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Abstract—This paper considers two-level linear pro-
gramming problems where each coefficient of the ob-
jective functions is expressed by a random fuzzy vari-
able. A new decision making model is proposed in
order to maximize both of possibility and probabil-
ity with respect to the objective function value. Af-
ter the original random fuzzy two-level programming
problem is reduced to a deterministic one through the
proposed model, interactive programming to derive a
satisfactory solution for the decision maker at the up-
per level in consideration of the cooperative relation
between decision makers is presented.
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1 Introduction

In the real world, we often encounter situations where
there are two decision makers in an organization with a
hierarchical structure, and they make decisions in turn or
at the same time so as to optimize their objective func-
tions. When we formulate two-level programming prob-
lems which closely represents such a real-world decision
situation under hierarchical structure, it is often the case
that the objective functions and the constraints involve
many uncertain parameters.

From a probabilistic point of view, two-level or multi-
level programming with random variable coefficients was
developed by Nishizaki et al. [13] and Roghanian et al.
[15]. Considering the vague nature of the DM’s judg-
ments in two-level linear programming, a fuzzy program-
ming approach was first presented by Shih et al. [17] and
further studied by Sakawa et al. [16].

Although these studies focused on either fuzziness or ran-
domness included in two-level decision making situations,
it is important to realize that simultaneous considerations
of both fuzziness and randomness would be required in
order to to utilize two-level programming for resolution
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of conflict in decision making problems in real-world de-
centralized organizations. For example, when estimating
the values of coefficients in problems as random variables,
their mean values are estimated as constants using sta-
tistical analysis. However, in more realistic cases, the
direct use of mean values estimated based on past data
may not be appropriate for decision making for future
planning. For dealing with such decision making situa-
tions, a random fuzzy variable, first defined by Liu [11],
draws attention as a new tool for decision making under
random fuzzy environments [5, 6, 11, 19].

In general, two-level programming models are classified
into two categories; one is a noncooperative model em-
ploying the solution concept of Stackelberg equilibrium,
and the other is a cooperative model for situations where
there exists communication and some cooperative rela-
tionship among the decision makers in such as decentral-
ized large firms with divisional independence.

In this paper, we focus on the cooperative case and con-
sider solution methods for decision making problems in
hierarchical organizations under random fuzzy environ-
ments. A new decision making model is proposed based
on the fusion of stochastic programming model and pos-
sibilistic programming model in order to maximize both
of possibility and probability with respect to the attained
objective function value. After showing that the random
fuzzy two-level programming problem can be reduced to
a deterministic one through the proposed model called
possibility-based fractile model, we present an interac-
tive algorithm to derive a satisfactory solution for the
decision maker at the upper level in consideration of the
cooperative relation between decision makers.

2 Random fuzzy two-level linear pro-
gramming problems

A random fuzzy variable, first introduced by Liu [11], is
defined follows:

Definition 1 (Random fuzzy variable [11]) A ran-
dom fuzzy variable is a function ξ from a possibility space
(Θ, P (Θ), Pos) to collection of random variables R. An



n-dimensional random fuzzy vector n = (ξ1, ξ2, . . . , ξn) is
an n-tuple ofrandom fuzzy variables ξ = (ξ1, ξ2, . . . , ξn).

Intuitively speaking, a random fuzzy variable is an ex-
tended mathematical concept of random variable in the
sense that it is defined as a fuzzy set defined on a uni-
versal set of random variables. For instance, the random
variables with fuzzy mean values are represented with
random fuzzy variables. It should be noted here that a
random fuzzy variable is not different from a fuzzy ran-
dom variable [4, 9, 10, 12], which is used to deal with the
ambiguity of realized values of random variables, not fo-
cusing on the ambiguity of parameters charactezing ran-
dom variables like random fuzzy variables.

