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segmentation process. According to [2], this process involves 

a molecular oscillator, the segmentation clock, which 

produces time series signal in PSM rhythmically  [3]. PSM 

samples from 40 mouse embryos are collected and the lunatic 

fringe (Lfng) expression patterns are used as a proxy to select 

17 samples of different time points which involving an entire 

oscillation period. Based on this dataset, a research study is 

carried out to compare the pattern detection ability of several 

mathematical approaches, which included Lomb-Scargle (L) 

periodogram, Phase consistency (P), Address reduction (A), 

Cyclohedron test (C), and Stable persistence (S). The probe 

sets were ranked based on the power ratio using these five 

methods and the results show that the Stable persistence (S) 

method has the best performance by identifying most of the 

benchmark probe sets within the top 300 probe sets [4]. 

Nevertheless, microarray data usually contain a high level of 

noise and the performance is degraded with most pattern 

analysis algorithms. Therefore, we need to develop a useful 

method to process the noisy time series data. 

We propose an effective method in this paper to detect the 

periodicity of microarray time series data by combining 

singular value decomposition (SVD), singular spectrum 

analysis (SSA) and autoregressive (AR) model-based 

spectral analysis. By considering the singular values of time 

series data, trend component is extracted effectively [5]; and 

using AR modeling, more accurate results are generated [6]. 

About 85% of genes expression profiles in a mouse PSM 

dataset are found to be periodic. A comparison is made to 

investigate the effectiveness of noise reduction using SVD, 

SSA and AR modeling. 

II. METHODS 

A. Dataset 

In this research, we use the dataset downloaded from 

http://www.ebi.ac.uk/microarray-as/ae/ under the accession 

ID of E-TABM-163. It contains 22,690 probe sets, each of 

them have 17 samples [2]. The data pre-processing is applied 

before the research carry on. The data is first normalized to 

zero mean and then filtered out based on three criteria: the 

detection call (taking out the probe sets called “absent” and 

“marginal”), the maximum signal intensity (removing the 

genes with expression level less than 50), and the 

peak-to-peak amplitude (less than 1.65). After the data 

pre-processing operations, 10025 probe sets remain to be 

analyzed. 
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B. �oise Reduction Using Singular Spectrum Analysis 

We will introduce an SSA based algorithm to reduce the 

noise of microarray time series data. The time series data 

from microarray is usually short and noisy. Although we can 

analyze the periodicity of the gene expression profiles 

directly, the results will be degraded by noise significantly. 

Therefore, before performing periodic detection, a 

pre-processing technique is needed to reduce the noise level. 

SSA is proposed for the purpose of  reconstructing the 

attractive component from the experimental data [7]. It is a 

model free approach because it decomposes an original time 

series to trend and noise according to the singular value 

decomposition (SVD) [8]. Assume there is a time series data 

(y1,…yp,…yn), which is reorganized as an AR(p) model 

representation, where p is the order of the AR model, and n is 

equal to 17, which is the number of samples of gene 

expression profiles.  

The order p determines the number of equations we can 

have [9]. Usually, the more the number of equations, the 

more accurate of the results we can have. We took p equals to 

8 since we can form the largest number of linear equations 

this way. However, we have only 17 time points in the dataset 

and it provides 9 equations which are not enough to estimate 

the AR coefficients reliably. To solve this problem, we use 

the forward-backward linear prediction method instead of 

forward or backward prediction to double the number of 

equations. Thus, the resultant AR coefficients can be 

estimated accurately [10]. The matrix form of the 

forward-backward linear system can be written as: 
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The upper part in (1) is called forward prediction and the 

lower part in (1) is the backward prediction. By combining 

these two linear prediction method, the linear system in (1) 

becomes more stable and reliable.  

 A common limitation of the AR modeling method is the 

high bias if the prediction order is low; and the presence of 

false peaks in these frequency spectrums when a high 

prediction order is used. The problem can be solved by using 

SVD, which is the foundation of SSA [11]. We apply SVD to 

the rectangular matrix of reorganized gene expression profile 

(defined as Y, where� ∈  ℝ
�	���×�). Rewriting (1) as below,  � = −��            (2) 

in which both Y and y are known [12]. SVD adopts the 

computing method of least square and the pseudo inverse of 

matrix Y. Y can be decomposed to � =  !"#         (3) 

where  ∈ ℝ
�	���×
�	���, " ∈ ℝ�×� , and S has the same 

dimension matrix as Y. S has non-zero values only in its 

diagonal entries which is called the singular value of Y and 

equal to the square roots of eigenvalues from YY
T
 or Y

T
Y. 

