
 

 

 

 

Abstract—An operon is a fundamental unit of transcription 

and contains specific functional genes for the construction and 

regulation of networks at the whole genome level. The 

prediction of operons is critical for understanding gene 

regulation and functions in newly sequenced genomes. As 

experimental methods for operon detection tend to be 

non-trivial and time-consuming, various methods for operon 

prediction have been proposed in the literature. In this study, a 

complementary binary particle swarm optimization (CBPSO) is 

used for operon prediction in bacterial genomes. We used 

complementary operation to improve the initialization 

procedure, and then used the intergenic distance, the metabolic 

pathway and the cluster of orthologous groups (COG) to design 

a fitness function. The proper values were trained on the 

Escherichia coli genome. Experimental results show that the 

prediction accuracy of this method reached 92.6%, 93.6%, 

95.8% and 96.3% on Bacillus subtilis, Pseudomonas aeruginosa 

PA01, Staphylococcus aureus and Mycobacterium tuberculosis 

genomes, respectively. The proposed method predicted operons 

with high accuracy for the four test genomes. 

 
Index Terms—operon prediction, CBPSO, intergenic 

distance, metabolic pathway, COG.  

 

I. INTRODUCTION 

In prokaryotic organisms, operons contain one or more 

consecutive genes on the same strand. A few eukaryotic 

organisms also have operon-like structures, e.g., 

Caenorhabditis elegans [1]. Co-transcribed genes have the 

same biological function and directly affect each other. 

Operon prediction can therefore be used to infer the function 

of putative proteins if the functions of other genes in the same 

operon are known. A well-known example is the lactose 

operon in Escherichia coli. This operon contains three 

consecutive structural genes, namely lacZ, lacY and lacA, 

which all share the same promoter and terminator. 

Operons of bacterial genomes contain valuable information 

for drug design and determining  protein functions [2]. The 

gram-positive Staphylococcus bacterium, for example, is a 

human pathogen that is responsible for nosocomial infections 

[3]. Operon prediction on this bacterium can facilitate drug 

 
L. Y. Chuang is with the Chemical Engineering Department, I-Shou 

University, 84001, Kaohsiung, Taiwan. (e-mail: chuang@isu.edu.tw).  

J. H. Tsai is with the Computer Science and Information Engineering 

Department, National Kaohsiung University of Applied Sciences, 80778, 

Kaohsiung, Taiwan. (e-mail: 109730812@cc.kuas.edu.tw). 

C. H. Yang is with the Network Systems Department, Toko University, 

61363, Chiayi, Taiwan. 

C. H. Yang is also with the Electronic Engineering Department, National 

Kaohsiung University of Applied Sciences, 80778, Kaohsiung, Taiwan. 

(corresponding author to provide phone: 886-7-3814526#5639; e-mail: 

chyang@cc.kuas.edu.tw). 

target identification and the development of antibiotic drugs. 

However, knowledge of operons is scarce, and experimental 

methods for operon prediction are generally difficult to 

implement [4]. To gain better insight, the number and 

organization of operons in bacterial genomes should be 

studied in greater detail.  

In recent years, a number of scientists have proposed 

certain properties to accurately predict operons. These 

properties can be divided into the following five categories 

[5]: intergenic distance, conserved gene clusters, functional 

relations, genome sequence, and experimental evidence. In 

each of the aforementioned categories, it is pivotal to detect 

the promoter and terminator at the operon boundaries and to 

identify the biologically most representative properties [4]. 

The simplest and most important prediction property is to 

observe whether the distance between gene pairs within an 

operon (WO pairs) is shorter than the distance between gene 

pairs at the borders of the transcription units (TUB pairs) [3]. 

This distance property generally provides good results for 

operon prediction. 

Many computational algorithms have been proposed to 

properly balance the sensitivity and specificity of operon 

prediction. Jacob et al. proposed a fuzzy guided algorithm for 

operon prediction [4]. This method does not rely on 

complicated mathematical formulas to calculate fitness values 

of chromosomes. Genetic algorithms (GA) [2] use four 

biological properties, the intergenic distance, the metabolic 

pathway, the cluster of orthologous (COG) gene function  and 

the microarray expression data, to predict operons. Zhang et 

al. presented a support vector machine algorithm (SVM) to 

predict operons (6). This method uses the above four 

biological properties as SVM input vectors and divides gene 

pairs into operon pairs (OP) and non-operon pairs (NOP). In 

this study, a comparision of  the following predictors is 

presented: FGA [4], GA [2], SVM [6], genome-specific [7], 

FGENESB, ODB [8], JPOP [9], UNIPOP [1] and 

Genome-wide operon prediction in Staphylococcus aureus 

[3]. 