In this paper, we deal with two-level linear programming
problems involving random fuzzy variable coefficients in
objective functions formulated as:

minimize
for DM1

z1(x1, x2) = ¯̃C11x1 + ¯̃C12x2

minimize
for DM2

z2(x1, x2) = ¯̃C21x1 + ¯̃C22x2

subject to A1x1 + A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0

 . (1)

It should be emphasized here that randomness and fuzzi-
ness of the coefficients are denoted by the “dash above”
and “wave above” i.e., “ ¯ ” and “ ˜ ”, respectively. In
this formulation, x1 is an n1 dimensional decision vari-
able column vector for the DM at the upper level (DM1),
x2 is an n2 dimensional decision variable column vector
for the DM at the lower level (DM2), z1(x1,x2) is the
objective function for DM1 and z2(x1,x2) is the objec-
tive function for DM2. In (1), ¯̃Clj , l = 1, 2, j = 1, 2 are
vectors whose elements ¯̃Cljk, k = 1, 2, . . . , nj are random
fuzzy variables which are normal random variables with
ambiguous mean values. In particular, we assume that
the probability function of ¯̃Cljk is formally represented
with

fljk(z) =
1√

2πσljk

exp
−

(z−M̃ljk)2

2σ2
ljk , (2)

where M̃ljk is an L-R fuzzy number characterized by the
following membership function (see Figure 1):

µM̃ljk
(τ) =


L

(
mljk − τ

αljk

)
(mljk ≥ τ)

R

(
τ − mljk

βljk

)
(mljk < τ) .

(3)

Functions L and R are called reference functions or shape
functions which are nonincreasing upper semi-continuous
functions [0,∞) → [0, 1].

Random fuzzy two-level linear programming problems
formulated as (1) are often seen in actual decision making

Figure 1: Membership function µM̃ljk
(·).

situations. For example, consider a supply chain plan-
ning where the distribution center (DM1) and the pro-
duction part (DM2) hope to minimize the distribution
cost and the production cost, respectively. Since coeffi-
cients of these objective functions are often affected by
the economic conditions varying at random, they can be
regarded as random variables.

When ¯̃Cljk is a random fuzzy variable characterized by
(2) and (3), the membership function of ¯̃Cj is expressed
as

µ ¯̃Cljk
(γ̄ljk) = sup

sljk

{µM̃ljk
(sljk)|γ̄ljk ∼ N(sljk, σ2

ljk)}, (4)

where γ̄ljk ∈ Γ, and Γ is a universal set of normal random
variables. Each membership function value µ ¯̃Cljk

(γ̄j) is
interpreted as a degree of possibility or compatibility that
¯̃Cljk is equal to γ̄ljk.

Then, applying the results shown by Liu [11], the objec-
tive function ¯̃Clx is defined as a random fuzzy variable
characterized by the following membership function:

µ ¯̃Clx
(ūl)

△
= sup

γ̄l

{
min

1≤k≤nj , j=1,2
µ ¯̃Cljk

(γ̄ljk)
∣∣∣

ūl =
2∑

j=1

nj∑
k=1

γ̄ljkxjk

}
, ∀ūl ∈ Yl, (5)

where γ̄l = (γ̄l11, . . . , γ̄l1n1 , γ̄l21, . . . , γ̄l2n2) and Yl is de-
fined by

Yl =


2∑

j=1

nj∑
k=1

γ̄ljkxjk

∣∣∣γ̄ljk ∈ Γ,

 , l = 1, 2.

From (4) and (5), we obtain

µ ¯̃Clx
(ūl)

= sup
sl

{
min

1≤k≤nj , j=1,2
µM̃ljk

(sljk)
∣∣∣



γ̄ljk ∼ N(sljk, σ2
ljk), ūl =

2∑
j=1

nj∑
k=1

γ̄ljkxjk


= sup

sl

{
min

1≤k≤nj , j=1,2
µM̃ljk

(sljk)
∣∣∣

ūl ∼ N

 2∑
j=1

nj∑
k=1

sljkxjk,
2∑

j=1

nj∑
k=1

σ2
ljkx2

jk

(6)

where sl = (sl11, . . . , sl1n1 , s121, . . . , sl2n2).

Considering that the mean values of random variables are
often ambiguous and estimated as fuzzy numbers using
experts’ knowledge based on their experiences, the coef-
ficients are expressed by random fuzzy variables. Then,
such a supply chain planning problem can be formulated
as a two-level linear programming problem involving ran-
dom fuzzy variable coefficients like (1).

In stochastic programming, basic optimization criterion
is to simply optimize the expectation of objective func-
tion values or to decrease their fluctuation as little as
possible from the viewpoint of stability. In contrast to
these types of optimizing approaches, the fractile model
or Kataoka’s model [8] has been proposed when the deci-
sion maker wishes to optimize a permissible level under
the guaranteed probability that the objective function
value is better than or equal to the permissible level.

On the other hand, in fuzzy programming, possibilistic
programming [7] is one of methodologies for decision mak-
ing under existence of ambiguity of the coefficients in ob-
jective functions and constraints.