The singular values are always real positive numbers and 

arranged in descending order. 
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SVD is a powerful tool to separate the data of interest and 

the noise. Typically, the large singular values represent the 

interesting information in the time series signal. Therefore, 

by zeroing the small singular values, we can extract the trend 

component and noise component [13].  

The important consideration in SSA is the selection of the 

number of singular values. Usually, the first few numbers of 

singular values are large and followed by some very small 

singular values. The leading singular values of Y contain the 

most amount of energy and the small singular values are 

considered as noise level [14]-[15].  

By choosing a different number of leading singular values 

from matrix Y, we can compute (3) again from right to left to 

get a new matrix Y’. The new matrix contains the useful 

information of the time series data only. The number of 

singular values of Y retained is varied since every gene 

expression profile carries a different amount of noise to 

achieve the best noise filtering ability. 

The SSA based procedure is performed six times on each 

genome gene expression using a different number of leading 

singular values from 3 to 8, and the best result is recorded. 

Then the time series data (y1,…yp,…yn) is reconstructed by 

averaging the elements of matrix Y’ over the diagonal. 

C. The AR Model-Base Power Spectrum Estimation 

Power spectral density (PSD) is simply the spectrum of the 

time series sequences which describes the power distribution 

of the signal. In genome-wide gene expression cell-cycle 

identification, PSD analysis is one of the useful techniques. If 

the time series signal is highly periodic, the resultant power 

spectrum has sharp peaks at the corresponding frequency [9], 

[16]. PSD can be easily found by applying Fast Fourier 

Transform (FFT) to the time series data. However, if the time 

series data is too short, the FFT power spectrum estimation 

PSD estimation will be degraded due to the so-called 

windowing artifacts. Therefore, FFT is not suitable for 

microarray data analysis. Instead of using it, the AR 

model-based spectrum estimation is adopted in our research.  

 According to (3), the AR coefficient a
T
= (a1, a2…, ap)

T
, is 

given by � = −"!�- #�          (7) 

where S
-1

 is the pseudo inverse of S .According to the basic 

properties of the matrix inverse, S is a diagonal matrix with 

diag (s1, s2,…, sk), then S
-1

 is equal to diag (s1
-1

, s2
-1

,…, sk
-1

) 

[17]. Once the AR coefficient is estimated, the spectrum of 

the time series data is given by 

                              P�/� = 01
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where ω is the angular frequency in the range (0, π), T is the 

sampling interval, σ
2
 is the variance of the noise, p is the 

order of the AR model and ar are the AR coefficients. The 

AR(p) spectral estimator is consistent if the given process is 

truly autoregressive of order p [18]-[19]. The power spectrum 

density function is normalized and is bounded in the range of 

[0, 1]. 



 

 

 

D. The Periodicity Detection using Power Spectrum 

Width 

A periodic time series signal gives a peak spectrum in its 

frequency domain power spectral density at its corresponding 

frequency. The width of the peak is used as the criterion to 

detect the periodicity of gene expression profiles. Consider a 

sharp spectrum located at fi, the width of the frequency band 

[fi-1, fi+1] is estimated, where fi-1 and fi+1 are the frequencies at 

90% decay of the peak. If the width is sufficiently small, the 

time series signal is said to be highly periodic. According to 

the width of each spectrum, we can rank the whole 

microarray dataset and determine how many genes are 

periodic. We restrict the estimated width to be 30% the of 

total width which is equal to 0.3π, since the spectrum with 

large width is considered as lacking in periodicity and can be 

discarded. We normalize the width of the power spectrum to 

[0, 1]. Thus, if the normalized width of the power spectrum is 

less than 0.1, the corresponding profile is detected as 

periodic.  

