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Abstract—In this paper, we study multiparamet-
ric sensitivity analysis in sum-of-ratios programming
problem. We consider two linear ratios for computa-
tional ease. We construct critical regions for simulta-
neous and independent perturbations in the objective
function coefficients(both in numerator and denomi-
nator) and in the right-hand-side vector. Theoretical
results are illustrated with the help of a numerical
example.
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1 Introduction

In various applications of nonlinear programming a ra-
tio of two functions is to be maximized or minimized.
In other applications the objective function involve more
than one ratio of functions. Ratio optimization problems
are commonly called fractional programs. One of the
earliest fractional programs (though not called so) is an
equilibrium model for an expanding economy introduced
by Von Neumann [6] in 1937. The model determines the
growth rate of an economy as the maximum of the small-
est of several output-input ratios. The analysis of frac-
tional programs with only one ratio has largely dominated
the literature until about 1980. The first monograph [11]
in fractional programming published by Schaible in 1980
extensively covers applications, theoretical results and al-
gorithms for single ratio fractional programs; see also [9,
10]. A series of international conferences was held which
demonstrates a shift of interest from the single-ratio to
the multi-ratio case [1, 2, 4, 13].

Sum-of-ratios programming problems arise naturally in
decision making when several rates are to be optimized
simultaneously and a compromise is sought which opti-
mizes a weighted sum of these rates. In light of the appli-
cations of single-ratio fractional programming [7, 9, 10]
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numerators and denominators may be representing out-
put, input, profit, cost, capital, risk or time, for example.
A multitude of applications of the sum-of-ratios problem
can be envisioned in this way. Included is the case where
some of the ratios are not proper quotients. This de-
scribes situations where a compromise is sought between
absolute and relative terms like profit and return on in-
vestment (profit/capital) or return and return/risk, for
example [8]. In this paper, we will consider the following
sum-of-ratios linear fractional programming:

P(1) Maximize f(x) =
pT x

qT x
+

cT x

dT x

subject to Ax = b ,

x ≥ 0,

where each p, q, c, d is n× 1 column vector, A
is m× n coefficient matrix, b is m× 1 column
vector, and x is n× 1 column vector.

In practical applications the data collected may not be
precise, we would like to know the effect of data per-
turbation on the optimal solution. Hence, the study of
sensitivity analysis is of great importance. In general,
the main focus of sensitivity analysis is on simultane-
ous and independent perturbations of the parameters.
Besides this all the parameters are required to be ana-
lyzed at their independent levels of sensitivity. If one
parameter is more sensitive than the others, the toler-
ance region characterized by treating all the parameters
at equal levels of sensitivity would be too small for less
sensitive parameters. If the decision maker has the prior
knowledge that some parameters can be given unlimited
variations without affecting the original solution then we
consider those parameters as ‘nonfocal’ and these ‘nonfo-
cal’ parameters can be deleted from the analysis. Wang
and Huang [16, 17] proposed the concept of maximum
volume in the tolerance region for the multiparametric
sensitivity analysis of a single objective linear program-
ming problem. Their theory allows the more sensitive
parameters called as ‘focal’ to be investigated at their
independent levels of sensitivity, simultaneously and in-
dependently. This approach is a significant improvement
over the earlier approaches primarily because besides re-
ducing the number of parameters in the final analysis,
it also handles the perturbation parameters with greater
flexibility by allowing them to be investigated at their



independent levels of sensitivity. Singh et. al. [14, 15]
extended the results of Wang and Huang [17] to discuss
multiparametric sensitivity analysis for different cases of
parameter perturbations in linear-plus-linear fractional
programming. Also Gupta and Singh [3] studied the mul-
tiparametric sensitivity analysis of the constraint matrix
in linear-plus-linear fractional programming under gen-
eral perturbation. More recently, Singh [12] discussed
the multiparametric sensitivity analysis of the additive
model in data envelopment analysis.

Our objective in this paper is to study multiparametric
sensitivity analysis for the linear sum-of-ratios fractional
programming. For computational ease, we consider ob-
jective function with only two ratios. Simultaneous and
independent perturbations of the objective function coef-
ficients (both in numerator and denominators) have been
considered to find the critical region where the current
optimal basis remains optimal.

