
 

  
Abstract — Nowadays, the engineering problem systems are 

large and complicated. An effective finite sequence of instructions 
for solving these problems can be categorised into optimisation 
and meta-heuristic algorithms. Though the best decision variable 
levels from some sets of available alternatives cannot be done, 
meta-heuristics is an alternative for experience-based techniques 
that rapidly help in problem solving, learning and discovery in 
the hope of obtaining a more efficient or more robust procedure. 
All meta-heuristics provide auxiliary procedures in terms of their 
own tooled box functions. It has been shown that the effectiveness 
of all meta-heuristics depends almost exclusively on these 
auxiliary functions. In fact, the auxiliary procedure from one can 
be implemented into other meta-heuristics. A well-known meta-
heuristic of harmony search algorithm (HSA) is compared with 
its hybridisations. HSA is used to produce a near optimal solution 
under a consideration of the perfect state of harmony of the 
improvisation process of musicians. This study presents solution 
procedures via constrained and unconstrained problems with 
different natures of single and multi peak surfaces including a 
curved ridge surface. HSA is modified via variable 
neighbourhood search method (VNSM) philosophy including a 
modified simplex method (MSM). The basic idea is the change of 
neighbourhoods during searching for a better solution. The 
hybridisations proceed by a descent method to a local minimum 
exploring then, systematically or at random, increasingly distant 
neighbourhoods of this local solution. The results show that a 
variant of HSA with VNSM and MSM seems to be better in 
terms of the mean and variance of design points and yields.  

 
Index Terms— Meta-Heuristics, Harmony Search Algorithm, 

Variable Neighbourhood Search Method, Modified Simplex 
Method. 

I. INTRODUCTION 

Real-world engineering optimisation problems can be 
solved by a large choice of numerical procedures via 
substantial gradient information. Problem solving algorithms 
can be categorised as being conventional or approximation 
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optimisation algorithms. These former approaches are 
relatively well developed and structured when applied for full 
enumerative search steps. Many problems are also very 
complex in nature and quite difficult to solve using these 
algorithms. The optimal solutions are always guaranteed. 
However, optimisation algorithms seem reasonably expensive 
and impractical, especially for solving very large size 
problems. Furthermore, some search algorithms may become 
difficult and unstable when the objective function and 
constraints have multiple or sharp ridge peaks. 

The difficulties associated with using mathematical 
optimisation on large-scale engineering problems as above 
have contributed researchers to seek the alternatives, based on 
simulations, learning, adaptation, and evolution, to solve these 
problems. Natural intelligence-inspired approximation 
optimisation techniques called meta-heuristics are then 
introduced. Moreover, meta-heuristics have been used to avoid 
being trapped in local optima with a poor value. The common 
factor in meta-heuristics is that they combine rules and 
randomness to imitate natural phenomena. They widely grow 
and apply to solve many types of problems. The major reason 
is that meta-heuristic approaches can guide the stochastic 
search process to iteratively seek near optimal solutions in 
practical and desirable computational time. These algorithms 
are then received more attention in the last few decades. They 
can be categorised into three groups: biologically-based 
inspiration, e.g. Genetic Algorithm or GA [1], Neural Network 
or NN [2], Ant Colony Optimisation or ACO [3], Memetics 
Algorithm or MAs [4], Evolutionary Programming or EP [5], 
Differential Evolution or DE [6], Particle Swarm Optimisation 
or PSO [7] and Shuffled Frog Leaping Algorithm or SFLA 
[4]; socially-based inspiration, e.g. Taboo Search or TS [8]; 
and physically-based inspiration such as Simulated Annealing 
or SA [9].  

Generally, meta-heuristics work as follows: a population of 
individuals is randomly initialised where each individual 
represents a potential solution to the problem. The quality of 
each solution is then evaluated via a fitness function. A 
selection process is applied during the iteration of meta-
heuristics in order to form a new population. The searching 
process is biased toward the better individuals to increase their 
chances of being included in the new population. This 
procedure is repeated until convergence rules are reached. 