In this research, we consider a new random fuzzy two-
level programming in order to simultaneously optimize
both possibility and probability with the attained ob-
jective function values of DMs, by extending both view-
points of stochastic programming and possibilistic pro-
gramming.

To begin with, let us express the probability
Pr

(
ω
∣∣ ¯̃Cl(ω)x ≤ fl

)
as a fuzzy set P̃l and define

the membership function of P̃ as follows:

µP̃l
(pl) = sup

ūl

{
µ ¯̃Clx

(ūl)
∣∣∣pl = Pr (ω|ūl(ω) ≤ fl)

}
. (7)

From (6) and (7), we obtain

µP̃l
(pl)

= sup
sl

min
1≤k≤nj , j=1,2

{
µM̃ljk

(sljk)
∣∣∣pl = Pr (ω|ūl(ω) ≤ fl) ,

ūl ∼ N
( 2∑

j=1

nj∑
k=1

sljkxjk,
2∑

j=1

nj∑
k=1

σ2
ljkx2

jk

)}
.

Assuming that each of DMl, l = 1, 2 has a goal Gl for the
attained probability expressed as “P̃l should be greater

Figure 2: Membership function µl(·).

than or equal to some value p̂l. Then, the possibility that
P̃l satisfies the goal Gl is expressed as

ΠP̃l
(Gl)

△
= sup

pl

{µP̃l
(pl)|pl ≥ p̂l}.

Then, as a new optimization model in two-level program-
ming problems with random fuzzy variables, we consider
the following possibility-based fractile model:

maximize
for DM1

µ1(f1)

maximize
for DM2

µ2(f2)

subject to ΠP̃1
(G1) ≥ h1

ΠP̃2
(G2) ≥ h2

A1x1 + A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0


(8)

where h1 and h2 are constants. Functions µ1 and µ2 are
the membership functions of fuzzy goals for the aspiration
levels f1 and f2, respectively, which reflects the vagueness
in human judgments for the aspiration levels (see Figure
2).

Then we can derive the following theorem:

Theorem 1 Let T denotes the distribution function of
N(0, 1) and Kp̂l

△
= T−1(p̂l). Then, ΠP̃l

(Gl) ≥ hl in prob-
lem (8) is equivalently transformed into

2∑
j=1

nj∑
k=1

{mljk−L∗(hl)αljk}xjk+Kp̂l

√√√√ 2∑
j=1

nj∑
k=1

σ2
ljkx2

jk ≤ fl

where L∗(hl) is a pseudo inverse function defined as
L∗(hl) = sup{t|L(t) ≥ hl}.

Proof: The constraint ΠP̃l
(Gl) ≥ hl, l = 1, 2 in problem

(8) is equivalently transformed as follows:

ΠP̃l
(Gl) ≥ hl

⇔ ∃pl : µP̃l
(pl) ≥ hl, pl ≥ p̂l

⇔ ∃pl : sup
sl

min
1≤k≤nj , j=1,2

µM̃ljk
(sljk) ≥ hl,



pl ≥ p̂l, pl = Pr (ω|ūl(ω) ≤ fl) ,

ūl ∼ N
( 2∑

j=1

nj∑
k=1

sljkxjk,
∑
j=1

nj∑
k=1

σ2
ljkx2

jk

)
⇔ ∃sl, ∃ūl : min

1≤k≤nj , j=1,2
µM̃ljk

(sljk) ≥ hl,

ūl ∼ N

 2∑
j=1

nj∑
k=1

sljkxjk,
2∑

j=1

nj∑
k=1

σ2
ljkx2

jk

 ,

Pr (ω|ūl(ω) ≤ fl) ≥ p̂l

⇔ ∃sl, ∃ūl : µM̃ljk
(sljk) ≥ hl,

ūl ∼ N

 2∑
j=1

nj∑
k=1

sljkxjk,
2∑

j=1

nj∑
k=1

σ2
ljkx2

jk

 ,

Pr (ω|ūl(ω) ≤ fl) ≥ p̂l

⇔ ∃ūl : Pr (ω|ūl(ω) ≤ fl) ≥ p̂l,

ūl ∼ N

 2∑
j=1

nj∑
k=1

{mljk − L∗(hl)αljk}xjk,

2∑
j=1

nj∑
k=1

σ2
ljkx2

jk



⇔ T


fl −

2∑
j=1

nj∑
k=1

{mljk − L∗(hl)αljk}xjk√√√√ 2∑
j=1

nj∑
k=1

σ2
ljkx2

jk

 ≥ p̂l

⇔
2∑

j=1

nj∑
k=1

{mljk − L∗(hl)αljk}xjk

+Kp̂l

√√√√ 2∑
j=1

nj∑
k=1

σ2
ljkx2

jk ≤ fl

where Kp̂l

△
= T−1(p̂l) and T denotes the distribution

function of N(0, 1). In addition, L∗(hl) is a pseudo in-
verse function defined as L∗(hl) = sup{t|L(t) ≥ hl}. ¤