In this paper, we propose an effective complementary 

binary particle swarm optimization (CBPSO) for operon 

prediction. To validate the method, we calculated the 

logarithmic likelihood of each property in the Escherichia 

coli (NC_000913) genome as a fitness value of each gene in 

the particle. Four bacterial genomes, Bacillus subtilis 

(NC_000964), Pseudomonas aeruginosa PA01 

(NC_002516), Staphylococcus aureus (NC_002952) and 

Mycobacterium tuberculosis (NC_000962), were selected as 

benchmark genomes of known operon structure. In a first step, 

half of the particles in the swarm are randomly generated, and 
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the other half of the particles is determined by a 

complementary operation. The particles are subsequently 

updated by an update formula at each generation. The detailed 

updating process is described in the next section. The 

experimental results indicate that the proposed method 

obtained higher accuracy, sensitivity, and specificity on the 

test data sets compared with other methods from the literature. 

II. RELATED METHODS 

A. Data set preparation 

The entire microbial genome data was downloaded from the 

GenBank database (http://www.ncbi.nlm.nih.gov/). The data 

contains a total of 4225, 5651, 2845 and  4047 genes in the B. 

subtilis genome, P. aeruginosa PA01 genome, S. aureus 

genome and M. tuberculosis genome, respectively. The 

related genomic information consists of the gene name, the 

gene ID, the position, strand and product. The operon 

databases of E. coli and B. subtilis were obtained from 

RegulonDB (http://regulondb .ccg.unam.mx/) [10] and 

DBTBS (http://dbtbs.hgc.jp/) [11], respectively. The operon 

databases of P. aeruginosa PA01 genome, S. aureus genome 

and M. tuberculosis were obtained from ODB 

(http://odb.kuicr.kyoto-u.ac.jp/) [8]. The genomes’ metabolic 

pathway data and COG data was obtained from KEGG 

(http://www.genome.ad.jp/kegg/pathway.html) and NCBI 

(http://www.ncbi.nlm.nih.gov/COG/), respectively. 

B. Definition of a potential operon pair 

In order to gain valuable information pertaining to drug and 

protein functions, operons need to be predicted based on an 

organism’s genomic sequence. The entire genome is scanned 

for adjacent gene pairs, and each gene pair is classified into 

one of three types: (i) adjacent; (ii) OP pair; or (iii) NOP pair. 

The WO pair and TUB pair are defined base on biological 

experiments, and the gene pairs are labelled ‘positive’ and 

‘negative’, respectively. In Fig. 1, the white arrows represent 

genes as yet unclassified by experiments, and the gray arrow 

represents an operon containing only a single gene. In 

addition, the black arrows represent operons composed of 

several genes. As shown in Figure 1, adjacent genes in the 

same operon are called WO pairs. If the operon contains a 

single gene, and the downstream gene is of unknown status, 

the gene pair is called a TUB pair. However, if the upstream 

gene is the last gene of an operon, and the downstream gene is 

of uncertain status, the gene pair can not be labelled a TUB 

pair [12]. In addition, the first gene of an operon and the 

upstream gene are TUB pairs by default. 

 

 
Figure 1. WO and TUB pairs 

C. Operon properties 

As stated above, many powerful properties can be used to 

predict operons. In this study, we use three properties, namely 

the intergenic distance, the metabolic pathway and the COG 

gene function, to identify operons. Each of these properties is 

individually described in the following three sections. 

(1) Intergenic distance: This property can predict operons 

in the sequence of completely mapped genomes. To prevent 

mRNA degradation, the distance of adjacent genes in the 

same operon is shorter than the distance of TUB pairs [13]. As 

shown in Fig. 2, gene2, gene3 and gene4 all share the same 

promoter and terminator. These genes are on the same operon. 

