
  

  
Abstract—Analysis of variance (ANOVA), the likelihood 

ratio test (LRT) and the Kruskal-Wallis test for Pareto 
populations are investigated. Since Pareto data sets are 
non-normal distributions, they must be transformed to normal 
distributions with a constant variance. The power of the 
ANOVA, likelihood ratio and Kruskal-Wallis tests was 
compared in a number of different situations and different 
sample sizes. It was found that the results depended on the 
location and shape parameters. They are set in three cases; the 
location parameters are the same and the shape parameters are 
different, both the location and shape parameters are different, 
and the shape parameters are the same but the location 
parameters are different. It seems that the likelihood ratio test 
was a good choice in almost every case, but it is difficult to find a 
test based upon the likelihood ratio.  
 

Index Terms—Pareto populations, Power, Shape parameters, 
Location parameters 

I. INTRODUCTION 
There are many methods for comparing of more than two 

population means such as the ANOVA and the LRT. If the 
data are non-normally distributed, it is usual to apply the 
likelihood ratio test to scale, location or shape parameters. 
However, it is difficult to find the exact distribution of the 
generalized likelihood ratio statistic, Λ . For large samples 
the statistic 2 ln− Λ  is approximately distributed as 
chi-squared with k–1 degrees of freedom, whereas for small 
samples the approximated chi-square may be inaccurate. 
Alternatively, the Kruskal-Wallis non-parametric test is used 
and, in case where a comparison of the means of a population 
with one or more parameters, it is easier to apply the 
ANOVA. However, in the latter case non-normal data must 
be transformed to normal distributions so that the required 
assumptions for the ANOVA fit. In the ANOVA, the usual 
basic assumptions are that the model is additive and the errors 
are randomly, independently and normally distributed with 
zero mean and constant variance. When analyzing data that 
do not match the assumptions of a conventional method of 
analysis, there are two choices; transform the data to fit the 
assumptions or develop some new robust methods of analysis 
[1]. If a satisfactory transformation can be found, it will 
almost always be easier to use it rather than to develop a new  
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method of analysis. Transformations are used for three 
purposes; stabilizing response variance, making the 
distribution of the response variable closer to a normal 
distribution and improving the fit of the model to the data [2]. 
Choosing an appropriate transformation depends on the 
probability distribution of the sample data, e.g., the square 
root transformation is used for Poisson data. Furthermore, it 
is possible to transform the data using a family of 
transformations already extensively studied over a long 
period of time, e.g., [3], [4]. A well-known family of 
transformations often used in previous studies was proposed 
by Box and Cox. However, Box-Cox transformation is not 
always applicable. The Box-Cox transformation should be 
used with caution in some cases such as failure time and 
survival data [5]. The Box-Cox transformation was not 
satisfactory even when the best value of transformation 
parameter had been chosen. From studies of income 
distribution, [6], it is well established that a high proportion 
of a population will have low income. Pareto distributions 
have an important role in these studies. It is a very right long 
tailed distribution with the shape parameter γ , which 
determines the concentration of data and the location 
parameter θ , which is the minimum value of the variable [7]. 
 Besides the distribution of income, the Pareto distribution is 
indeed common in various fields, e.g., a queuing system [8], 
mobile communication networks [9]. As mentioned, the 
ANOVA requires certain basic assumptions. Hence, the 
Pareto-distributed data must be transformed before the 
ANOVA is applied. The ANOVA test, the likelihood ratio 
test and the Kruskal-Wallis test are applied for comparisons 
of several Pareto population means. In addition, the power of 
the ANOVA, generalized likelihood ratio and Kruskal- 
Wallis tests is compared using a simulation study. 