From Theorem 1, problem (8) is transformed into the
following problem:

maximize
for DM1

µ1(f1)

maximize
for DM2

µ2(f2)

subject to
2∑

j=1

nj∑
k=1

{mljk − L∗(hl)αljk}xjk

+Kp̂l

√√√√ 2∑
j=1

nj∑
k=1

σ2
ljkx2

jk ≤ fl, l = 1, 2

A1x1 + A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0



(9)

or equivalently

maximize
for DM1

µ1

 2∑
j=1

nj∑
k=1

{m1jk − L∗(h1)α1jk}xjk

+Kp̂1

√√√√ 2∑
j=1

nj∑
k=1

σ2
1jkx2

jk


maximize

for DM2
µ2

 2∑
j=1

nj∑
k=1

{m2jk − L∗(h2)α2jk}xjk

+Kp̂2

√√√√ 2∑
j=1

nj∑
k=1

σ2
2jkx2

jk


subject to A1x1 + A2x2 ≤ b

x1 ≥ 0, x2 ≥ 0


(10)

where Kp̂l
≥ 0 because p̂l ≥ 1/2. For simplicity, we

express

ZF
l (x1, x2) =

2∑
j=1

nj∑
k=1

{mljk − L∗(hl)αljk}xjk

+Kp̂l

√√√√ 2∑
j=1

nj∑
k=1

σ2
ljkx2

jk, l = 1, 2(11)

Now we construct the following interactive algorithm to
derive a satisfactory solution for the decision maker at
the upper level in consideration of the cooperative rela-
tionships between DM1 and DM2.

Interactive random fuzzy two-level programming
though the possibility-based fractile model

Step 1 In order to calculate the individual minimum and
maximum of f1 and f2, solve the following problems:

minimize ZF
l (x1, x2)

subject to A1x1 + A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0

 , l = 1, 2 (12)

maximize ZF
l (x1,x2)

subject to A1x1 + A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0

 , l = 1, 2. (13)

Let xl,min, xl,max, ZF
l,min and ZF

l,max be the optimal
solution to (12), that to (13), the minimal objec-
tive function value to (12) and the maximal objec-
tive function value to (13), respectively. Observing
that (12) and (13) are convex programming prob-
lems, they can be easily solved by some convex pro-
gramming technique like sequential quadratic pro-
gramming methods [3].

Step 2 Ask DMs to specify membership functions µl(·),
l = 1, 2 by considering the obtained values of zF

l,min

and zF
l,max, l = 1, 2.



Step 3 The following maximin problem is solved for ob-
taining a solution which maximizes the smaller de-
gree of satisfaction between those of the two decision
makers:

maximize min
{
µ1

(
ZF

1 (x)
)
, µ2

(
ZF

2 (x)
)}

subject to A1x1 + A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0


or equivalently,

maximize v
subject to µ1

(
ZF

1 (x)
)
≥ v

µ2

(
ZF

2 (x)
)
≥ v

A1x1 + A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0

 . (14)

In view of (11), problem (14) is rewritten as:

maximize v

subject to
2∑

j=1

nj∑
k=1

{m1jk − L∗(h1)α1jk}xjk

+Kp̂1

√√√√ 2∑
j=1

nj∑
k=1

σ2
1jkx2

jk ≤ µ∗
1(v)

2∑
j=1

nj∑
k=1

{m2jk − L∗(h2)α2jk}xjk

+Kp̂2

√√√√ 2∑
j=1

nj∑
k=1

σ2
2jkx2

jk ≤ µ∗
2(v)

A1x1 + A2x2 ≤ b
x1 ≥ 0, x2 ≥ 0



.

(15)

Obtaining the optimal value of v to this problem is
equivalent to finding the maximum of v so that the
set of feasible solutions to (15) is not empty. Al-
though this problem is a nonlinear nonconvex pro-
gramming problem, we can find the maximum of v
by the solution algorithm for convex feasible prob-
lems [1] since the constraints of (15) are convex if v
is fixed.