 A meta-heuristic algorithm, mimicking the improvisation 
process of music players, has been recently developed and 
named harmony search algorithm (HSA). The musical 
harmony is analogous to the optimisation solution vector. The 
musician’s improvisations are analogous to local and global 
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search schemes in optimisation algorithms. The algorithm had 
been very successful in a wide variety of optimisation 
problems. There are several advantages of this stochastic 
search algorithm with respect to traditional optimisation 
techniques, e.g. imposing fewer mathematical requirements 
and no requirement of initial value settings of the decision 
variables and derivative information. The algorithm generates 
a new vector, after considering all of the existing vectors. It 
seems good at identifying the high performance regions of the 
solution space at a reasonable execute time, but gets into 
trouble in performing local search for some numerical 
applications.  

 The objective of this paper is to investigate the 
performance of harmony search algorithm to find optimal 
solutions of unconstrained and constrained mathematical 
models. In order to improve the fine-tuning characteristic of 
HSA, the proposed modifications introduce variable 
neighbourhood search and modified simplex methods.  This 
paper is organised as follows. Section II describes the selected 
meta-heuristic of harmony search algorithm including its 
pseudo code. Sections III and IV are briefing about 
modification algorithms of variable neighbourhood search and 
modified simplex methods, respectively. Section V illustrates 
tested models. Section VI shows computational results and 
analyses for comparing the performance of the proposed 
methods. The hybridisation versions of HSA are used to tackle 
problems. The conclusion is also summarised and it is 
followed by acknowledgment and references. 

II. HARMONY SEARCH ALGORITHM (HSA) 
Harmony search algorithm is a new meta-heuristic 

optimisation method proposed by Geem et al. in 2001. It is 
considered a population based or socially-based inspiration 
algorithm with local search aspects [1]. HSA is conceptually 
derived from the natural phenomena of musicians’ behaviour 
when they play or improvise their musical instruments 
together. This comes up with a pleasing harmony or a perfect 
state of harmony as determined by an aesthetic quality via the 
pitch of each musical instrument.  Similarly, the optimisation 
process seeks to find a global solution as determined by an 
objective function via the set of values assigned to each 
decision variable. 

In the musical improvisation, aesthetic estimation is 
performed by the set of pitches played by each instrument. 
The harmony quality is enhanced practice after practice. Each 
type of music composes of specific instruments played by 
musicians. If all pitches bring a good harmony, that experience 
is stored in each player’s memory, and the possibility to make 
a good harmony is increased for the next time. Assume there 
are a certain number of preferable pitches in each musician’s 
memory. Each instrument provides various notes. In music 
improvisation, each player sounds any pitch in the possible 
range, together making one a harmony vector. If all plays 
together with different notes there is a new musically 
harmony. If this leads to a better new harmony than the 
existing worst harmony in their memories, a new harmony is 
included in their memories. In contrast, the worst harmony is 
excluded from their memories.  

Three rules of musical improvisation consist of rules of 
playing any one pitch from his memory, playing an adjacent 
pitch of one pitch from his memory, or playing totally random 
pitch from the possible sound range. These procedures are 
repeated until a fantastic harmony is found.  

Similarly in engineering optimisation, harmony of the notes 
or pitches generated by a musician is analogous to the fitness 
value of the solution vector. Each musician can be replaced 
with each decision variable. The musician’s improvisations 
are analogous to local and global search schemes in 
optimisation techniques. During searching, if all decision 
variable values make a good solution, that experience is stored 
in each variable’s memory, and the possibility to make a good 
solution is also increased for the next time. Similarly, when 
each decision variable chooses one value in HSA, it follows 
three rules which are to choose any one value from the 
harmony memory (HM) or memory considerations, choose an 
adjacent value of one value from the HM defined as pitch 
adjustments, or totally choose a random value from the 
possible value range defined as randomisation. These three 
rules in HSA are associated with two parameters of a harmony 
memory considering rate (PHMCR) and a pitch adjusting rate 
(PPAR). 