II. TESTS FOR COMPARISONS OF SEVERAL MEANS 

A. The ANOVA Test 
Usually, a Box-Cox transformation is used to transform 

data to normality. For the ANOVA, the Box-Cox 
transformation is in the form 
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for ijx > 0, where ijX is a random variable in the jth trial 

from the ith population, ijY  the transformed variable of 

ijX and λ  a transformation parameter, but sometimes this 
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transformation when applied to the Pareto-distributed data 
does not change the data sufficiently so that all the 
requirements for the ANOVA are met. Moreover, the 
transformed data are sometimes almost the same value when 
the location parameter is large; they have a variance close to 
zero, so that the Kolmogorov-Smirnov (K-S) test for 
checking normality and the Levene test for checking the 
homogeneity of variances cannot be performed. In order to 
cope with these problems, an alternative transformation 
proposed by Watthanacheewakul and Suwattee [10] is in the 
form  

ij ij i
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where ijX is a random variable in the jth trial from the ith 

Pareto distribution, ijY  the transformed variable of ijX , iθ  

the minimum value of ijX  from the ith Pareto distribution, 
and λ a transformation parameter. It is applied to transform 
any number of sets of Pareto data to normal with equal 
variance. The null hypothesis is 0 1 2 kH : ...μ = μ = μ . It 
performs better than the Box-Cox transformation for some 
specific sets of data and so allows the normality and 
homogeneity of variances to be checked. 

B. The Likelihood Ratio Test 
For Pareto data, testing the equality of means is equivalent 

to testing the equality of the shape parameters under the 
condition that the location parameters are equal. 

Theorem If ijX  is i iPar( , )θ γ , i=1,…,k, then, for large 
sample, the statistic of the likelihood ratio test for testing the 
null hypothesis 0 1 2 kH : ...γ = γ = = γ and 1 2 k...θ = θ = = θ is  
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where *x is the minimum value of all observations and 
           i(1)x  is the minimum value of each sample. 

The test statistic G has an approximate chi-square 
distribution with k–1 degrees of freedom when 0H is true. 

C. The Kruskal-Wallis Test           
This is a non-parametric analogue, based on rank, of 

one-way analysis of variance. The test statistic is  

                 
2k
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∑                        (4) 

where iR is the average rank of the member of the ith sample 

obtained after ranking all of the 
k

i
i 1

n n
=

= ∑  observations. 

Kruskal [11] proves that if 0H is true, the statistic H has a 
limiting chi-square distribution with k–1 degrees of freedom 
as in → ∞  simultaneously. The null hypothesis is 

0 1 2 kH :  ...ξ = ξ = = ξ  where iξ  is the median of the ith 

Pareto distribution, 
i

i
i 1

0.5 γ

θ
ξ = . 

III. EXAMPLE WITH REAL-LIFE DATA 
Data on the major rice crop in the crop year 2001/2002 

(April 1st, 2001 to March 31st, 2002) from three Tambols, 
Nonghan, Nongyang and Nongjom, of Amphoe Sansai in the 
Chiang Mai province, Thailand, were used as populations. 
Each Tambol consists of a set of 228, 281 and 294 farmer 
households, respectively. Samples of sizes 23, 28 and 30 
were drawn from each Tambol. The sampled data are shown 
in Table I. 
 
Table I The Major Rice Crop in Kilograms from the three 
             Tambols for the Crop Year 2001/2002 (April 1st, 
             2001 to March 31st, 2002) 
 

Nonghan Nongyang Nongjom 
2,300 3,440 3,600 
1,800 3,200 5,000 
2,000 5,400 7,500 
2,400 3,800 7,800 
12,000 4,300 3,600 
2,800 7,000 4,000 
3,000 3,700 4,000 
2,250 6,000 4,800 
2,100 3,250 4,900 
2,700 3,500 4,100 
1,800 3,000 4,500 
3,500 3,400 4,200 
2,500 5,000 6,800 
2,600 3,600 4,000 
3,200 18,000 7,000 
1,900 3,150 4,500 
2,200 8,500 8,300 
3,500 4,500 3,800 
6,000 4,250 24,000 
2,300 3,500 5,800 
2,850 3,000 3,720 
3,700 3,600 6,000 
1,900 5,000 5,400 
 3,000 3,600 
 4,000 4,500 
 3,600 4,220 
 4,270 3,600 
 5,800 4,800 
  4,200 
  4,113 

 
They are Pareto data and they can be checked using a 

Pareto probability plot. The value of transformation 
parameter = 0.4372. The ANOVA assumptions of the 
transformed data have been checked to be valid. For 
significance level 0.05α = , 2,78F 3.11= . Since F= 8.4935 > 



  

3.11, it is concluded that there is a significant difference in at 
least one pair among the three population means. Multiple 
comparisons should now be applied to identify the difference 
amongst the population means. The value of the statistic G is 
9.6764 and 0H is rejected. There is a significant difference in 
at least one pair among the three population means. The value 
of the statistic H is 32.3261 and 0H is rejected. It is 
concluded that there is a significant difference in at least one 
pair among the three population means.  