Step 4 DM1 is supplied with the current values of
µ1

(
ZF

1 (x∗)
)
and µ2

(
ZF

2 (x∗)
)

for the optimal solu-
tion x∗ calculated in step 3. If DM1 is satisfied
with the current membership function values, the
interaction process is terminated. If DM1 is not
satisfied and desires to update hl, l = 1, 2, ask
DM1 to update hl and return to step 3. Other-
wise, ask DM1 to specify the minimal satisfactory
level δ̂ for µ1

(
ZF

1 (x)
)

and the permissible range
[∆min, ∆max] of the ratio of membership functions
∆ = µ2

(
ZF

2 (x)
)
/µ1

(
ZF

1 (x)
)
.

Observe that the larger the minimal satisfactory level
is assessed, the smaller the DM2’s satisfactory degree
becomes. Consequently, in order to take account of

the overall satisfactory balance between both deci-
sion makers, DM1 needs to compromise with DM2
on DM1’s own minimal satisfactory level. To do so,
the permissible range of the ratio of the satisfactory
degree of DM2 to that of DM1 is helpful.

Step 5 For the specified value of δ̂, solve the follow-
ing convex programming problem to maximize the
membership function of DM2, µ2

(
ZF

2 (x)
)

under the
constraint that the membership function of DM1,
µ1

(
ZF

1 (x)
)
, must be greater than or equal to δ̂.

minimize
2∑

j=1

nj∑
k=1

{m2jk − L∗(h2)α2jk}xjk

+Kp̂2

√√√√ 2∑
j=1

nj∑
k=1

σ2
2jkx2

jk

subject to
2∑

j=1

nj∑
k=1

{m1jk − L∗(h1)α1jk}xjk

+Kp̂1

√√√√ 2∑
j=1

nj∑
k=1

σ2
1jkx2

jk ≤ µ−1
1 (δ̂)

x ∈ X


(16)

For the optimal solution x∗ to (16), calculate
µ1

(
ZF

1 (x∗)
)

(the satisfactory degree of DM1),
µ2

(
ZF

2 (x∗)
)

(the satisfactory degree of DM2) and
∆.

Step 6 DM1 is supplied with the current values of
µ1

(
ZF

1 (x∗)
)
, µ2

(
ZF

2 (x∗)
)

and ∆ calculated in step
5. If ∆ ∈ [∆min, ∆max] and DM1 is satisfied with the
current membership function values for the optimal
solution x∗, the interaction process is terminated.
Otherwise, ask DM1 to update the possibility level
hl, l = 1, 2 or the minimal satisfactory level δ̂, and
return to step 5.

In the proposed algorithm, ∆min and ∆max are usu-
ally set to be less than 1 since µ1

(
ZF

1 (x∗)
)

should
be greater than µ2

(
ZF

2 (x∗)
)

because of the priority of
DM1. In step 5, if ∆ < ∆min, i.e., µ1

(
ZF

1α(x∗)
)

is
much greater than µ2

(
ZF

2 (x∗)
)
, DM1 will decrease δ̂

to improve µ2

(
ZF

2 (x∗)
)

and increase ∆. Otherwise,
if ∆max < ∆, i.e., µ1

(
ZF

1 (x∗)
)

is slightly greater or
less than µ2

(
ZF

2 (x∗)
)
, DM1 will increase δ̂ to improve

µ1

(
ZF

1 (x∗)
)

and decrease ∆. On the other hand, if
DM1 decreases (increases) hl, l = 1, 2, both µ1

(
ZF

1 (x∗)
)

and µ2

(
ZF

2 (x∗)
)

would increase (decrease). With this
observation, it can be expected that desirable values
of µ1

(
ZF

1 (x∗)
)
, µ2

(
ZF

2 (x∗)
)

and ∆ will be obtained
through a series of update procedures of δ̂ and/or hl,
l = 1, 2 with DM1.



3 Conclusion

In this paper, assuming cooperative behavior of the deci-
sion makers, interactive decision making methods in hier-
archical organizations under random fuzzy environments
have been considered. For the formulated random fuzzy
two-level linear programming problems, through the in-
troduction of the possibility-based fractile model as a new
decision making model, we has shown that the original
random fuzzy two-level programming problem is reduced
to a deterministic one. In order to obtain a satisfactory
solution for the decision maker at the upper level in con-
sideration of the cooperative relation between decision
makers, we have presented an interactive algorithm in
which each of optimal solutions of all problems can be an-
alytically obtained by some techniques for solving convex
programming problems or convex feasibility problems.