 
Procedure HSA Meta-heuristic() 
Begin; 

Initialise algorithm parameters:  
IM:  the preset number of improvisations 
HMS:   the size of the harmony memory  
BW:  the 'distance bandwidth' or the amount of maximal change for 

pitch adjustment between two neighbouring values in discrete 
candidate set 

PHMCR:  the rate of considering from the harmony memory  
PPAR: the 'pitch adjustment rate  

Initialise the HMS harmony memories; 
Evaluate the fitness values for all HMS;  
For j = 1 to IM  

Randomly select a position of [1, 2, …, HMS] to improvise;  
Generate a random number in the range [0, 1] or RN1; 
Check RN1 with PHMCR; 

If  RN1 < PHMCR better, then pick the component from 
memory; 
Generate a random number in the range [0, 1] or RN2; 
If RN2 < PPAR better, then adjust the harmony by a small 

amount BW; 
Generate a random number in the range [0, 1] or RN3; 
If RN3 > 0.5 
  Pitch Adjustment Harmony vector increase; 
Else 
  Pitch Adjustment Harmony vector decrease; 
End if; 

Else  
   Do nothing; 

     End if; 
Else  

Pick a new random value in the allowed range;  
    End if; 

Replace a new harmony if better; 
End for; 

End; 
End procedure; 
 

   Fig. 1 Pseudo Code of HSA Meta-heuristic. 
 

HSA is very successful in a wide variety of optimisation 
problems. It also presents several advantages with respect to 
conventional optimisation techniques. HSA does not require 



 

initial values for the decision variables and it imposes fewer 
mathematical requirements. Furthermore, instead of a gradient 
search like conventional algorithms, HSA provides a 
stochastic search with no derivative information which is 
based on the harmony memory consideration rate or PHMCR 
and the pitch adjustment rate or PPAR so that it is not necessary 
to derive the associated function during the problem analysis. 
HSA generates a new vector, after considering all of the 
existing vectors, whereas other meta-heuristics, such as the 
genetic algorithm, only considers the two parent vectors. The 
pseudo code is used to briefly explain to all the procedures of 
HSA shown in Fig. 1. 

As concerned in the literature for the algorithm parameter 
levels, an HMS of 20 - 50, a PHMCR of 0.7 - 0.95, and a PPAR of 
0.3 - 0.7 were frequently recommended in HSA applications. 
However, the IM and BW were determined based on the 
number of objective function and possible value ranges of 
decision variable evaluations from other competitive 
algorithms, respectively.  

III. VARIABLE NEIGHBOURHOOD SEARCH METHOD (VNSM) 
Variable neighbourhood search method, initially introduced 

by Mladenovic and Hansen in 1997 [10], is one among meta-
heuristics designed for solving combinatorial and global 
optimisation problems. It exploits systematically the idea of 
neighbourhood change within a local search method to 
approach a better solution. Contrary to other local search 
methods, VNSM proceeds by a descent method to a local 
minimum exploring then, systematically or randomly, 
increasingly distant neighbourhoods of this incumbent 
solution [11].  
 Each time, a local search routine for optimisation 
repeatedly proceed by performing a sequence of local changes 
of one or several design points within the current 
neighbourhood in an initial solution. The method, without 
forbidden moves, escapes from the current solution to a new 
one if and only if an improvement has been achieved. That is, 
VNSM will be applied to improve the current solution of x via 
its neighbourhood or N(x), until no further improvements are 
found or a local optimum is reached. The pseudo code of 
VNSM is shown in Figure 2. 
 
Procedure VNSM Meta-heuristic() 
Begin; 

Initialise algorithm parameter:  
KMAX:  the preset number of neighbourhoods 

Initialise a set of neighbourhood structures; 
Find an initial solution of x and choose a stopping condition; 
Set k =1; 
Repeat the following steps until the stopping condition is met; 
For j = 1 to KMAX 

Randomly generate a solution of x' from the k-th neighbourhood of x; 
Apply some local search method with x' as the initial solution and 
denote the so obtained local optimum as x''; 
If x'' is better than the incumbent then update x=x'' and set k=1; 
Else  

set k=k+1; 
 End if; 
End for; 

End; 
End procedure; 
 

 Fig. 2 Pseudo Code of VNSM Meta-heuristic. 

In this work, we show how the variable neighbourhood 
search meta-heuristic can be applied to HSA. We define a set 
of various rules of neighbourhoods based on conventional 
VNSM scheme to carry out tested models. 