 

IV. SIMULATION   STUDIES 
Since the power functions of the three tests are in different 

forms [12]–[14], they cannot be compared directly. To draw 
a conclusion, the power of the three tests is studied 
numerically for particular cases by simulation method. 

A. Simulation Method 
A power comparison of several tests was suggested in two 

steps [15].  
1) To find the critical value for reject on of the null 

hypothesis, Pareto populations of   size iN = 4,000 are 
generated for  1 2 k...θ = θ = = θ  and 1 2 k...γ = γ = = γ , 
i 1, 2,.., k= . From each generated population, 1,000 random 

samples, each of size in , i 1,2,..., k= , are drawn. The test 
statistics of the three tests are calculated from each of the 
1,000 samples. For each test, the 1,000 values of the test 
statistics are arranged in an increasing order and the 95th 
percentile is identified. This gives the critical values at 

0.05α =  for the three tests. 
2) Since the proportion of rejections of the null hypothesis 

when the alternative is true is needed, Pareto populations of 
size iN = 4,000 are generated for various parameter values 

i iand , i 1, 2,.., kθ γ =   . Since means of Pareto distributions 
depend on both location parameter, iθ , and shape parameter, 

iγ , i 1, 2,.., k=  are set for three cases: the location 
parameters are the same and the shape parameters are 
different, both the location and shape parameters are 
different, and the shape parameters are the same but the 
location parameters are different. Since there are many values 
of location parameter and shape parameter, the difference of 
means of several Pareto distributions is considered. The 
difference of means is measured by the coefficient of 
variation (C.V.), 

                  1 2 k

1 2 k

S.D.( , ,..., )C.V.( )
Mean( , ,..., )

μ μ μ
μ =

μ μ μ
.                        (5) 

To make it clear, the examples of the calculation of the 
coefficient of variation are illustrated in Appendix. 

From each generated i iPar( , )θ γ population, 10,000 
random samples, each of size in , are drawn. The test statistics 
of the three tests are calculated. If the value of the test statistic 
is in the rejection area, as defined by the critical values, then 
the null hypothesis is rejected. The power of the test is the 
proportion of times that the null hypothesis is rejected. 

Let  Fβ̂  be the power of the ANOVA test, Gβ̂  the power of 

the likelihood ratio test, and Hβ̂  the power of the Kruskal 

-Wallis test .The values of parameters and the significant 
value are set as follows:  

 1) k = number of the populations = 3 
 2) in = sample sizes from the ith Pareto population between 
     10 and 30, for i 1, 2,..., k=  
 3) iθ , the location parameter of the ith Pareto population, 
     is between 1,030 and 3,253 
 4) iγ , shape parameter of the ith Pareto population, is 
     between 1.72 and 50 and fixed by the location 
     parameter and the coefficient of variation of population 
     means 
 5) 0.05α = . 

B. Results of the Power Comparison 
For a fixed null hypothesis, the power of the three tests is 

obtained as the proportion of rejection when the alternative 
hypothesis is true with different values of the coefficients of 
variation of population means. When the coefficient of 
variation of population means is zero, the null hypothesis is 
true. Hence, the proportion of rejecting the null hypothesis is 
equal to the level of significance α . When the coefficient of 
variation of population means is greater than zero, the null 
hypothesis is false or the alternative hypothesis is true. Thus 
the proportion of rejection of the null hypothesis is the 
estimate of the power of the test. The results of the power of 
tests for different sample sizes and different coefficients of 
variation of population means are compared when α  is set 
equal to 0.05. 

 The results of comparison are divided into three cases. 
 
 1) Same Location Parameters but Different Shape 
        Parameters  
 From the values of location parameters and shape 

parameters as Table A.I in Appendix, and samples of sizes 10 
to 30, the power of the three tests is shown in Table II-Table 
V. 