Therefore, the intergenic distance of gene2 and gene3, or gene3 

and gene4, is shorter than the intergenic distance of gene1 and 

gene2, or gene4 and gene5. As shown in Eq.1, the distance of 

adjacent genes is calculated using base pairs of adjacent genes. 

However, adjacent genes may sometimes overlap as shown in 

Fig. 3. The chart displays the frequency of the distance of WO 

pairs and TUB pairs. Adjacent genes with shorter intergenic 

distances are more likely located within an operon [2]. The 

maximum frequency of the WO pair distance is -4 [14]. 

However, the distance distribution frequency of TUB pairs is 

increased with the distance, and becomes gradually higher 

than the frequency of WO pairs. Thus, this property can be 

used to identify operons in the bacterial genomes. 

 

Distance = Gene2_start – (Gene1_finish+1) (1) 

 

 
 

Figure 2. Operon diagram 

 

(2) Metabolic pathway: Gene ontology contains three levels 

of biological functions, namely a biological process, a 

molecular function and a cellular component [15]. However, 

genes within an operon often participate in the same 

biological process [6]. Therefore, if adjacent genes have the 

same metabolic pathway, we assume that the gene pair is 

located in the same operon. 

 

   

 

Figure 3. Intergenic distance distributions of WO and TUB pairs 

 



 

 

 

 (3) COG gene function: COGs consist of three main levels. 

The first level contains the following four classes: information 

storage and processing, cellular processing and signaling, 

metabolism, and different COG categories. Each class is 

divided into multiple functional categories. Adjacent genes 

are often in the same class, so we assume that the gene pair is 

located in the same operon. 

III. MATH EXPERIMENT FRAMEWORK 

A. Binary particle swarm optimization (BPSO) 

Particle swarm optimization (PSO) is a population-based 

stochastic optimization technique developed by Kennedy and 

Eberhart in 1995 [16]. PSO has been developed through 

simulation of the social behavior of organisms, such as the 

social behavior abserved of birds in a flock or fish in a school; 

it describes an automatically evolving system. In PSO, each 

single candidate solution (called particle) in the search space 

can be considered "an individual bird of the flock". Each 

particle uses their memory and knowledge gained by the 

swarm as a whole to find the optimal solution. The fitness 

value of each particle is evaluated by an optimized fitness 

function, and the particle velocity directs the movement of the 

particles. Each particle adjusts its position according to its 

own experience during movement. In addition, each particle 

also searches for the optimal solution in a search space based 

on the experience of a neighboring particle, thus making use 

of the best position encountered by itself and its neighbor. The 

particles move through the problem space by following a 

current of optimum particles. The entire process is reiterated a 

predefined number of times or until a minimum error is 

achieved. PSO has been successfully employed to many 

application areas; it obtains better results quickly and has a 

lower cost compared to other methods. However, PSO is not 

suitable for optimization problems in a discrete feature space. 

Hence, Kenney and Eberhart developed binary PSO (BPSO) 

to overcome this problem [17]. The basic elements of BPSO 

are briefly introduced below: 

1) Population: A swarm (population) consists of N 

particles. 

2) Particle position, ix : Each candidate solution can be 

represented by a D-dimensional vector; the i
th

 particle can be 

described as ),,,( 21 iDiii xxxx  , where iDx is the 

position of the i
th

  particle with respect to the D
th

 dimension. 

3) Particle velocity, iv : The velocity of the i
th

 particle is 

represented by ),,,( 21 iDiii vvvv  , where iDv  is the 

velocity of the i
th  

particle with respect to the D
th

 dimension. In 

addition, the velocity of a particle is limited within 

 DVV maxmin ,
. 

4) Inertia weight, w: The inertia weight is used to control 

the impact of the previous velocity of a particle on the current 

velocity. This control parameter affects the trade-off between 

the exploration and exploitation abilities of the particles. 

5) Individual best, pbesti: pbesti is the position of the i
th

 

particle with the highest fitness value at a given iteration. 

6) Global best, gbest: The best position of all pbest 

particles is called global best. 

7) Stopping criterion: The process is stopped after the 

maximum allowed number of iterations is reached. 

