
  

  
Abstract—To analyze non normal data, the data should 
be transformed to a normal distribution. The well-known 
Box-Cox transformation can be used to get the normality. 
Since the transformation parameter is usually unknown, 
many statisticians studied the methods of estimation of 
the transformation parameter, λ , appearing in the 
Box-Cox transformation. Moreover, we can use the 
numerical methods for single variable function 
optimization to find the value of the transformation 
parameter λ such as bisection method, Newton’s method, 
secant method, and others. The alternative numerical 
method λ is applied to find the suitable value of λ . It is 
better than the bisection method in the context of the 
number of function evaluations and the processing time.  
 

Index Terms— Alternative numerical method, Bisection 
method, Box-Cox transformation, Transformation parameter 

I. INTRODUCTION 
In statistical data analysis the basic assumptions are that 

the model is additive and the errors are randomly, 
independently, and normally distributed about zero mean and 
constant variance. If the basic assumptions are not satisfied, 
then the statistical inference under the normal theory cannot 
be applied. Tukey [1] suggested that in analyzing data which 
do not match the assumptions of the conventional method of 
analysis, we have two alternative ways to go about. We may 
transform the data to fit the assumptions, or we may develop 
some new methods of analysis with assumptions fitting the 
original data. If we can find a satisfactory transformation, it 
will almost always be easier to use the conventional method 
of analysis rather than to develop a new one. The well-known 
Box-Cox transformation is often used to transform non 
normal data in regression analysis and the analysis of 
variance to normality with homogeneity of variances. Most 
statisticians considered the problem of estimation of the 
transformation parameter, λ , in the Box-Cox transformation 
[2-5]. Box and Cox [6] proposed the maximum likelihood 
method to obtain the proper value of λ  by plotting the log 
likelihood against λ for a trial series of values. From this plot 
the maximizing value λ̂ may be read off. Moreover, we can 
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use the numerical methods for single variable function 
optimization to find the value of transformation parameter 
λ such as bisection method, Newton’s method, secant 
method, and others [7-9]. In this paper, the alternative 
numerical method for finding the appropriate value of λ  is 
applied   for k exponential populations with one parameter. 

II. ESTIMATION OF THE TRANSFORMATION PARAMETER 
The Box-Cox transformation for any sets of exponential data 

to normality 
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for ijx > 0, where ijX is a random variable in the jth trial from 
the ith population, ijY  the transformed variable of ijX  and λ  
a transformation parameter. The probability density function 
of each ijY is assumed to be normal with mean iμ  and 

variance 2σ , i.e. 
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where ijy  is the observed value of ijY . 
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The likelihood in relation to the sample observations is given 
by  
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Thus, the log likelihood of the observations is 
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The log likelihood function of λ is, except for a constant, 
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 The partial derivative of ijln L( x )λ with respect to λ  is 
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The maximum likelihood estimate of λ is obtained by 
solving the likelihood equation 
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The maximum likelihood estimate of λ  is obtained by 
solving the likelihood equation. This equation is not easy to 
solve for λ  in terms of the observations ijx and, hence, a 
numerical approach should be considered. 

III. AN ALTERNATIVE NUMERICAL METHOD 
Since the curvature of the log likelihood function is of a 

quadratic pattern, it has only one maximum value. If it was 
ever desired to determine λ̂  more precisely this could be 
done by numerically determining the value λ̂  for which the 
derivatives with respect to λ  are all zero [6]. Numerical 
methods, such as the bisection method, can be applied, but 
here an alternative numerical method is applied to find λ . 
The idea behind this method is that the slope of curvature of 
the log likelihood function is used to find λ  and the 
transformation parameter is obtained when the slope is nearly 
zero. The first derivative of the log likelihood function of λ , 
or the slope given by ( 7 ), is denoted by f ( )′ λ . In what 
follows it will always be assumed that f ( )′ λ  is continuous 
on [ ]1 2,λ λ . Watthanacheewakul [10] proposed the algorithm 

for the alternative numerical method to obtain λ̂  in the 
alternative transformation is as follows:  

Step 1 The Appropriate Interval 
 Step 1.1 Initialize 1 2,λ λ , and ε  
 First of all, the tolerance value for the stopping rule, ε , is 
set  at 0.0001 and 1 2,λ λ  are arbitrary values where 1 2λ < λ . 
 Step 1.2 Calculate the value of the first derivatives of the 
log likelihood of 1 2and λ λ  
 The values of the first derivatives of the log likelihood of 