2 Notations and optimality Condition

Following notations will be used throughout this study:
B ⊂ {1, 2, ..., n}: denotes the index set of basic variables.
Without loss of generality, we suppose B = {1, 2, ..., m}.
N = {1, 2, ..., n} \B: denotes the index set of nonbasic
variables.
AB : The basis matrix with inverse β = A−1

B = [βij ].
βT

i· : ith row of the inverse basis matrix.
βT
·j : jth column of the inverse basis matrix.

AN : The submatrix of A corresponding to nonbasic
variables.
b̄ = A−1

B b ≥ 0: The vector of the values corresponding to
xB .
A−1

B AN : [yij ].
yT
·j : jth column in A−1

B AN .
cB = [c1, c2, ..., cm]T : the row vector of the cost coefficie
nts corresponding to xB .
cN = [cm+1, cm+2, ..., cn]T : the row vector of the cost co
efficient corresponding to nonbasic variables.
A·j : jth column of the matrix A.
∆̄j : The vector of the reduced cost corres-ponding to
nonbasic variables.

Under the assumptions qT x > 0 and dT x > 0 over the
feasible region, the optimality criteria for the problem
P(1) using the simplex type algorithm can be derived as
follows:

Let AB be the some basis and x∗ be the corresponding
supporting plane

x∗ = (xB , 0), xB = A−1
B b .

Then the directions to the neighborhood vertices are de-
termined by the formula [18]

sj = (−A−1
B A·j | ej) ,

where ej is the jth basis vector. We compute δj =
f ′(x)sj , j = 1, 2, . . . , n,

δj =
dx∗(−cBA−1

B A·j + cj)− cx∗(−dBA−1
B A·j + dj)

(dx∗)2

+
qx∗(−pBA−1

B A·j + pj)− px∗(−qBA−1
B A·j + qj)

(qx∗)2

=
dx∗(cj − zc

j )− cx∗(dj − zd
j )

(dx∗)2
+

qx∗(pj − zp
j )− px∗(qj − zq

j )
(qx∗)2

=
∆̄cd

j

(dx∗)2
+

∆̄pq
j

(qx∗)2

where

∆̄cd
j = dx∗(cj − zc

j )− cx∗(dj − zd
j ), ∆̄pq

j = qx∗(pj − zp
j )

−px∗(qj − zq
j ) .

If

δj =
∆̄cd

j

(dx∗)2
+

∆̄pq
j

(qx∗)2
≤ 0 , j = 1, 2, . . . , n , (1)

x∗ is the optimal solution.

Remark 1. In general a local optimal solution for the
problem P(1) obtained using optimality criteria (1) may
not be a global optimal. However, we discuss sensitivity
analysis for the local/global optimal solution obtained
using optimality criteria (1).

3 Sensitivity results

To address perturbations of the objective function coef-
ficients (both in numerator and denominator) and right-
hand-side vector in problem P(1), we consider the follow-
ing perturbed model:

P(2) Maximize f(x) =
(p + ∆p)T x

(q + ∆q)T x
+

(c + ∆c)T x

(d + ∆d)T x

subject to Ax = b + ∆b ,

x ≥ 0

where

∆p =
[

H∑
h=1

pjhγh

]

n×1

,∆q =
[

H∑
h=1

qjhγh

]

n×1

,

∆c =
[

H∑
h=1

cjhγh

]

n×1

,

∆d =
[

H∑
h=1

djhγh

]

n×1

, ∆b =
[

H∑
h=1

bjhγh

]

n×1

are the multiparametric perturbations defined by the per-
turbation parameter γ = (γ1, γ2, . . . , γH)T . Here, H is
the total number of parameters.



Let,
uh = [b1h, b2h, . . . , bmh]T : The vector of the coefficients
of parameter γh in ∆b.
vh = [p1h, p2h, . . . , pmh]T : The vector of the partial coef-
ficient of parameter γh in ∆p.
wh = [q1h, q2h, . . . , qmh]T : The vector of the partial coef-
ficient parameter γh in ∆q.
rh = [c1h, c2h, . . . , cmh]T : The vector of the partial coef-
ficient parameter γh in ∆c.
sh = [d1h, d2h, . . . , dmh]T : The vector of the partial coef-
ficient parameter γh in ∆d.
In the following propositions we construct critical regions
for simultaneous and independent perturbations of the
objective function coefficients and right-hand-side vector.