IV. MODIFIED SIMPLEX METHOD (MSM) 
A simplex is an m-dimensional polyhedron with m+l 

vertices, where m is the number of decision variables for 
optimisation or the dimension of the search space. This 
sequential optimum search is based on moving away from the 
experiment with the worst result in a simplex consisting of 
m+1 experiments. The objective of the sequential simplex 
method is to drive the simplex toward the region of the factor 
space which is of optimal response.  

The algorithmic details are as follows. The subsequent 
vertex is projected with a preset reflection coefficient to the 
centroid of the hyperface formed by the remaining simplex 
points a direction opposite from the worst vertex. The new 
symmetrical simplex consists of one new point and m design 
points from the previous simplex or discarding the worst point 
and replacing it with a new point. Repetition of simplex 
reflection and response measurement form the basis for the 
most elementary simplex algorithm. Many modifications to 
the original simplex algorithm have been developed. 
 
Procedure of MSM Meta-heuristic() 
While (termination criterion not satisfied) – (line 1) 

 Schedule activities 
Reflection of least yield W is processed; 
Compute R and f(R); 
Compare response function; 
If f(R) is highest then 

 Extension E will be processed;  
Else 

If R and f(R) continue to be the least then     
Reflect backward to prior point;   
Recalculate W and f(W); 

  or 
  Contraction C or shrinking S will be processed; 
    Recalculate f(C) or f(S); 

Else 
Go to line 3; 

           End if; 
End if;  

End schedule activities; 
End while; 
End procedure; 

 
Fig. 3 Pseudo Code of MSM Meta-heuristic. 

 
Nelder and Mead modified a basic simplex method to allow 

various procedures to adapt to the response surface much more 
readily than the original method. This method is referred to 
modified simplex method. MSM allows the simplex to 
converge more rapidly towards an optimum by expansion and 
multiple ways of simplex contraction along the line of 
conventional reflection in order to speed up the convergence. 
When the response is more preferable than the responses of 
the previous vertices, expansion with a preset expansion 
coefficient is applied, to stretch the move beyond the simple 
reflection. In some cases when the response is more desirable 
than the worst one, but still worse than all the remaining 
responses, contraction with a preset contraction coefficient is 
applied to make the move shorten in comparison to the 



 

reflection. Moreover, massive contractions are applied when 
the new response gets worse than any of the previous ones. In 
this case the size of the simplex is reduced by contracting each 
of its edges to one half of its previous length toward the vertex 
producing the best response [12]. A new simplex is thus 
generated with m new measurements, and the sequential 
optimisation procedures are repeated (Fig. 3). In this work, we 
include MSM to be a hybridisation of HSA. 

V. TESTED MODELS 
A well-known meta-heuristic of HSA including some 

modifications can be applied to engineering optimisation 
problems with continuous decision variables. Several 
examples taken from the standard benchmark engineering 
optimisation literature are used to show how the proposed 
approaches work. These examples have been previously 
solved using a variety of other techniques, which is useful to 
demonstrate the validity, effectiveness and robustness of the 
proposed algorithms. In this paper, four constrained 
minimisation models and three non-linear continuous 
unconstrained functions in the context of response surface 
methodology were used to test performance measures of the 
related methods whilst searching for the optimum. 

A. Parabolic Model 

  
2 2
1 2MAX f(x) 12 (x x /100)= − +  

 
B.  Shekel Model 

2 2
1 2

2 2 2 2
1 2 1 2

2 2 2 2
1 2 1 2

MAX f(x) 100 [1 / (9 (x 4 ) (x 6 ) )

1 / (20 (x 0 ) (x 0 ) ) 1 / (14 (x 8 ) (x 3 ) )

1 / (11 (x 8 ) (x 8 ) ) 1 / (6 (x 6 ) (x 7 ) )

= + − + − +

+ + + − + + − + +

+ + − + − + + + + −

 

 
C. Rosenbrock Model 

  

2 2 2
1 2 1MAX f(x) 70  [[[ 20 {(1 x / 7) ((x / 6) (x / 7) ) }]

150] /170] 10
= − − − + + −

+ +
 

 
D.  Constrained Model I 

  