1 2and λ λ are calculated by replacing  λ  in f ( )′ λ  with 

1 2and λ λ respectively.  
  Step 1.3 Compare 1f ( )′ λ  and 2f ( )′ λ with ε    

 If 1f ( )′ λ < ε then let 1λ = λ . If 1f ( )′ λ ≥ ε , then consider 

2f ( )′ λ .  If 2f ( )′ λ < ε , then 2λ = λ . Otherwise, proceed to 
Step 1.4. 
 Step 1.4 Find the appropriate interval [ ]1 2,λ λ  

  If 1f ( )′ λ ≥ ε  and 1f ( ) 0′ λ < ,  let 1 2m = λ − λ ,  then set 

2 1′λ = λ  and 1 2 1
m m

4 4′ ′λ = λ − = λ − . Set 1 1′λ = λ .  Repeat 

this process until 1f ( ) 0′ λ > . 
     If 2f ( )′ λ ≥ ε and 2f ( ) 0′ λ > , let 1 2m = λ − λ , then set 

1 2′λ = λ  and 2 1 2
m m

4 4′ ′λ = λ + = λ + . Set 2 2′λ = λ . Repeat 

this process until 2f ( ) 0′ λ < . 
  If 1f ( ) 0′ λ >  and 2f ( ) 0′ λ <  then proceed to Step 2. 
Step 2 The Optimization Value 
 Step 2.1 Compare 1f ( )′ λ and 2f ( )′ λ  

 Calculate 1 2m = λ − λ . If 1 2f ( ) f ( )′ ′λ < λ , let 

1
m

4λ = λ + ,  otherwise let 2
m

4λ = λ − . 

 Step 2.2 Check for a stopping rule 
 If f ( )′ λ < ε , stop the iteration. If f ( )′ λ ≥ ε and f ( ) 0′ λ > , 

let 1λ = λ and go back to Step 2.1. If  f ( )′ λ ≥ ε and 
f ( ) 0′ λ < , let 2λ = λ  and go back to Step 2.1. 
 This algorithm is applied to find the value of 
transformation parameter in the Box-Cox transformation.      

IV. APPLYING THE  ALTERNATIVE NUMERICAL METHOD 
The random samples of size 20 were taken from 

exponential population with scale parameter ( β ) equals 
three. The data are as follows 13.51945, 0.071361, 0.347777, 
5.577101, 0.605019, 5.295623, 0.487435, 1.374586, 
8.99852, 0.91593, 1.540253, 5.55445, 9.484076, 5.394369, 
1.776799, 2.992351, 1.597922, 3.602009, 0.179283, 
3.424097. They are used for finding the transformation 
parameter using the alternative numerical method. The 
procedure is as follows: 
Step 1 The Appropriate Interval 
Round No.1 
Step 1.1 Let 1 21.0,  0.01λ = − λ =  and 0.0001ε = . 
Step 1.2 Calculate 1f ( )′ λ = 44.442623 
                and 2f ( )′ λ = 9.038474. 
Step 1.3 1f ( )′ λ ≥ ε  and 2f ( )′ λ ≥ ε . 

Step 1.4 Since 2f ( ) 0′ λ > ,  1 2m 1 0.01= λ − λ = − − =1.01. 

  Set 1 0.01′λ =  and 2 1 2
m m

4 4′ ′λ = λ + = λ +  



  

  = 0.01+0.2525 = 0.2625. Set 2 2′λ = λ  and    

  2f ( )′ λ =  -0.553462. 

The appropriate interval is [0.01, 0.2625]. 
Step 2 The optimization value 
Round No.1 
Step 2.1 Calculate 1 2m 0.01 0.2625 0.2525= λ − λ = − = . 
           1f ( )′ λ =  9.038474 and 2f ( )′ λ =  -0.553462.   

            Since 1 2f ( ) f ( )′ ′λ > λ , 2
m

4λ = λ − =0.199375. 

Step 2.2 Since f ( )′ λ ≥ ε and f ( )′ λ = 1.673146, let  

1λ = λ = 0.199375. 
The new interval is [0.199375, 0.262500]. 

Round No.2 
Step 2.1 Calculate 

 1 2m 0.199375-0.262500 0.063125= λ − λ = = . 
        1f ( )′ λ =  1.673146 and 2f ( )′ λ =  -0.553462.    