Proposition 1. When p, q, c, d and b are perturbed si-
multaneously and independently the critical region S of
the problem P(1) is given by

S =
{

γ = (γ1, γ2, . . . , γH)T

∣∣∣∣b̄i +
H∑

h=1

(βT
i·uh)γh ≥ 0,

i = 1, 2, . . . , m;(
qBxB +

H∑
h=1

(xT
Brh)γh

)(
dBxB +

H∑
h=1

(xT
Bsh)γh

)
6= 0;

[
∆pq

j +
H∑

h=1

((pj − zp
j )(xT

Bwh)− (qj − zq
j )(xT

Bvh))γh

+
H∑

h=1

(qBxB(pm+j,h − yT
·jvh)− (pBxB)(qm+j,h −

yT
·jwh))γh

+
H∑

h=1

xT
Bwh

H∑
h=1

(pm+j,h − yT
·jvh)γh − xT

Bvh

H∑
h=1

(qm+j,h − yT
·jwh)γhγh

]

[
dBxB +

H∑
h=1

(xT
Bsh)γh

]2

+
[
qBxB +

H∑
h=1

(xT
Brh)γh

]2

[
∆cd

j +
H∑

h=1

((cj − zc
j )(x

T
Bsh)− (dj − zd

j )(xT
Brh))γh

+
H∑

h=1

(dBxB(cm+j,h − yT
·jrh)− cBxB(dm+j,h −

yT
·jsh))γh +

H∑
h=1

(
xT

Bsh

H∑
h=1

(cm+j,h − yT
·jrh)γh −

xT
Brh

H∑
h=1

(dm+j,h − yT
·jrh)γh

)
γh

]
≤ 0 ,

j = 1, 2, . . . , n−m

}

Proof. Let us assume that x̂B be the new basic solution,
then

x̂B = A−1
B (b + ∆B) = A−1

B b + A−1
B ∆b

= b̄ + A−1
B

[
H∑

h=1

b1hγh,
H∑

h=1

b2hγh, . . . ,
H∑

h=1

bmhγh

]T

= b̄ +
[

H∑
h=1

(βT
1·uh)γh,

H∑
h=1

(βT
2·uh)γh, . . . ,

H∑
h=1

(βT
m·uh)

]T

Now ith component of x̂B is given by

x̂Bi = b̄i +
H∑

h=1

(βT
i·uh)γh

This new basic solution x̂B will be feasible if

b̄i +
H∑

h=1

(βT
i·uh)γh ≥ 0 , i = 1, 2, . . . ,m .

Now we calculate

∆̂pq = (qBxB +
H∑

h=1

(xT
Bwh)γh)(pj − zp

j +
H∑

h=1

(pjh −

yT
·jvh)γh)− (pBxB +

H∑
h=1

(xT
Bvh)γh)(qj − zq

j +
H∑

h=1

(qjh

− yT
·jwh)γh) = ∆pq +

H∑
h=1

((pj − zp
j )(xT

Bwh)− (qj −

zq
j )(xT

Bvh))γh +
H∑

h=1

(qBxB(pjh − yT
·jvh)− pBxB(qjh −

yT
·jwh))γh +

H∑
h=1

(xT
Bwh

H∑
h=1

(pjh − yT
·jvh)γh − xT

Bvh ×
H∑

h=1

(qjh − yT
·jwh)γh) .

Similarly,

∆̂cd = ∆cd +
H∑

h=1

((cj − zc
j )(x

T
Bsh)− (dj − zd

j )(xT
Brh))γh

+
H∑

h=1

(dBxB(cjh − yT
·jrh) − cBxB(djh − yT

·jsh))γh +

H∑
h=1

(xT
Bsh

H∑
h=1

(cjh − yT
·jrh)γh − xT

Brh

H∑
h=1

(djh − yT
·jsh)γh)

q̂x =
∑m

i=1(qi+
H∑

h=1

qihγh)xi = qBxB +
H∑

h=1

(xBuh)γhd̂X =

∑m
i=1

(
di +

H∑
h=1

dihγh

)
xi = dBxB +

H∑
h=1

(xT
Bsh)γh.