2 2 2 2
1 2 1 2

2 2
1 2

2 2
1 2

1 2

MIN f (x) (x x 11) (x x 7) ,

subject to
4.84 (x 0.05) (x 2.5) 0

x (x 2.5) 4.84 0
0 x 6,0 x 6

= + − + + −

− − − − ≥

+ − − ≥
≤ ≤ ≤ ≤

 

E. Constrained Model II

  

  

 

2
3 1 5 1

2 5 1 4 3 5

2 5 1 4 3 5

2 5

MIN f (x) 5.357847x 0.8356891x x 37.293239x 40792.141

subject to
85.334407 0.0056858x x 0.0006262x x 0.002205x x 0
85.334407 0.0056858x x 0.0006262x x 0.002205x x 92

80.51249 0.0071317x x 0.002995

= + + +

+ + − ≥

+ + − ≤

+ + 2
1 2 3

2
2 5 1 2 3

3 5 1 3 3 4

3 5 1 3 3 4

1 2

5x x 0.0021813x 90

80.51249 0.0071317x x 0.0029955x x 0.0021813x 110
9.300961 0.0047026x x 0.0012547x x 0:0019085x x 20
9.300961 0.0047026x x 0.0012547x x 0:0019085x x 25
78 x 102,33 x 45,2

− ≥

+ + − ≤

+ + − ≥

+ + − ≤

≤ ≤ ≤ ≤ i7 x 45,i 3,4,5≤ ≤ =

 

F. Constrained Model III 
2 2 4 2

1 2 3 4

6 2 4
5 6 7 6 7 6 7

2 4 2
1 2 3 4 5

2
1 2 3 4 5

2 2
1 2 6 7

2 2 2
1 2 1 2 3 6 7

i

MIN f (x) (x 10) 5(x 12) x 3(x 11)

10x 7x x 4x x 10x 8x

subject to
127 2x 3x x 4x 5x 0

282 7x 3x 10x x x 0

196 23x x 6x 8x 0

4x x 3x x 2x 5x 11x 0
10 x 10,i 1,.

= − + − + + −

+ + + − − −

− − − − − ≥

− − − − + ≥

− − − + ≥

− − + − − + ≥
− ≤ ≤ = ..,7

 

G. Constrained Model IV 

  

0.67 0.67 0.67 0.67
1 5 1 3 5 7

3 4 1

7 8 1 5
1 0.71 1 1.3

2 4 2 4 2 3
1 0.71 1 1.3

6 8 6 8 6 7

i

M IN f (x ) x x 0.4x x 0.4x x

subject to
0.05882x x 0.1x 1
0.05882x x 0.1x 0.1x 1

4x x 2x x 0.05882x x 1

4x x 2x x 0.05882x x 1
0.01 x 10, i 1, ..., 8

− −

− − − −

− − − −

= − − + +

+ ≤
+ + ≤

+ + ≤

+ + ≤
≤ ≤ =

 

VI. COMPUTATIONAL RESULTS AND ANALYSES 
In this work, for the computational procedures described 

above a computer simulation was implemented in a Visual 
C#2008 program. A Laptop computer Aspire 4520 ACER was 
used for computational experiments. A comparison of the 
conventional procedures of HSA is determined in this section. 
The hybridisations of HSA are also stated to combine their 
advantages and avoid disadvantages. 

This meta-heuristic was adapted to search optimal solutions 
of non-linear mathematical models with and without 
constraints. Considering the solution space in a specified 
region of response surfaces, some models contain global 
optimum and multiple local optimums. It is worth stressing the 
ease of implementation of the basic versions of VNSM and 
MSM to HSA meta-heuristic. This neighbourhood is aimed at 
generating a feasible solution by systematically swapping a 
pair of solutions. Three neighbourhood rules are used in this 
study. These include the pure best and worst interchanges 
including MSM and a three interchange.  