We will consider applications of the proposed method to
real-world decision making problems in decentralized or-
ganizations together with extensions to other stochastic
programming models in the near future. Furthermore,
we will extend the proposed models and concepts to non-
cooperative random fuzzy two-level linear programming
problems.

References

[1] Baushke, H.H, Borwein, J.M., “On projection al-
gorithms for solving convex feasibility problems,”
SIAM Review, V38, pp. 367-426, 1996.

[2] Charnes, A., Cooper, W.W., “Deterministic equiv-
alents for optimizing and satisficing under chance
constraints,” Operations Research, V11, pp. 18–39,
1963.

[3] Fletcher, R., Practical Methods of Op-
timization, 2nd Edition, Willey, New
York/Brisbane/Tronto/Singapore, 2000.

[4] Gil, M.A., Lopez-Diaz, M., Ralescu, D.A.,
“Overview on the development of fuzzy random vari-
ables,” Fuzzy Sets and Systems, V157, pp. 2546–
2557, 2006.

[5] Hasuike, T., Katagiri, H., Ishii, H., “Portfolio selec-
tion problems with random fuzzy variable returns,”
Fuzzy Sets and Systems, V160, pp. 2579–2596, 2009.

[6] Huang, X., “A new perspective for optimal portfolio
selection with random fuzzy returns,” Information
Sciences, V177, pp. 5404–5414, 2007.

[7] Inuiguchi M., Ramik, J. “Possibilistic linear pro-
gramming: a brief review of fuzzy mathematical
programming and a comparison with stochastic pro-
gramming in portfolio selection problem,” Fuzzy Sets
and Systems, V111, pp. 3–28, 2000.

[8] Kataoka, S., “A stochastic programming model,”
Econometorica, V31, pp. 181–196, 1963.

[9] Katagiri, H., Sakawa, M., Kato, K., Nishizaki, I.,
“Interactive multiobjective fuzzy random linear pro-
gramming: maximization of possibility and proba-
bility,” European Journal of Operational Research,
V188, pp. 530–539, 2008.

[10] Liu, B., “Fuzzy random chance-constrained pro-
gramming,” IEEE Transaction on Fuzzy Systems
V9, pp. 713–720, 2001.

[11] Liu, B., Theory and Practice of Uncertain Program-
ming, Physica Verlag, Heidelberg/New York, 2002.

[12] Luhandjula, M.K., “Fuzzy stochastic linear pro-
gramming: survey and future research directions,”
European Journal of Operational Research, V174,
pp. 1353–1367, 2006.

[13] Nishizaki, I., Sakawa, M., and Katagiri, H., “Stack-
elberg solutions to multiobjective two-level linear
programming problems with random variable coeffi-
cients,” Central European Journal of Operations Re-
search, V11, pp. 281–296, 2003.

[14] Pramanik, S., Roy, T.K., “Fuzzy goal programming
approach to multilevel programming problems,” Eu-
ropean Journal of Operational Research, V176, pp.
1151–1166, 2007.

[15] Roghanian, E., Sadjadi, S.J., Aryanezhad, M.B., “A
probabilistic bi-level linear multi-objective program-
ming problem to supply chain planning,” Applied
Mathematics and Computation, V188, pp. 786–800.
2007.

[16] Sakawa, M., Nishizaki, I., Cooperative and Nonco-
operative Multi-Level Programming, Springer, New
York, 2009.

[17] Shih, H.S., Lai, Y.J., Lee, E.S., “Fuzzy approach for
multi-level programming problems,” Computers and
Operations Research, V23, pp. 73–91, 1996.

[18] Stancu-Minasian, I.M., “Overview of different ap-
proaches for solving stochastic programming prob-
lems with multiple objective functions,” R. Slowinski
and J. Teghem (eds.): Stochastic Versus Fuzzy Ap-
proaches to Multiobjective Mathematical Program-
ming under Uncertainty, Kluwer Academic Publish-
ers, Dordrecht/Boston/London, pp. 71–101, 1990.

[19] Xu, J., Liu, Q., Wang, R., “A class of multi-objective
supply chain networks optimal model under random
fuzzy environment and its application to the indus-
try of Chinese liquor,” Information Sciences, V178,
pp. 2022–2043, 2008.