B. Complementary Operation 

The initialization is very important for operon prediction, 

and therefore we use complementary operation to improve the 

prediction ability of BPSO. In this study, half of the particle 

swarm is initialized with a random threshold value, and the 

other half of the particle swarm is then initialized by a 

complementary operation. Figure 4 illustrates these criteria. 

 

 
 

Figure 4. Complementary Operation 

 

C. Encoding and Initialization  

If the gene pair is a considered non-operon pair (NOP), the 

upstream gene is encoded to 0. If the gene pair is an operon 

pair (OP), the upstream gene is encoded to 1. As shown in 

Figure 5, if gene3, gene4 and gene6 are the last genes of 

operon1, operon2 and operon3, respectively, the elements of 

the array are 110010. In addition, the proposed method uses 

the intergenic distance and strands to create P binary particles. 

Each particle is initialized with a random threshold value of 

between 0 and 600 bps [4]. For adjacent genes to be 

considered in the same operon, they must conform to the 

following two conditions: the distance of adjacent genes must 

be smaller than the random threshold, and adjacent genes 

must be on the same strand. If the distance between adjacent 

genes is greater than the random threshold, we assume that the 

two adjacent genes are within a different operon. Adjacent 

genes on different strands are considered NOP. Figure 6 

illustrates these criteria.  

 

 
 

Figure 5. Encoding 

 

 
 

Figure 6. Initial population 



 

 

 

D. Particle update 

In BPSO, each particle is updated according to the 

following equations: 
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where w is the inertia weight that controls the impact of the 

previous velocity of a particle. c1 and c2 are acceleration 

constants that control the distance a particle moves at each 

generation; r1, r2 and r3 are three random numbers between [0, 

1]. new

idv  and old

idv  represent the velocity of the new and old 

particles, respectively. Particles old

idx  and new

idx  denote the 

position of the current particle and the updated particle, 

respectively. The velocity of a dimension in Eq. 2 is limited 

within  DVV maxmin , . The positions of the updated particles are 

calculated by Eq. 3 [18]. If the function  new

idvS  is greater than 

r3, the position of the particle is updated to {1} (meaning this 

gene is part of the operon). If  new

idvS  is smaller than r3, the 

position is updated to {0} (i.e., this gene is the final gene of 

the operon). 

E. Fitness function 

As stated previously, many properties can be used to predict 

operons. In this study, five properties are used and described 

individually in the following section. The pair-scores of the 

intergenic distance, the metabolic pathway, the COG gene 

function, and the gene length ratio are calculated by the 

logarithmic likelihood ratio test. The pair-score of the operon 

length is calculated by the Bernoulli process. 

(1)  Intergenic distance: the score of each separated interval 

in 10bp bins [19] is calculated based on an intergenic distance 

from -100 bps to 300bps using the following equation: 
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where  distNWO
 and  distNTUB

 correspond to the number of 

WO and TUB pairs in the interval distance dist (10, 20, 30…). 

WOTN  and 
TUBTN  are the total pair numbers within WO and 

TUB, respectively. 

(2) Metabolic pathways: The pair-score of the metabolic 

pathway is also calculated by the log-likelihood method. The 

pathway pair-score is only taken into account when the two 

adjacent genes have the same pathway. Otherwise the 

pathway pair-score is 0 [2]. The following Eq. 6 is used to 

calculate the pathway pair-score. 
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where NWO(path) and NTUB(path) correspond to the total 

number of WO and TUB pairs in the same metabolic pathway. 

TNWO and TNTUB are the total pair numbers within WO and 

TUB, respectively. 

 

 (3) COG gene function: We use the log-likelihood method 

to calculate the pair-score of the COG gene function based on 

three main levels. The following equations are used [9]: 
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where TNWO and TNTUB are again the total pair numbers within 

WO and TUB, respectively. NWO(COG) and NTUB(COG) stand 

for the total number of WO and TUB pairs in the same COG 

gene function. LLCOGd (genei, genej) represents the pair-score 

of adjacent genes with a different COG gene function. 

 While the individual pair-scores are obtained by the 

calculations above, the overall pair-score of adjacent genes is 

calculated as the sum of the individual pair-scores from the 

three properties mentioned above.. 

 The fitness value of the c
th

 putative operon is thus 

calculated by the following equation: 
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(9) 

where di is the pair-score of the intergenic distance of the i
th

 

gene in the c
th

 operon, and m and n are the total number of 

genes and gene pairs in the c
th

 operon, respectively. 