 
Table II Power of the Tests When the C.V. of Population 
               Means Varies with Equal Sample Sizes of n = 10 
 

Test C.V. of 
Population 
Means Fβ̂  Gβ̂  Hβ̂  

0.00 0.0495 0.0521 0.0504 

0.10 0.0651 0.1248 0.0962 

0.20 0.2191 0.4705 0.3347 

0.30 0.5082 0.8139 0.6012 

0.40 0.9778 0.9999 0.9806 

0.50 0.9965 1.0000 0.9946 
 
 
 
 
 
 
 
 
 



  

Table III Power of the Tests When the C.V. of Population 
                Means Varies with Equal Sample Sizes of n = 20 
 

Test C.V. of 
Population 
Means Fβ̂  Gβ̂  Hβ̂  

0.00 0.0486 0.0548 0.0526 

0.10 0.1092 0.1527 0.1199 

0.20 0.5350 0.7128 0.5605 

0.30 0.9121 0.9848 0.9231 

0.40 1.0000 1.0000 1.0000 

0.50 1.0000 1.0000 1.0000 
 
Table IV Power of the Tests When the C.V. of Population 
                Means Varies with Equal Sample Sizes of n = 30 
 

Test C.V. of 
Population 
Means Fβ̂  Gβ̂  Hβ̂  

0.00 0.0539 0.0514 0.0490 

0.10 0.2285 0.2982 0.2589 

0.20 0.7479 0.9196 0.7823 

0.30 0.9816 0.9984 0.9733 

0.40 1.0000 1.0000 1.0000 

0.50 1.0000 1.0000 1.0000 
 
Table V Power of the Tests When the C.V. of Population 
               Means Varies with Unequal Sample Sizes of 
               n1 = 10, n2 = 20, n3 = 30 
 

Test C.V. of 
Population 
Means Fβ̂  Gβ̂  Hβ̂  

0.00 0.0522 0.0527 0.0524 

0.10 0.0694 0.2494 0.1869 

0.20 0.3966 0.7908 0.5650 

0.30 0.5473 0.8988 0.7124 

0.40 0.9886 1.0000 0.9922 

0.50 0.9996 1.0000 0.9998 
 
In this case, if the differences among the population means 

are small, the likelihood ratio test has the highest power for 
samples of sizes 10 to 30. The power of all three tests is 
almost the same, if the differences among the population 
means are large. 

 
 2) Different Location Parameters and Different Shape 
        Parameters 
   From the values of location parameters and shape 

parameters as Table A.II in Appendix, and samples of sizes 
10 to 30, the power of the three tests is shown in Table VI- 
Table IX. 
 
 
 
 
 

Table VI Power of the Tests When the C.V. of Population 
                Means Varies with Equal Sample Sizes of n = 10 
 

Test C.V. of 
Population 
Means Fβ̂  Gβ̂  Hβ̂  

0.00 0.0488 0.0516 0.0476 

0.10 0.1833 0.1979 0.1040 

0.20 0.3580 0.4109 0.1960 

0.30 0.6475 0.8362 0.5171 

0.40 0.9959 0.9999 0.9361 

0.50 0.9998 1.0000 0.9665 
 
Table VII Power of the Tests When the C.V. of  
                  Population Means Varies with Equal Sample 
                  Sizes of n = 20 
 

Test C.V. of 
Population 
Means Fβ̂  Gβ̂  Hβ̂  

0.00 0.0519 0.0495 0.0491 

0.10 0.3414 0.2971 0.1375 

0.20 0.7485 0.6357 0.3956 

0.30 0.9915 0.9808 0.8123 

0.40 1.0000 1.0000 0.9994 

0.50 1.0000 1.0000 0.9999 
 
Table VIII Power of the Tests When the C.V. of  
                   Population Means Varies with Equal Sample 
                   Sizes of n = 30 
 

Test C.V. of 
Population 
Means Fβ̂  Gβ̂  Hβ̂  

0.00 0.0516 0.0508 0.0493 

0.10 0.6738 0.5525 0.2236 

0.20 0.9041 0.8888 0.4601 

0.30 0.9994 0.9988 0.9406 

0.40 1.0000 1.0000 1.0000 

0.50 1.0000 1.0000 1.0000 
 
Table IX Power of the Tests When the C.V. of Population 
                Means Varies with Unequal Sample Sizes of  
                n1 = 10, n2 = 20, n3 = 30  
 

