
 

 

  
Abstract—In statistical data analysis by analysis of variance, the 

usual basic assumptions are that the model is additive and the errors 
are randomly, independently, and normally distributed about zero 
mean and constant variance. For analyzing data which do not match 
the assumptions of the conventional method of analysis, we have two 
choices. We may transform the data to fit the assumptions, or we 
may develop new methods of analysis with assumptions which fit the 
original data. If we can find a satisfactory transformation, it will 
almost always be easier to use it rather than to develop a new method 
of analysis. In analysis of variance with Weibull data, the data should 
first be transformed to fit all the assumptions required. The well-
known Box-Cox transformation can use to get the normality but 
cannot transform the observations that equal zero. In the sets of 
Weibull data, the observations may be zero. To cope this problem, an 
alternative transformation is proposed. When the transformed data 
have met the required assumptions of normality and homogeneity of 
variances, we then can apply the analysis of variance to test the 
equality of the population means or the treatment effects of the 
original Weibull populations. Moreover, numerical studies of the 
powers of the tests obtained from ANOVA of the transformed data 
are also given.  
 

Keywords—Weibull Data, The Box-Cox transformation, 
The alternative transformation 

I. INTRODUCTION 
In the analysis of variance (ANOVA) the usual basic 

assumptions are that the model is additive and the errors are 
randomly, independently, and normally distributed about zero 
mean and equal variances. With some specific sets of data, the 
basic assumptions are not satisfied so analysis of variance 
cannot be applied appropriately. Tukey [1] suggested that in 
analyzing data which do not match the assumptions of the 
conventional method of analysis, we have two alternative 
ways to go about. We may transform the data to fit the 
assumptions, or we may develop some new methods of 
analysis with assumptions fitting the original data. If we can 
find a satisfactory transformation, it will almost always be 
easier to use the conventional method of analysis rather than 
to develop a new one. Montgomery [2] suggested that 
transformations are used for three purposes, stabilizing 
response variance, making the distribution of the response 
variable closer to the normal distribution, and improving the 
fit of model to the data. Choosing an appropriate 
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transformation depends on the probability distribution of the 
sample data. For example, the square root transformation is 
used for Poisson data and the logarithmic transformation is 
used for lognormal data. Moreover, we can use the 
relationship between the standard deviation and the mean for 
stabilizing variance. Furthermore, we can transform the data 
by using a family of transformations studied for a long time. 
Many authors have studied the transformations of the data to 
meet the requirements of the analysis of variance [3]- [6]. The 
Box-Cox transformation for ANOVA is in the form 
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where  ijX  is a random variable in the j th trial from the i th 
                   distribution, 
            ijY   the transformed variable of ijX , and    
   λ    a transformation parameter.     
It is often used to transform the data to fulfill the 

requirements but it might not be satisfactory in some cases. 
Doksum and Wang [7] indicated that the Box-Cox 
transformation should be used with caution in some cases 
such as failure time and survival data. John and Draper [6] 
showed that the Box-Cox transformation was not satisfactory 
even when the best value of transformation parameter have 
been chosen. Moreover, the condition of observation is that 
the value of it is greater than zero. In the sets of Weibull data, 
the some observations may be zero. In order to cope with this 
problem, the alternative transformation is proposed. In this 
paper, the two parameter Weibull distribution is investigated.  

II. THE WEIBULL DISTRIBUTION 
The Weibull distribution is a continuous probability 

distribution. It is named after Waloddi Weibull who described 
it in detail in 1951. The probability density function of a two 
parameter Weibull random variable X is 
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where  α is the shape parameter and β is the scale 

parameter.  
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β
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. It’s useful in many fields such as 

survival analysis, extreme value theory, weather forecasting, 
reliability engineering and failure analysis. Moreover, it is 
used to describe wind speed distribution, the particle size 
distribution, and so on. Furthermore, it is related to the other 
probability distribution such as the exponential distribution 
when α=1 [8]. An alternative test procedure for testing the 
equality of scale parameters of k Weibull populations with a 
common shape based on sample quantiles was presented and 
the power of this procedure was shown to be quite good 
numerically in several situations [9]. 

 

III. AN ALTERNATIVE TRANSFORMATION 
A transformation for any sets of Weibull data to normality 

with equal variances proposed here is in the form  
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where  ijX   is a random variable in the j th trial from the i 

th 
                   Weibull distribution, 
   ijY   the transformed variable of ijX ,      

                ic    the range of the value of ijX from the i th 
                       Weibull distribution, and 
    λ    a transformation parameter.     