For the new solution x̂B to satisfy the optimality condi-
tion, the new value δ̂j ’s of δj are computed as follows:

δ̂j =
∆̂pq

j

(q̂x)2
+

∆̂cd
j

(p̂x)2

Thus, δ̂j takes the form

δ̂j =
[
δpq
j +

H∑
h=1

((pj − zp
j )(xT

Bwh)− (qj − zq
j )(xT

Bvh))γh

+
H∑

h=1

(qBxB(pjh − yT
·jvh)− pBxB)(qjh − yT

·jwh))γh



+
H∑

h=1

xT
Bwh

H∑
h=1

(pjh − yT
·jvh)γh − xT

Bvh

H∑
h=1

(qjh

−yT
·jwh)γhγh

]/[
qBxB +

H∑
h=1

(xT
Bwh)γh

]2

+
[
∆cd

j +
H∑

h=1

((cj − zc
j )(x

T
Bsh)− (dj − zd

j )(xT
Brh))γh

+
H∑

h=1

(dBxB(cjh − yT
·jrh)− cBxB(djh − yT

·jsh))γh

+
H∑

h=1

(
xT

Bsh

H∑
h=1

(cjh − yT
·jrh)γh − xT

Brh ×
H∑

h=1

(djh − yT
·jsh)γh

)
γh

]/[
dBxB +

H∑
h=1

(xT
Bsh)γh

]2

.

Now solution x̂B will be optimal if

[
dBxB +

H∑
h=1

(xT
Bsh)γh

]2

+
[
∆pq

j +
H∑

h=1

(pj − zp
j )×

(xT
Bwh)− (qj − zq

j )(xT
Bvh))γh +

H∑
h=1

(qBxB(pm+j,h −

yT
·jvh)− pBxB(qm+j,h − yT

·jwh))γh+

H∑
h=1

xT
Bwh

H∑
h=1

(pm+j,h − yT
·jvh)γh − xT

Bvh

H∑
h=1

(qm+j,h −

yT
·jwh)γhγh

]

+
[
qBxB +

H∑
h=1

(xT
Brh)γh

]2 [
∆cd

j +
H∑

h=1

((cj − zc
j )(x

T
Bsh)−

(dj − zd
j )(xT

Brh))γh

+
H∑

h=1

(dBxB(cm+j,h − yT
·jrh)− cBxB(dm+j,h − yT

·jsh))γh

+
H∑

h=1

xT
Bsh

H∑
h=1

(cm+j,h − yT
·jrh)γh − xT

Brh

H∑
h=1

(dm+j,h −

yT
·jsh)γhγh

]/

[(
qBxB +

H∑
h=1

(xT
Brh)γh

)(
dBxB +

H∑
h=1

(xT
Bsh)γh

)]2

≤
0 , j = 1, 2, . . . , n − m. Thus, the critical region S, is

given by S =
{

γ = (γ1, γ2, . . . , γH)T

∣∣∣∣b̄i +
H∑

h=1

(βT
i·uh)γh ≥

0 , i = 1, 2, . . . , m;(
qBxB +

H∑
h=1

(xT
Brh)γh

) (
dBxB +

H∑
h=1

(xT
Bsh)γh

)
6= 0;

[
∆pq

j +
H∑

h=1

((pj − zp
j )(xT

Bwh)− (qj − zq
j )(xT

Bvh))γh

+
H∑

h=1

(qBxB(pm+j,h−yT
·jvh)−(pBxB)(qm+j,h−yT

·jwh))γh

+
H∑

h=1

xT
Bwh

H∑
h=1

(pm+j,h − yT
·jvh)γh − xT

Bvh

H∑
h=1

(qm+j,h −

yT
·jwh)γhγh

]

[
dBxB +

H∑
h=1

(xT
Bsh)γh

]2

+
[
qBxB +

H∑
h=1

(xT
Brh)γh

]2

[
∆cd

j +
H∑

h=1

((cj − zc
j )(x

T
Bsh)− (dj − zd

j )(xT
Brh))γh

+
H∑

h=1

(dBxB(cm+j,h − yT
·jrh)− cBxB(dm+j,h − yT

·jsh))γh

+
H∑

h=1

(
xT

Bsh

H∑
h=1

(cm+j,h − yT
·jrh)γh − xT

Brh

H∑
h=1

(dm+j,h − yT
·jrh)γh

)
γh

]
≤ 0 ,

j = 1, 2, . . . , n−m

}
.