Harmony memory (HM) improves iteratively from 
experience of solutions. The first variant (N1) uses the best 
design points in each iteration for an HM improvement. N1 is 
applied to avoid getting stuck at the local optimum. On the 
second (N2), this system uses the worst design points for an 



 

HM improvement. Due to the experience of unsatisfied 
solution in HM, N2 tends to increase a probability for 
randomly searching out of current design points. This also can 
provide new design points easier than others when compared. 
Finally, HM with searching rules from MSM is the final 
variant of HSA. N3 uses MSM to enhance a chance of the 
improvement probability in each iteration. In HM experience, 
the solutions are sorted from the best solutions to the worst 
solutions. These are used to determine possible vertices of 
expansion, reflection, contractions as N3. A pure interchange 
of HSA via N1, N2 and N3 will be performed for 
hybridisations of HSN1, HSN2 and HSN3, respectively. The 
three interchange of HSN4 attempts to shift among those three 
neighbourhoods.  

As appeared earlier on the literatures, each algorithm has its 
own influential parameters that affect its performance in terms 
of solution quality and execution time. To achieve the most 
preferable parameter choices that suit the tested problems, a 
large number of experiments were conducted. For each 
algorithm, an initial setting of the parameters was established 
using values previously reported in the literature. Then, the 
parameter values were changed one by one and the results 
were monitored in terms of the solution quality. The final 
parameter values adopted for each of the method are given in 
the following. For all optimisation problems presented in this 
paper, HSA parameters were set as follows: HMS = 20, PHMCR 
= 0.90, and PPAR = 0.35.  

For each model, the computational run using each algorithm 
was repeated 20 times. The experimental results obtained from 
each algorithm including best-so-far (BSF) solutions were 
compared for all models previously described.  From the 
experimental results shown in Table 1, it suggested that HSA 
can produce an acceptable solution if the problem was not so 
complicated. HSA seems to get into trouble in operating local 
search for numerical applications of constrained response 
surface models. In order to improve the fine-tuning 
characteristic of HSA, HSA employs various procedures that 
enhance fine-tuning characteristic and convergence rate of 
HSA. The power of HSA with the fine tuning feature of 
mathematical tools is performed via four variants.  
 Numerical results (Table 1) reveal that the proposed hybrid 
algorithms are powerful search algorithms for both 
unconstrained and constrained optimisation problems. New 
versions of HSA were dramatically better than those results 
obtained from the conventional when compared. They 
performed well at identifying the best-so-far (BSF) solutions 
at a reasonable execution time. The exploitation process via 
various hybridisations can be performed on each population 
member to improve its experience and thus obtain a 
population of local optimum solutions. The average execution 
time required by its hybridisations was also dramatically faster 
than the conventional HSA. When the problem is more 
complicated HSN4 is more suitable to exploit a solution space. 

It can be seen that these hybridisations on all models, except 
Shekel and constrained model III, were statistically significant 
itself with a 95% confidence interval (Table 2).  Levels of the 
decision variables from the best so far results in each tested 
models are briefly given via HSA in Table 3. Results reported 
on tables are plotted on Fig. 4. Both from tables and figures, it 
can be said that the performance of HSA and HSN1-HSN3 

algorithms are more sensitive to the increment in problem 
dimensions as compared to HSN4. 

 
 

 
Fig. 4 Graphical Results for Rosenbrock and  

Constrained III Models. 
 
 For a consideration of models in terms of response surface 
optimisation, the performance of HSN4 was better than the 
remaining methods. Moreover, the average design points for 
unconstrained tested models of parabolic and rosenbrock 
surfaces using HSN4 was approximately 20 points whilst 2000 
points were averagely taken by HSA. Other words, the 
average design points towards the optimum taken by HSN4 
were 60 times lower than design points required by the HSA. 
 Moreover, it can be said HSN4 produced reasonable 
results even for high dimension spaces for constrained 
response surfaces. Another issue, a drawback of HSA variants, 
is that they employ BW and PPAR parameters [13]. These are 
very important parameters in fine-tuning of optimised solution 
vectors, and can be potentially useful in adjusting convergence 
rate of HSA variants towards the optimal solution. The variant 
of HSN3 applied the rules of contraction, reflection and 
expansion toward the optimum. It can cause the high 
performance of the algorithm and the considerable decrease in 
iterations needed to find the optimum.  Furthermore, in some 
additional experiments, small BW values with large PPAR 
values usually cause the improvement of best solutions in final 
generations to converge to the optimal solution vector. When 
experimental results were analysed in terms of best solutions, 
it was found that HSA alone can produce an acceptable 
solution or even an optimal solution if the problem was not so 
complicated. When the problem is more complicated, the HSA 
variants are more suitable to exploit a search space by 
applying individuals’ experience of neighbourhood and then 
obtaining a population of local optimal solutions.  
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TABLE 1: Experimental Results Obtained from Related Methods on each Tested Models 