 The likelihood function in relation to the observations is 
given by  
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For a fixed λ , the MLE’s for 2 and iμ σ  are  
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Substitute the values of ˆiμ and 2σ̂  into the likelihood 
equation (4). Thus for fixed λ , except for a constant, the 
maximized log likelihood is  
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The maximum likelihood estimate of λ is obtained by solving 
the likelihood equation 
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Since λ appears on the exponent of the observations, it is 

considered to be too complicated for solving it. The 
maximized log likelihood function is a unimodal function so 
the value of the transformation parameter is obtained when the 
slope of the curvature of the maximized log likelihood 
function is nearly zero [3]. Hence we can also use the 
numerical method such as bisection for finding the suitable 
value of λ .  

IV. AN EXAMPLE 
For the purpose of illustrating the examples, only three 

Weibull populations, each of size 4,000, are generated with 
shape parameters and scale parameters as follows. The shape 
parameter of the first population is 0.5 and the scale parameter 
is 2,000. With the second population, the shape parameter is 



 

 

0.8 and the scale parameter is 2,500. The shape parameter of 
the third population is 0.3 and the scale parameter is 2,800. 
Supposing that three random samples of size 20 are taken 
from each Weibull population, the sample data are shown in 
Table I. 

TABLE I 
THREE RANDOM SAMPLES OF SIZE 20  

TAKEN FROM EACH OF THREE WEIBULL POPULATIONS 
Sample 1 Sample 2 Sample 3  

2579.6908 84.7686 6401.1384 
314.3274 3140.9761 418.4721 
120.0458 1259.3663 4874.6619 

.0029 2278.2005 223.6741 
8.7890 1989.6294 5990.1773 

1857.7515 234.6199 1002.8734 
2085.7657 10786.7084 4122.3392 

22323.0335 489.2421 337.8618 
54.2117 2655.1945 2558.4037 

4.8736 433.0990 1759.7356 
38.1645 1345.7827 6278.4611 

755.5777 9445.8736 652.5073 
2776.6114 2157.3488 1520.4843 
1216.0706 2437.9362 2438.7121 
6019.3549 1477.3830 23400.6656 

145.8246 74.1967 49360.0986 
2843.5990 1075.5533 159.2248 

300.3641 7269.5212 1976.0678 
4849.4784 1355.8477 16995.8851 

54.2117 1890.8892 8836.0844 

 
The Normal P-P plot for each sample is presented in Fig. 1-

3. The results show that each sample of data is non-normal. 
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Fig. 1 Normal P-P plot of data from Sample 1 

 

Observed Cum Prob

1.00.75.50.250.00

Ex
pe

ct
ed

 C
um

 P
ro

b

1.00

.75

.50

.25

0.00

 
Fig. 2 Normal P-P plot of data from Sample 2 
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Fig. 3 Normal P-P plot of data from Sample 3 

 
The Weibull P-P plot for each sample is presented in Fig. 4-

6. The results show that each sample of data is Weibull. 
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Fig. 4 Weibull P-P plot of data from Sample 1 
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Fig. 5 Weibull P-P plot of data from Sample 2 
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Fig. 6 Weibull P-P plot of data from Sample 3 

 
The value of transformation parameter is λ = -0.069318 by 

the bisection method. 



 

 

Hence, the transformation for this Weibull data set is  

     
-0.069318

0.01 1
-0.069318

⎡ ⎤+ −⎣ ⎦= ij i
ij

X c
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The transformed data are shown in Table II. 

TABLE II 
THE TRANSFORMED DATA   

Sample 1 Sample 2 Sample 3  
6.1053 4.4056 6.6085 
5.0962 6.1899 5.4308 
4.8015 5.6805 6.4717 
4.5101 6.0118 5.2794 
4.5366 5.9362 6.5751 
5.9318 4.7986 5.7347 
5.9928 6.8526 6.3880 
7.2250 5.1631 5.3728 
4.6584 6.0969 6.1540 
4.5250 5.0994 5.9781 
4.6180 5.7176 6.5988 
5.4758 6.7834 5.5723 
6.1444 5.9814 5.9120 
5.7119 6.0495 6.1310 
6.5546 5.7697 7.2539 
4.8497 4.3662 7.6104 
6.1571 5.5924 5.2194 
5.0791 6.6452 6.0316 
6.4406 5.7217 7.0971 
4.6584 5.9078 6.7707 

 
In general, the usual basic assumptions, normality in each 

group of data and homogeneity of variances, should be 
validated before ANOVA is applied and so these assumptions 
should be tested. The normal P-P plot for each sample of 
transformed data is presented in Fig 7-9. The results show that 
each sample of transformed data is normal. 
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Fig. 7 Normal P-P plot of transformed data from Sample 1 
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Fig. 8 Normal P-P plot of transformed data from Sample 2 
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Fig. 9 Normal P-P plot of transformed data from Sample 3 

 
The  Levene statistic *

LF  of  transformed data is 1.571. For 

significance level 0.05α = , 0.05,2,57F 3.15= . Since 
*
LF 1.571=  <  3.15, They have a constant variance. The 

ANOVA assumptions of the transformed data are checked and 
are valid. Subsequently the transformed data are used to test 
the equality of the population means using ANOVA. The 
results are shown in Table III. 