Test C.V. of 
Population 
Means Fβ̂  Gβ̂  Hβ̂  

0.00 0.0543 0.0524 0.0472 

0.10 0.4065 0.4091 0.1905 

0.20 0.4727 0.5476 0.2209 

0.30 0.6868 0.8565 0.4820 

0.40 0.9953 0.9988 0.9534 

0.50 0.9992 0.9997 0.9575 
 



  

In this case, if the differences among the population means 
are small, the likelihood ratio test has the highest power for 
the simulation with equal sample sizes of n=10 and unequal 
sample sizes but the power of ANOVA test is higher than that 
of the likelihood ratio test for the simulation with equal 
sample sizes of n=20 and n=30. However, all the three tests 
have almost the same power when the differences among the 
population means are large.  

 
 3) Different Location Parameters and Same Shape 
        Parameters 
 From the values of location parameters and shape 

parameters as Table A.III in Appendix, and samples of sizes 
10 to 30, the power of the three tests is shown in Table X- 
Table XIII.  

 
Table X Power of the Tests When the C.V. of Population 
              Means Varies with Equal Sample Sizes of n = 10 
 

Test C.V. of 
Population 
Means Fβ̂  Gβ̂  Hβ̂  

0.00 0.0514 0.0506 0.0484 

0.10 0.1093 0.1165 0.3725 

0.20 0.2939 0.3922 0.8705 

0.30 0.4328 0.6215 0.9856 

0.40 0.5163 0.8921 0.9993 

0.50 0.5403 0.9796 0.9997 
 
Table XI Power of the Tests When the C.V. of Population 
                Means Varies with Equal Sample Sizes of n = 20 
 

Test C.V. of 
Population 
Means Fβ̂  Gβ̂  Hβ̂  

0.00 0.0480 0.0495 0.0527 

0.10 0.1770 0.2100 0.7421 

0.20 0.4243 0.7299 0.9973 

0.30 0.6285 0.9317 1.0000 

0.40 0.6980 0.9990 1.0000 

0.50 0.7667 1.0000 1.0000 
 
Table XII Power of the Tests When the C.V. of  
                  Population Means Varies with Equal Sample 
                  Sizes of n = 30 
 

Test C.V. of 
Population 
Means Fβ̂  Gβ̂  Hβ̂  

0.00 0.0498 0.0524 0.0506 

0.10 0.1954 0.4780 0.9171 

0.20 0.5677 0.9044 0.9999 

0.30 0.7025 0.9978 1.0000 

0.40 0.8368 1.0000 1.0000 

0.50 0.8896 1.0000 1.0000 
 

Table XIII Power of the Tests When the C.V. of 
                   Population Means Varies with Unequal 
                   Sample Sizes of n1 = 10, n2 = 20, n3 = 30  
 

Test C.V. of 
Population 
Means Fβ̂  Gβ̂  Hβ̂  

0.00 0.0507 0.0518 0.0491 

0.10 0.0741 0.1622 0.4961 

0.20 0.0947 0.4707 0.9243 

0.30 0.2964 0.7885 0.9982 

0.40 0.3419 0.9280 0.9999 

0.50 0.5741 0.9854 1.0000 
 
In this case, if the differences among the population means 

are small, the Kruskal-Wallis test has the highest power. If 
the differences among the population means are large, the 
likelihood ratio test and the Kruskal-Wallis test have almost 
the same power and higher power than ANOVA test. 

V. CONCLUSION    
To test the equality of means of Pareto data, ANOVA test, 

likelihood ratio test and Kruskal-Wallis test are investigated. 
The use of ANOVA test for testing equality of means for 
several Pareto distributions, transformed data to normal with 
constant variances is needed. The data sets transformed by an 
alternative transformation meet the assumptions required for 
the application of ANOVA test. The power of ANOVA test is 
compared to those of the other two existing tests, the 
likelihood ratio and the Kruskal-Wallis tests. The power 
functions of the three tests are of different forms and cannot 
be compared explicitly. A numerical method is then used for 
comparison purposes. It is found that if the location 
parameters are the same and the shape parameters are 
different, the likelihood ratio test has the highest power for 
samples of sizes 10 to 30. The power of all three tests is 
almost the same if the differences among the population 
means are large.  