Models Parabolic Rosenbrock Shekel Constrained I Constrained II Constrained III Constrained IV 

HSA 

BSF 12.0000 80.0000 18.9799 13.96110 -30647.3200 683.6144 -16.6535 
Mean 12.0000 80.0000 18.9790 13.73859 -30639.8132 685.6502 -15.9389 
Worst 12.0000 80.0000 18.9766 13.64373 -30633.6700 687.4941 -15.2724 

Standard 
Deviation 0.0000 0.0000 0.0014 0.14943 6.7892 1.5034 0.5906 

HSN1 

BSF 12.0000 80.0000 18.98051 13.63476 -30630.1526 685.4041 -17.0306 
Mean 12.0000 80.0000 18.98051 13.61740 -30627.0626 686.2882 -16.5590 
Worst 12.0000 80.0000 18.98051 13.59934 -30622.2983 687.7807 -16.1116 

Standard 
Deviation 0.0000 0.0000 0.00000 0.01471 3.1219 0.9702 0.4411 

HSN2 

BSF 12.0000 80.0000 18.98051 13.5914 -30651.6563 683.5490 -17.8706 
Mean 12.0000 80.0000 18.98051 13.5924 -30644.8912 685.3432 -17.0475 
Worst 12.0000 80.0000 18.98051 13.5939 -30636.2269 686.2891 -16.1116 

Standard 
Deviation 0.0000 0.0000 0.00000 0.0012 6.4216 1.1958 0.7003 

HSN3 

BSF 12.0000 80.0000 18.9799 13.6189 -30648.2087 684.7626 -17.1364 
Mean 12.0000 80.0000 18.9437 13.6497 -30646.3613 685.7400 -16.7050 
Worst 12.0000 80.0000 18.8020 13.7094 -30640.9764 686.2580 -16.1997 

Standard 
Deviation 0.0000 0.0000 0.0792 0.0427 3.0711 0.6265 0.3562 

HSN4 

BSF 12.0000 80.0000 18.98052 13.5908 -30665.2956 686.6879 -17.9198 
Mean 12.0000 80.0000 18.98051 13.5924 -30657.3340 686.8873 -17.3333 
Worst 12.0000 80.0000 18.98051 13.5931 -30651.1987 687.1560 -16.8832 

Standard 
Deviation 0.0000 0.0000 0.00000 0.0011 5.2567 0.1981 0.4712 

 
TABLE 2: Significant Effects on HSA and its Hybridisations (a) including Analysis of Variance (ANOVA) on Constrained Function IV (b) 

 

 
TABLE 3: Best So Far Results Obtained from HSA on each Tested Models 

Models 
Decision Variables 

Mean 
x1 x2 x3 x4 x5 x6 x7 x8 

Parabolic 0.0086 0.0044       12.0000 

Rosenbrock 0.0123 -0.0291       80.0000 

Shekel 5.9498 -6.9498       18.9805 

Constrained I 2.2452 2.3626       13.6347 

Constrained II 78.001 33.005 30.107 45.0 36.5    -30647.3200 

Constrained III 2.0396 2.01343 -0.0451 4.2734 -0.7265 1.1379 1.6495  683.6144 

Constrained IV 8.6076 9.6863 9.1304 0.2191 9.6533 0.742 1.8207 1.2649 -16.6535 
 

(a) 
Models P-Value 

Parabolic N/A 
Rosenbrock N/A 
Shekel 0.228519 
Constrained I 0.005478 
Constrained II 3.53E-07 
Constrained III 0.160857 
Constrained IV 0.005545 

(b) 
Source of Variation SS df MS F P-Value F crit 
Between Groups 5.597802 4 1.399450 5.060252 0.005545 2.866081 
Within Groups 5.531149 20 0.276557    
Total 11.12895 24     