 
TABLE III 

ANOVA TABLE FOR 0 1 2 3: = =H μ μ μ  

Source of Variation df Sum of Squares Mean Square F-ratio 

Between treatment  2   5.830 2.915 5.418 

Within treatment 57 30.684 0.538  

Total 59 36.514   

 
The F  test statistic, F 5.418= , and 0.05,2,57F 3.15= . Since  

F 5.418=  > 3.15, there is a significant difference in at least 
one pair among the three population means. 

V. A NUMERICAL STUDY 
In order to attain the most effective use of the proposed 

transformation, we set the values of parameters and the 
significant value as follows: 

      1)  k = number of the populations = 3, 
  2) in = sample size from the i th Weibull population 
                 =10, 20, 30, 50, 
      3) iβ = scale parameter of the i th Weibull population 



 

 

is between 1000 and 4000, 
  4) iα = shape parameter of the i th Weibull population 

is between 1 and 1.5, 
     5)  Significant level = 0.05. 
The Weibull populations of size iN =  4,000 (i 1, 2,3)= are 

generated for different values of parameters  i i,α β  shown in 
Table IV.  

 
TABLE IV 

THE VALUES OF PARAMETERS iα AND iβ  

No. iβandiα  Values of Parameters 

1 1 2 3 1 2 31.5, 1.5, 1.5, 1000, 1000, 1000α = α = α = β = β = β =  

2 
 1 2 3 1 2 31.5, 1.5, 1.5, 1000, 1500, 2000α = α = α = β = β = β =  

3 1 2 3 1 2 31.5, 1.5, 1.5, 1000, 2000, 3000α = α = α = β = β = β =  

4 1 2 3 1 2 31.5, 1.5, 1.5, 1000, 2000, 4000α = α = α = β = β = β =  

5 1 2 3 1 2 31.0, 1.2, 1.5, 1000, 1000, 1000α = α = α = β = β = β =  

6 1 2 3 1 2 31.0, 1.2, 1.5, 1000, 1500, 2000α = α = α = β = β = β =  

7 1 2 3 1 2 31.0, 1.2, 1.5, 1000, 2000, 3000α = α = α = β = β = β =  

8 1 2 3 1 2 31.0, 1.2, 1.5, 1000, 2000, 4000α = α = α = β = β = β =  

 
From a i iWeibull( , )α β , 1,000 random samples, each of size 

in , are drawn. Then we transform each set of the sample data 
to normality by the proposed transformation. The differences 
among the population means are measured by the coefficient 
of variation (C.V.) shown in Table V.  

 
TABLE V 

THE COEFFICIENT OF VARIATION AMONG 
 THE POPULATION MEANS 

No. 1μ 2μ 3μ C.V.(%)) 

1 902.7453 902.7453 902.7453 0.00 

2 
 

902.7453 1354.1179 1805.4906 33.33 

3 902.7453 1805.4906 2708.2359 50.00 

4 902.7453 1805.4906 3610.9812 64.47 

5 1000.0000 940.6559 902.7403 5.17 

6 1000.0000 1410.984 1805.4906 28.66 

7 1000.0000 1881.3117 2708.2359 45.85 

8 1000.0000 1881.3117 3610.9812 61.38 

 

A. Check Validity of Assumption 
The results of the goodness- of-fit tests and the tests of 

homogeneity of variances with 1,000 replicated samples of 
various sizes are shown in Table VI to Table IX. 

 
 
 
 
 

TABLE VI 
AVERAGES OF THE P-VALUES FOR K-S TEST OF NORMALITY, AND  

OF THE P-VALUES FOR THE LEVENE TEST USING DATA TRANSFORMED  
BY THE ALTERNATIVE TRANSFORMATION WITH  10=in  

 
TABLE VII 

AVERAGES OF THE P-VALUES FOR K-S TEST OF NORMALITY, AND  
OF THE P-VALUES FOR THE LEVENE TEST USING DATA TRANSFORMED  

BY THE ALTERNATIVE TRANSFORMATION WITH  30=in  

 
TABLE VIII 

AVERAGES OF THE P-VALUES FOR K-S TEST OF NORMALITY, AND  
OF THE P-VALUES FOR THE LEVENE TEST USING DATA TRANSFORMED  

BY THE ALTERNATIVE TRANSFORMATION WITH  50=in  

 
 
 
 
 