 Finally, the fitness value of a particle is calculated as the 

sum of the fitness values from all putative operons in the 

particle and thus given by the following equation: 
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(10) 

 

where c is the number of operons in a particle. 

F. Parameter Settings 

In the present study, the population number P was set to 20, 

the iteration number G was 100, the initial inertia weight w 

was 1, c1 and c2 were 2 [20], and Vmax and Vmin were 6 and -6, 

respectively [17]. 

IV. RESULTS AND DISCUSSION 

A. Performance measurement 

In this study, the E. coli genome was used to estimate the 

fitness value, and then accuracy tests were conducted on other 

genomes. To do this, the training data set was further divided 

to estimate the prediction accuracy during the search. For a 

large data set like the E. coli genome, it is easy to build a 

predictor 

 



 

 

 

Table 1. Evaluation method for operon prediction 

Value to be 

estimated 
Equation for estimation 

Sensitivity (SN) SN=TP/(TP+FN) 

Specificity (SP) SP=TN/(FP+TN) 

Positive Prediction 

Rate (PPR) 
PPR=TP/(TP+FP) 

Negative Prediction 

Rate (NPR) 
NPR=TN/(FN+TN) 

Accuracy (ACC) ACC=(TP+TN)/(TP+FP+TN+FN) 

 

Table 2. The positive and negative evaluation 

True data 

Prediction result 
Positive Negative 

Positive TP FP 

Negative FN TN 

 

that clearly identifies WO and TUB pairs. Most previous 

efforts have focused on the operon prediction of E. coli 

genome. This has lead to an extensive database of 

experimentally identified transcripts for this genome. For 

these reasons, the E. coli genome was chosen as the training 

data set. We used the entire data set to estimate the fitness 

values since dividing the data set into subgroups does not 

provide a clear advantage over using the entire data set [7]. In 

order to verify the generalization ability of our method, the 

test data sets do not contain the E. coli genome which has 

genome-specific properties. The predictive performance [7] 

was evaluated based on the sensitivity and specificity shown 

in Table 1. As show in Table 2, true positive (TP) and false 

negative (FN) are the numbers of correct and incorrect 

prediction of gene pairs among the WO gene pairs, 

respectively, whereas true negative (TN) and false positive 

(FP) are the numbers of correct and incorrect prediction of 

gene pairs among the TUB gene pairs. The sensitivity, 

specificity and accuracy were determined based on TP, FN, 

TN and FP; results are shown in Table 3. The experimental 

operon encoding of the genome is 111010, and the predicted 

operon encoding is 110110. The third and fourth genes are FN 

and FP, respectively. The first, second and fifth genes are TP, 

and the sixth gene is TN. The accuracy obtained by the 

proposed method was compared to other methods. It should 

be noted that a good balance between sensitivity and 

specificity was achieved. 

B. Comparison to other methods 

CBPSO was applied to search for the best putative operon 

at each generation. The best putative operon identified by the 

search was then compared to experimentally verified operons. 

As shown in Table 3, the prediction accuracy of the proposed 

method obtained the highest accuracy values on the B. subtilis 

(0.926), P. aeruginosa PA01 (0.936), S. aureus (0.959), and 

M. tuberculosis (0.963) data sets. The proposed method also 

showed the best performance in terms of prediction sensitivity 

and specificity on most of the tested bacterial genomes. In 

addition, even through BPSO obtained a higher specificity 

than CBPSO on the B. subtilis and P. aeruginosa PA01 

genome, CBPSO obtained a good balance between sensitivity 

and specificity. Hence, the prediction results of CBPSO are 

not only superior to BPSO, but are also better in terms of 

accuracy, sensitivity, and specificity when compared to other 

methods from the literature.  