 To summarize, our method consists of two parts. The first 

part is to filter out the noise of the time series data and the 

second part is to detect the periodicity. First, each gene 

expression profiles are formed as an AR model in matrix 

form. The forward and backward linear prediction is used to 

increase the number of equations in the AR model. SVD is 

performed to obtain the singular values of the system. Noise 

is filtered by zeroing some of the singular values which are 

small enough. The noise filtered time series data is 

reconstructed based on the remaining singular values. In the 

second part, the AR coefficients and power spectrum density 

are calculated according to (7) and (8) respectively. Finally, 

the width of the power spectrum is ranked to detect the 

periodic time series signal. 

III. RESULTS 

A. �oise Reduction using SSA 

We have tested our algorithm with 10025 gene expression 

profiles of mouse Presomitic Mesoderm Transcriptome Data. 

We have utilized the SVD, SSA and AR modeling to do the 

noise filtering. In order to verify the performance of noise 

reduction using our algorithm, the spectrum width of each 

gene expression profiles which without using SSA are 

calculated first. Then, we apply our algorithm to the entire 

dataset. The power spectrum width of reconstructed 

expression profiles is recorded. We compare the spectrum 

width of the gene expression profiles which using SSA and 

without using SSA.  

Fig. 1 shows the comparison of the spectrum width 

distribution of gene expression profiles between using SSA 

and without using SSA. The number of gene expression 

profiles with spectrum width less than 0.1 is 2663 if SSA is 

not applied. However, after we adopt our algorithm to do the 

noise filtering, the total number of spectrum width less than 

0.1 increases from 2663 to 8445. The width of the power 

spectrum of mouse presomitic mesoderm profiles is mainly 

located within the range of 0 to 0.1.  

By applying our algorithm, it can be seen that a total of 

8445 genes are determined to be periodic, which is about 

85% of the total microarray dataset. Fig. 2 shows an example 

of the reconstructed expression profile compared with the 

original signal without using SSA noise filtering technique. 

The solid black line representing the reconstructed signal 

indeed looks like sinusoidal where the dotted line on behalf 

of the original signal has few ripples which considered as the 

noise level. By applying our algorithm, noise is removed 

using SVD and SSA. After the noise is removed, the periodic 

gene expression profiles are detected easily. Therefore, we 

can conclude that using AR modal based power spectrum 

estimation can more effectively filter out the noise and detect 

the periodic genes. 

B. Selection of Leading Singular Values 

In computing the SVD, one critical criterion is the selection 

 
Fig. 2. Comparison of the spectrum width between using SSA and 

without using SSA. 

 
Fig. 1. The signal intensity of probe set named 1450818_a_at before and 
after SVD and SSA based reconstruction. 

 

TABLE I 
The number of leading singular values to reconstruct the periodic gene 

expression level in murine presomitic mesoderm 

No. of leading singular 

values 

No. of expression profiles 

3 739 

4 3011 

5 1974 

6 1397 

7 852 

8 472 

Total periodic genes 8445 

 



 

 

 

of the number of leading singular value to reconstruct the 

signal. The singular values contain the power of the trend 

components and the noise signal, where the expression 

profiles in the microarray dataset may consist of a different 

amount of noise. Table I shows the number of leading 

singular value we used to reconstruct the periodic signal in 

Mouse Presomitic Mesoderm Transcriptome Data. It 

indicates that difference profiles require different number of 

singular values to preserve trend while suppressing noise. 

There are totally 8445 periodic gene expression levels. 

Within these 8445 periodic genes, we observe that if we 

choose the number of leading singular values equals to four 

and five, about 60% of expression profiles produce the best 

result, which implies that over half of the periodic genome 

profiles contain most of their energy in the first four and five 

leading singular values.  

 

IV. CONCLUSION 

In general, gene expression profiles in microarray dataset 

have short length and the signal contain varying amounts of 

noise. In order to extract the interesting component from the 

short noisy time series signal, we have proposed a new 

algorithm which combines with SVD, SSA and AR modeling. 

After applying our algorithm, the noise can be effectively 

reduced and periodic trend component can be detected easily. 

We have considered the presence of sharp spectral peak from 

the AR spectrum density to detect the periodic genome 

expression profiles. From the results, we observed that our 

proposed method can detect over 85% of periodic genes from 

the murine presomitic mesoderm expression profiles. 
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