No. 
Averages of the p-Values for 

K-S Test 

of Transformed Data 

Averages of  
the p-Values 

for the 
Levene Test 

1 0.815935 0.836797 0.832448 0.512381 
2 0.833253 0.830454 0.830982 0.500592 

3 0.807439 0.812730 0.832753 0.505986 

4 0.818064 0.809636 0.821178 0.517538 

5 0.837132 0.840045 0.822093 0.464288 

6 0.833911 0.832420 0.823324 0.487294 

7 0.842745 0.833669 0.803619 0.571945 

8 0.826983 0.828171 0.815086 0.584423 

No. 
Averages of the p-Values for 

K-S Test 

of Transformed Data 

Averages of  
the p-Values 

for the 
Levene Test 

1 0.701827 0.702871 0.767305 0.496945 
2 0.681334 0.642862 0.655129 0.374862 

3 0.633572 0.611771 0.571767 0.328161 

4 0.525433 0.523030 0.512390 0.245224 

5 0.761650 0.753825 0.638876 0.289726 

6 0.744558 0.772147 0.629379 0.408814 

7 0.745982 0.684544 0.566321 0.566636 

8 0.740399 0.700717 0.592849 0.518817 

No. 
Averages of the p-Values for 

K-S Test 

of Transformed Data 

Averages of  
the p-Values 

for the 
Levene Test 

1 0.596132 0.541692 0.633408 0.511615 
2 0.573105 0.458770 0.504397 0.282900 

3 0.487750 0.422268 0.346918 0.211742 

4 0.442299 0.331097 0.366252 0.196322 

5 0.652811 0.661944 0.432919 0.203807 

6 0.672854 0.686797 0.413016 0.371272 

7 0.648873 0.521054 0.346788 0.524520 

8 0.620238 0.522692 0.355206 0.512107 



 

 

TABLE IX 
AVERAGES OF THE P-VALUES FOR K-S TEST OF NORMALITY, AND  

OF THE P-VALUES FOR THE LEVENE TEST USING DATA TRANSFORMED  
BY THE ALTERNATIVE TRANSFORMATION WITH  1 2 310, 20, 30= = =n n n  

 
We have seen that, all sets of the Weibull data transformed 

by the alternative transformation can be checked by the K-S 
test and for homogeneity of variances by the Levene test. 
Furthermore, they always meet all the required assumptions 
for ANOVA. 

B. Powers of the ANOVA Test 
 We transform each set of the sample data to normality and 
homogeneity of variances by proposed alternative 
transformation. Then the transformed data sets are used to test 
the equality of the population means by ANOVA. The power 
of the F-test as obtained from ANOVA given by Patnaik [10] 
is  
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   The results of the power of the ANOVA tests with 1,000 
replicated samples of various sizes are shown in Table X. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE X 
POWERS OF THE ANOVA TESTS OF EQUALITY OF MEANS  

USING TRANSFORMED DATA  
Power of the  ANOVA Test 

No. 1 2

3 10
= =
=

n n
n

 1 2

3 30
= =
=

n n
n

 1 2

3 50
= =
=

n n
n

 1 2

3

10,
20, 30

= =
=

n n
n

 

1   0.047946 0.051030 0.053016 0.048728 
2 0.286518 0.669822 0.816144 0.319087 

3 0.584186 0.917247 0.979087 0.670549 

4 0.769037 0.983201 0.999780 0.866752 

5 0.063552 0.067198 0.077095 0.070527 

6 0.470168 0.811293 0.918057 0.625139 

7 0.626333 0.899473 0.969276 0.710698 

8 0.816969 0.981594 0.998056 0.879196 

 
We see that the power of the ANOVA test increases as in  

increases. Furthermore, when the differences among the 
population means are larger, higher powers of the tests are 
obtained. 

VI. CONCLUSION 
The alternative transformation as proposed in this paper is 

applied to transform Weibull data to Normal data with 
constant variance. The numerical results indicated that the 
Weibull data sets transformed by the alternative 
transformation always meet the assumptions required for the 
application of ANOVA. The power of the test depends on the 
sample sizes, and also on the shape and scale parameters of 
the populations. 
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No. 
Averages of the p-Values for 

K-S Test 

of Transformed Data 

Averages of  
the p-Values 

for the 
Levene Test 

1 0.835954 0.796768 0.783582 0.492555 
2 0.829312 0.779097 0.705641 0.432498 

3 0.839868 0.731671 0.614819 0.385555 

4 0.806368 0.695800 0.526457 0.336836 

5 0.822588 0.807346 0.670332 0.356439 

6 0.820560 0.810929 0.647131 0.489342 

7 0.807925 0.780921 0.622750 0.543743 

8 0.828503 0.772286 0.611646 0.530562 