C. Discussion 

 Most methods use the properties of adjacent genes to 

identify OP or NOP for operon prediction. However, this 

process does not take the properties of near genes into account, 

and thus generally results in lower accuracies for operon 

prediction. The CBPSO used in this study evaluates the 

properties of near genes, and thereby increases the probability 

of finding an optimal solution. In order to raise the CBPSO  

 

Table 3. Accuracy, sensitivity, and specificity of operon prediction on four genomes 

Genome Methodology Accuracy Sensitivity Specificity 

B. subtilis 

(NC_000964) 

CBPSO 0.926 0.919 0.932 

BPSO 0.883 0.742 0.996 

UNIPOP [1] 0.792 0.782 0.821 

GA [2] 0.883 0.873 0.897 

Using both genome-specific and general genomic information [7] 0.902 N/A N/A 

SVM [6] 0.889 0.900 0.860 

ODB [8] 0.632 0.499 0.992 

FGA [4] 0.882 N/A N/A 

JPOP [9] 0.746 0.720 0.900 

P. aeruginosa PA01 

(NC_002516) 

CBPSO 0.936 0.933 0.941 

BPSO 0.911 0.885 0.953 

GA [2] 0.813 0.870 0.763 

S. aureus 

(NC_002952) 

CBPSO 0.959 0.959 0.959 

BPSO 0.927 0.911 0.959 

Genome-wide operon prediction in Staphylococcus aureus [3] 0.920 N/A N/A 

M. tuberculosis 

(NC_000962) 

CBPSO 0.963 0.963 0.963 

BPSO 0.951 0.944 0.963 

A Predicted Operon map for Mycobacterium tuberculosis [21] 0.908 N/A N/A 

Legend: N/A: Data not available. Highest values in bold type. 



 

 

 

prediction performance, we limit the velocity of CBPSO to 

between Vmin and Vmax. If the velocity is close to 0, the 

probability of a state changing is increased, and vice versa. 

Hence, CBPSO has global and local search capabilities. The 

probability of obtaining the best solution is thus increased. 

We used the complementary operator to initialize half of 

the particle swarm in the initiation step. As shown in Table 3, 

CBPSO obtained a better prediction performance than BPSO 

and other methods form the literature. BPSO without adding 

the complementary operator obtained lower prediction 

accuracy than some literature methods. BPSO does not 

achieve a good balance between the sensitivity and specificity; 

for the balance to be considered acceptable, both sensitivity 

and specificity need to be higher than 0.8 [6]. By boosting the 

quality of particles at the initiation, the best particles can be 

obtained by successive progression through the generations. 

Generally, the prediction accuracy is proportional to the 

fitness value of a particle. Although adjacent genes have 

related properties, they still have a different probability of 

being in different operons. This necessitates the 

implementation of a fitness function in the proposed method. 

In this study, we calculated the fitness value of each particle 

based on the log-likelihood that is designed on the basis of 

statistics. Therefore, the fitness value of a putative operon is 

directly proportional to the prediction accuracy. The 

prediction accuracy of CBPSO and BPSO prove that this 

fitness function can identify better particles. 

Experimental data on the E. coli genome can be 

downloaded from the RegulonDB database, but for other 

genomes extensive experimental data is not readily available. 

In order to apply the proposed method to other genomes with 

fewer attributes, three common properties for operon 

prediction were used. Theoretically, methods using more 

properties for operon prediction achieve a higher accuracy. 

Ever though many methods in the literature use numerous 

properties, our method only uses three properties. Yet 

CBPSO achieves better results. ODB uses four properties for 

operon prediction but obtained a lower prediction sensitivity 

[1]. The results reveal that the pathway and COG properties 

are more suitable for identification of WO and TUB pairs. 

Since adjacent gene share a common pathway, the probability 

of a gene pair to be a WO pair is very high [4]. The probability 

of gene pairs with the same first-level categories is 83.5% [9]. 

Our method achieved the highest accuracy for operon 

prediction even though only three properties were used on all 

bacterial genomes. The contributions to operon prediction are 

thus self-evident. 

V. CONCLUSION 

We propose a novel method, called CBPSO, for operon 

prediction in bacterial genomes. This study uses a 

complementary operator to generate half of the particle 

swarm in the initiation step, and CBPSO thus uses superior 

particles at the initialization of a population. We used the 

intergenic distance, the metabolic pathway and the COG gene 

functions of the  E. coli genome to design a fitness function. 

The experimental results show that the proposed method 

increases the accuracy of operon prediction on four test 

genome data sets. In the future, we intend to investigate other 

algorithms and different properties on the problems of operon 

prediction in order to increase the prediction performance 

further. 
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