       Since 1 2f ( ) f ( )′ ′λ > λ , 2
m

4λ = λ − = 0.246719. 

Step2.2 Since f ( )′ λ ≥ ε and f ( )′ λ = -0.008474, let 
 2λ = λ = 0.246719. 

             The new interval is [0.199375, 0.246719]. 
Round No.3 
Step 2.1 Calculate 

  1 2m 0.199375-0.246719 0.047344= λ − λ = = . 
       1f ( )′ λ =  1.673146 and 2f ( )′ λ =  -0.008474. 

      Since 1 2f ( ) f ( )′ ′λ > λ , 2
m

4λ = λ − = 0.234883. 

Step 2.2 Since f ( )′ λ ≥ ε and f ( )′ λ = 0.405402, let  
  1λ = λ = 0.234883. 

            The new interval is [0.234883, 0.246719]. 
Round No.4 
Step 2.1 Calculate 

 1 2m 0.234883-0.246719 0.011836= λ − λ = = . 
       1f ( )′ λ =  0.405402 and 2f ( )′ λ =  -0.008474.   

           Since 1 2f ( ) f ( )′ ′λ > λ , 2
m

4λ = λ − = 0.243760. 

Step 2.2 Since f ( )′ λ ≥ ε and f ( )′ λ = 0.094584, let  
  1λ = λ = 0.243760. 

           The new interval is [0.243760, 0.246719]. 
Round No.5 
Step 2.1 Calculate 

      1 2m 0.243760-0.246719 0.002959= λ − λ = = . 
              1f ( )′ λ =  0.094584 and 2f ( )′ λ =  -0.008474. 

               Since 1 2f ( ) f ( )′ ′λ > λ , 2
m

4λ = λ − = 0.245979 

Step 2.2 Since f ( )′ λ ≥ ε and f ( )′ λ = 0.017265, let  
  1λ = λ = 0.245979. 

              The new interval is [0.245979, 0.246719]. 
Round No.6 
Step 2.1 Calculate  

  1 2m 0.245979-0.246719 0.000740= λ − λ = = .  
           1f ( )′ λ =  0.017265 and 2f ( )′ λ = -0.008474. 

            Since 1 2f ( ) f ( )′ ′λ > λ , 2
m

4λ = λ − = 0.246534. 

Step 2.2 Since f ( )′ λ ≥ ε and f ( )′ λ = -0.002040, let 
  2λ = λ = 0.246534. 

           The new interval is [0.245979, 0.246534]. 
Round No.7 
Step 2.1 Calculate 
              1 2m 0.245979-0.246534 0.000555= λ − λ = = .  
           1f ( )′ λ =  0.017265 and 2f ( )′ λ =  -0.002040. 

            Since 1 2f ( ) f ( )′ ′λ > λ , 2
m

4λ = λ − = 0.246395. 

Step 2.2 Since f ( )′ λ ≥ ε and f ( )′ λ = 0.002785, let  
  1λ = λ = 0.246395. 

            The new interval is [0.246395, 0.246534]. 
Round No.8 
Step 2.1 Calculate 
              1 2m 0.246395-0.246534 0.000139= λ − λ = = .  
           1f ( )′ λ = 0.002785 and 2f ( )′ λ = -0.002040. 

            Since 1 2f ( ) f ( )′ ′λ > λ , 2
m

4λ = λ − = 0.246499. 

Step 2.2 Since f ( )′ λ ≥ ε and f ( )′ λ = -0.000834, let 
  2λ = λ = 0.246499. 

           The new interval is [0.246395, 0.246499]. 
Round No.9 
Step 2.1 Calculate 
              1 2m 0.246395-0.246499 0.000104= λ − λ = = .  
              1f ( )′ λ = 0.002785 and 2f ( )′ λ =  -0.000834. 

            Since 1 2f ( ) f ( )′ ′λ > λ , 2
m

4λ = λ − = 0.246473. 

Step 2.2 Since f ( )′ λ = 0.000071, f ( )′ λ < ε . So 
              λ =0.246473. 
The value of transformation parameter is λ = 0.246473. 

V. THE SIMULATION METHOD 
Exponential populations of size iN = 5,000 were generated 

for the values of parameters i ,  for i 1,..., kβ = . From each 
generated population, 1,000 random samples, each of 
size in , for i 1,..., k=  , were drawn. 
The values of parameters are set as follows:   
  1)  k = number of the populations = 3 
  2) in = sample sizes from the ith exponential population 
between 10 and 150, for i 1,..., k=  

 3) iβ , the scale parameter of the ith exponential 
population,  is  between 1 and  5. 