Hence the proof. ¥
To perform multiparametric sensitivity analysis, we de-
compose the critical region S as follows:

S+
dq = {γ = (γ1, γ2, . . . , γH)T

∣∣∣∣
(

dBxB +
H∑

h=1

(xT
Bsh)γh

)

(
qBxB +

H∑
h=1

(xT
Bwh)γh

)
> 0}

S−dq = {γ = (γ1, γ2, . . . , γH)T

∣∣∣∣
(

dBxB +
H∑

h=1

(xT
Bsh)γh

)

(
qBxB +

H∑
h=1

(xT
Bwh)γh

)
< 0}

S∆ =
{

γ = (γ1, γ2, . . . , γH)T | b̄i +
H∑

h=1

(βT
i·uh)γh ≥ 0; i =

1, 2, . . . , m;[
dBxB +

H∑
h=1

(xT
Bsh)γh

]2 [
∆pq

j +
H∑

h=1

((pj − zp
j )(xT

b wh) −
(qj − zq

j )(xT
Bvh))γh

+
H∑

h=1

(qBxB(pm+j,h − yT
·jvh)− pBxB(qm+j,h − yT

·jwh))γh

+
H∑

h=1

xT
Bwh

H∑
h=1

(pm+j,h − yT
·jvh)γh − xT

Bvh

H∑
h=1

(qm+j,h −

yT
·jwh)γhγh

]

+
[
qBxB +

H∑
h=1

(xT
Brh)γh

]2 [
∆cd

j +
H∑

h=1

((cj − zc
j )(x

T
Bsh)−

(dj − zd
j ))γh

H∑
h=1

xT
Bsh

H∑
h=1

(cmj ,h − yT
·jrh)γh − xT

Brh

H∑
h=1

(dm+j,h −

yT
·jsh)γhγh

]
≤ 0 ,

j = 1, 2, . . . , n−m

}
Then,

S = {γ = (γ1, γ2, . . . , γH)T | γ ∈ {S+
dq ∩ S∆}or γ ∈

{S−dq∩S∆}} can be decomposed into two disjoint regions:
S1 = {S+

dq ∩ S∆} and S2 = {S−dq ∩ S∆} .

Recently, Wang and Huang [16,17] have proposed the
concept of maximal volume region (MVR) within a tol-
erance region to investigate the different parameters at
their independent levels of sensitivity. The MVR is sym-
metrically rectangular parallelepiped with the largest vol-
ume in a critical region and is characterized by a maxi-



mization problem.

Since the critical region is a polyhedral set, there exists
L = [`i j ] ∈ RI×H , g = {gi} ∈ RI , I,H ∈ N , where I and
H are the number of constraints and variables of S, re-
spectively, such that S = {γ = (γ1, γ2, ..., γH)T |Lγ ≤ g}.
Also, in practice all the parameters need not be of the
same sensitivity level, therefore we classify them as ’fo-
cal’ and ’non-focal’ parameters. Non-focal parameters
are less sensitive and hence can be deleted from the anal-
ysis. Only the more sensitive parameters called as focal
are considered in the final analysis. For focal parameters,
it is assumed that `.j 6= 0 for j = 1, 2, . . . ,H.

Remark 2. It follows from Proposition 1 that γ = 0
belongs to S, and thus we have g ≥ 0.

The (MVR) BS of a polyhedral set S =
{γ = (γ1, γ2, . . . , γH)T |Lγ ≤ g} = {γ =

(γ1, γ2, . . . , γH)T |
H∑

j=1

lijγj ≤ gi, i = 1, 2, . . . , I},

where gi ≥ 0 for i = 1, 2, . . . , I and
I∑

i=1

|lij | > 0 for

j = 1, 2, . . . , H, is BS = {γ = (γ1, γ2, . . . , γH)T | |γj | ≤
k∗j , j = 1, 2, . . . ,H}. Here k∗ = (k∗1 , k∗2 , . . . , k∗H)T is
uniquely determined with the following two cases :

(i) If gi > 0 for i = 1, 2, . . . , I, then k∗ is the unique
optimal solution of the problem P(3), where |L| is
obtained by changing the negative elements of ma-
trix L to be positive

P (3) Max
∏

kj

subject to |L|k ≤ g

k ≥ 0 .

The volume of BS is Vol(BS) = 2H
∏

k∗j .

(ii) If gi = 0 for some i, let I◦ = {i|gi = 0, i =
1, 2, . . . , I} 6= φ and I+ = {i|gi > 0, i = 1, 2, . . . , I}
then we have

(a) If I+ = φ then k∗ = 0 is the unique optimal
solution

(b) If I+ 6= φ then let Ω =
⋃

i∈I◦
{j | lij 6= 0, j =

1, 2, . . . ,H} be the index set of focal parame-
ters that appear in some constraints with right-
hand-side gi = 0. Then k∗j = 0 for all j belong-
ing to Ω. The others, k∗j , j /∈ Ω, can be uniquely
determined as follows: After deleting all vari-
ables γj , j ∈ Ω and constraints with right-hand-
side gi = 0 from the system of constraints S, let
the remaining subsystem be in the form of (2)
with g′i > 0 for all index i as below:

S′ = {γ′ = [γj ]T , j /∈ Ω|L′γ′ ≤ g′} (2)

then k∗′ (i.e., k∗j , j /∈ Ω) can be uniquely deter-
mined by solving the following problem P(4)

P (4) Max
∏

j /∈Ω

kj

subject to |L′|k′ ≤ g′

k′ ≥ 0 .