If the populations have different values of both location 
and shape parameters, the likelihood ratio test has the highest 
power for the simulations with equal samples of sizes 10 and 
unequal sample sizes but ANOVA test is higher than the 
likelihood ratio test a little for the simulations with equal 
samples of sizes 20 and 30. However, all the three tests have 
almost the same power when the differences among the 
population means are large.  

If the populations have the same shape parameters but 
different location parameters, the Kruskal-Wallis test has the 
highest power. In this case, as the differences among the 
population means are large, the likelihood ratio test and 
Kruskal-Wallis test have the same power and higher power 
than ANOVA test.  

To choose the appropriate test, the location parameter and 
the shape parameter for each group should be checked. For 
the same location parameter but the different shape 
parameter, sample sizes do not affect on choosing the test. If 
the differences among the population means are small, the 
likelihood ratio test should be selected. If the differences 



  

among the population means are large, all three tests can be 
selected. 

For both the different location parameter and shape 
parameter, samples of sizes 10 and unequal sample sizes, if 
the differences among the population means are small, the 
likelihood ratio test should be selected. If the differences 
among the population means are large, anyone can be 
selected. For samples of sizes 20 and 30, if the differences 
among the population means are small, the ANOVA test 
should be selected. If the differences among the population 
means are large, all three tests can be selected. 

For the different location parameter and the same shape 
parameter, sample sizes do not affect on choosing the test. If 
the differences among the population means are small, the 
Kruskal-Wallis test should be selected. If the differences 
among the population means are large, the Kruskal-Wallis 
test or the likelihood ratio test can be selected.  

It seems that the likelihood ratio test is a good choice in 
almost every case. However, it is difficult to find a test based 
on the likelihood ratio. 

APPENDIX 
 

Table A.I Calculation of the C.V. of Population Means for 
                 the Same Location and Different Shape 
                 Parameters with k=3 

 

 
 

Table A.II Calculation of the C.V. of Population Means 
                   for the Different Location and Different 
                   Shape Parameters with k=3 

 

 
 
 

Table A.III Calculation of the C.V. of Population Means 
                    for the Different Location and Same Shape 
                    Parameters with k=3 
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Location parameters Shape parameters 

1θ  2θ  3θ  1γ  2γ  3γ  

 
 
Mean 

 
 
S.D. 

 
 
C.V 

1800 1800 1800 3.00 3.01 3.02 2695.54 4.45 0.00 

1800 1800 1800 2.70 3.30 4.33 2593.99 259.33 0.10 

1800 1800 1800 2.49 2.18 5.31 2849.02 569.93 0.20 

1800 1800 1800 2.10 6.00 7.81 2553.56 766.03 0.30 

1800 1800 1800 2.01 20.0 25.2 2450.43 980.17 0.40 

1800 1800 1800 1.78 29.5 50.0 2600.56 1300.17 0.50 

Location parameters Shape parameters 

1θ  2θ  3θ  1γ  2γ  3γ  

 
 
Mean 

 
 
S.D. 

 
 
C.V 

1800 1850 1900 2.99 3.17 3.36 2703.86 0.61 0.00 

1800 1850 1900 3.00 3.00 6.00 2585.00 266.79 0.10 

1800 1850 1900 2.20 3.50 6.50 2711.82 537.72 0.20 

1800 1850 1900 2.10 8.00 9.00 2562.72 756.69 0.30 

1800 1850 1900 1.95 25.0 30.0 2529.11 1009.64 0.40 

1800 1850 1900 1.72 28.0 40.0 2722.41 1366.31 0.50 

Location parameters Shape parameters 

1θ  2θ  3θ  1γ  2γ  3γ  

 
 
Mean 

 
 
S.D. 

 
 
C.V 

1800 1801 1802 3 3 3 2701.50 1.50 0.00 

1642 1900 2000 3 3 3 2771.00 277.08 0.10 

1350 1900 2000 3 3 3 2625.00 525.00 0.20 

1300 2006 2438 3 3 3 2872.00 861.71 0.30 

1044 2115 2500 3 3 3 2829.50 1131.68 0.40 

1030 2500 3253 3 3 3 3391.50 1695.91 0.50 