The results are shown in Table I-III. For any k exponential 
populations, both equal sample sizes and unequal sample 
sizes, both equal scale parameters and unequal scale 
parameters, the alternative numerical method for finding the 
transformation parameter, λ , is better than the bisection  
method in the context of the number of function evaluations 
and processing time. 
 
 
 
 



  

Table I   Average of Number of Function Evaluations and 
               Processing Time for the Bisection and Alternative 
               Numerical Methods for k=1 
 

Average of Number of 
Function Evaluations    

Processing Time (Seconds) n β  

Bisection Alternative Bisection Alternative 
1 16.890 12.283 5.250 4.937 
3 16.873 12.255 5.250 5.062 

10 

5 17.115 12.405 5.093 4.859 
1 19.112 13.495 6.000 5.515 
3 18.913 13.515 6.235 5.672 

30 

5 19.131 13.767 6.000 5.687 
1 21.030 15.127 9.422 8.578 
3 21.326 15.378 10.141 8.766 

100 

5 21.078 15.144 10.140 8.656 
 
 Table II   Average of Number of Function Evaluations and 
                 Processing Time for the Bisection and Alternative 
                 Numerical Methods for k=2 
 

Scale 
parameter 

Average of Number of 
Function Evaluations    

Processing Time 
(Seconds) in  

1β  2β  Bisection Alternative Bisection Alternative 

1 1 18.290 13.167 5.593 5.328 1

2

n 10,
n 10

=
=

 

3 5 18.776 13.795 5.844 5.594 

1 1 18.685 13.463 5.921 5.485 1

2

n 10,
n 15

=
=

3 5 18.876 13.637 5.906 5.500 

1 1 20.428 14.675 7.718 6.906 1

2

n 30,
n 30

=
=

3 5 20.420 14.627 8.063 7.141 

1 1 20.669 14.886 8.687 7.562 1

2

n 30,
n 45

=
=

3 5 20.991 15.105 8.828 7.734 

1 1 22.111 16.061 16.297 13.422 1

2

n 100,
n 100

=
=

3 5 22.459 16.242 17.547 13.594 

1 1 22.476 16.333 19.938 16.063 1

2

n 100,
n 150

=
=

 3 5 22.593 16.425 19.765 15.969 

VI. CONCLUSION 
For analyzing data which do not match the assumptions of 

the conventional method of analysis, the data should first be                   
transformed to fit all the assumptions required. The 
well-known Box-Cox transformation can be used to get the 
normality. The transformation parameter ( λ ) is unknown. 
The alternative numerical method is applied to find the 
appropriate value of λ . The value of it is obtained when the 
slope of curvature of the log likelihood function is nearly 
zero. From simulation results, this method is better than the 
bisection method in the context of the number of function 
evaluations and the processing time.  
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Table III   Average of Number of Function Evaluations and Processing Time for the Bisection 

                                     and Alternative Numerical Methods for k=3 
 

Scale 
parameter 

Average of Number of 
Function Evaluations 

Processing Time (Seconds) 
in  

1β  
2β  

3β Bisection Alternative Bisection Alternative 

1 1 1 19.109 13.656 6.375 5.938 1

2

3

n 10,  
n 10,
n 10

=
=
=

 
1 3 5 19.952 14.645 6.234 5.828 

1 1 1 20.226 14.513 8.281 7.078 1

2

3

n 10,  
n 20,  
n 30

=
=
=

 
1 3 5 20.558 14.756 8.234 7.328 

1 1 1 20.978 15.249 7.515 6.360 1

2

3

n 30,  
n 30,  
n 30

=
=
=

 
1 3 5 21.501 15.414 7.593 6.407 

1 1 1 21.659 15.551 10.032 8.235 1

2

3

n 30,  
n 45,  
n 60

=
=
=

 
1 3 5 22.216 15.827 10.094 8.235 

1 1 1 22.739 16.491 18.860 14.812 1

2

3

n 100,  
n 100,  
n 100

=
=
=

 
1 3 5 23.259 16.526 17.985 14.843 

1 1 1 23.519 17.095 27.750 21.484 1

2

3

n 100,  
n 150,  
n 200

=
=
=

 
1 3 5 23.826 16.767 27.829 21.015 