The volume of BS is Vol(BS) = 2H
∏

j /∈Ω

k∗j .

Multiparametric sensitivity analysis of the problem P(1)
can now be performed as follows :

Obtain the critical region as given in Proposition 1 by
considering simultaneous and independent perturbations
with respect to the objective function coefficients and
right-hand-side vector. Delete all the non-focal param-
eters from the analysis. The MVR of the critical regions
is obtained by solving the problem P(3)/P(4). The prob-
lem P(3)/P(4) can be solved by existing techniques such
as Dynamic Programming. The detailed algorithm can
be found in Wang and Huang [17]. Software GINO [5] can
also be used to solve the nonlinear programming problem
P(3)/P(4).

4. Numerical Example

P(5) Maximize f(x) =
x1 − 2x2

3x1 − 2x2 + 1
+

x1 − x2

2x1 + x2 + 2

subject to 2x1 − x2 ≤ 10
x1 + x2 ≤ 8

xj ≥ 0, j = 1, 2 .

The optimal solution is

x∗ = [x∗1, x
∗
2]

T = [6, 2]T .

Multiparametric Perturbations:
∆p = [γ1 + γ2, 2γ1 − γ2], ∆c = [3γ1 − 2γ2, 0], ∆q =
[γ2, γ1 + 2γ2],
∆b = [4γ1 + 2γ2, γ1 + 3γ3]
u1 = [4, 1]T , u2 = [2, 3]T , v1 = [1, 2]T , v2 = [1,−1]T , w1 =
[0, 1]T , w2 = [1, 2]T , r1 = [3, 0]T , r2 = [−2, 0]T

Sdq+ = {γ = (γ1, γ2)T |16 + 2γ1 + 10γ2 > 0}.
S∆ = {γ = (γ1, γ2)T |6 + 0.6γ1 + 1.67γ2 ≥ 0, 2− 0.67γ1 +
1.33γ2 ≥ 0, 26.92 + 5.63γ1 + 3.43γ2 + 2.1γ2

1 + 7.08γ2
2 ≤

0, 19.07− 0.89γ1 + 4.51γ2 + 6γ2
1 + 2.81γ2

2 ≤ 0}.
Therefore critical region S is given by
S = {γ = (γ1, γ2)T |γ ∈ Sdq+ ∩ S∆}

= {γ = (γ1, γ2)T |16 + 2γ1 + 10γ2 > 0, 6 + 0.6γ1 +
1.67γ2 ≥ 0, 2 − 0.67γ1 + 1.33γ2 ≥ 0, 26.92 + 5.63γ1 +
3.43γ2 + 2.1γ2

1 + 7.08γ2
2 ≤ 0, 19.07 − 0.89γ1 + 4.51γ2 +

6γ2
1 + 2.81γ2

2 ≤ 0}. Because of the involvement of nonlin-
ear inequalities in S, the critical region S is not a rectan-
gular parallelepiped. Moreover, S may not be bounded.



Therefore, in this case Wang and Huang’s approach of
finding the Maximal volume region is not applicable. In
this situation we can only say that optimal basis will re-
main unchanged for all those perturbations in parameters
for which inequalities in S are satisfied.

4 Conclusions and Future Work

In this paper, we have studied multiparametric sensitiv-
ity analysis for the sum-of-ratios programming problem.
We have considered objective function with only two ra-
tios in the objective function but our approach can be
extended to any number of linear ratios in the objective
function. We have derived critical regions for the simul-
taneous and independent perturbations of the objective
function coefficients (both in numerator and denomina-
tor) and right-hand-side vector. However, because of the
presence of nonlinear inequalities in the critical region,
critical region is not rectangular parallelepiped. As a di-
rection for future research further research can be carried
out to explore the methods to approximate nonlinear in-
equalities in the critical region with linear inequalities so
that critical region can be approximated as rectangular
parallelepiped.
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