
A Cooperative Game for 
Multi-Agent Collaborative Planning 

 
Sumit Chakraborty and Asim Kumar Pal 

 

   Abstract—Cooperative game is an approach for a group of 
decision-making agents (DMAs) to reach mutually beneficial 
agreements where the players make agreements in order to 
optimize their common cost or payment. A coordination 
mechanism is required to achieve a rational and structured plan 
for a decision jointly made by independent DMAs. This paper 
presents a cooperative game for the problem of collaborative 
planning where each planning domain is controlled by a DMA. 
The main purpose here is to demonstrate how the cooperative 
game theory can be applied to the problem of multi-agent 
collaborative planning. It deals with cost allocation methods 
which is basically an optimization problem. We present several 
coordination mechanisms for the game based on domain 
planning, data exchange and compensation negotiation. These 
belong to two categories, namely, multistage local planning 
domain based coordination mechanism (LPDCM) and single 
stage global planning domain based coordination mechanism 
(GPDCM). Here DMAs wants to maintain the privacy of their 
strategic information. This asymmetry of information may 
cause increase in cost and generate inefficient solutions. The 
mechanisms preserve the privacy of information using secure 
multi-party computation concepts. This improves the quality of 
a plan and subsequent decision-making process of the 
cooperative game significantly. This work introduces a secure 
multi-party linear programming extended protocol (SMLPEP) 
by extending an existing two-party secure linear programming 
protocol. This work extends the Chakraborty’s work on 
collaborative planning for supply chain [17] and [3], which in 
turn was based on Dudek’s piece [6] of 2004. The present work 
looks at the collaborative planning problem of [6] from the 
perspective of cooperative game, focuses on the development of 
mechanism design for efficient cost sharing purposes for several 
scenarios and thus enhances the generalization capability of the 
problem. 

  Index Terms—coordination game, coordination mechanism, 
secure multiparty linear programming protocol, supply chain. 
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I. INTRODUCTION 
  A cooperative game (copg) (also often referred as 
coordination game) is a common approach for a group of 
participants or decision-making agents (DMAs) or simply 
agents to reach mutually beneficial agreements. This is an 
important conflict management and group decision-making 
approach for making a joint decision by a set of agents.  The 
agents exchange information in the form of offers, counter-
offers and arguments and search for a fair consensus [7], [8]. 
In distributed artificial intelligence, a coordination game is 
the study of preference aggregation that leads to better 
outcomes for all players in spite of selfish strategic behavior 
of the agents [11]. Mechanism design is the study of 
preference aggregation protocols that work well in the face 
of self-interested agents [1]. An agent may gain incentives if 
it reports misleading preferences to the preference aggregator 
for selecting a joint outcome. The basic objective here is to 
study how the individual preferences of the agents can be 
aggregated towards a rational choice while maintaining 
privacy of the participants [15]. The mechanism designer 
should ensure that individual interests of the agents are best 
served by their rational behavior. An efficient mechanism 
allocates payments to the agents fairly. The payments should 
be carefully selected to motivate all the agents to act 
rationally. Coordination mechanisms (codm) have been used 
profitably in various applications such as combinatorial 
auction, reverse auction, task allocation, strategic sourcing, 
compensation negotiation for human resources management 
and recommender systems [1], [2], [6], [12], [14]. [9] 
introduced the concept of algorithmic mechanism design and 
[10] delved into different issues and applications of this 
concept.    
  In the present work, a copg has been studied for the 
problem of collaborative planning (colp). Efficient codm’s 
have been attempted to achieve a rational and structured 
plan.  In this game the agents do not want to share private 
information with a fear that such type of information may be 
exposed to their competitors. This asymmetry of information 
may result in expensive and inefficient solutions. The 
proposed codm’s preserve the privacy of strategic 
information of the agents with the help of secure multiparty 
computation (smc), a cryptographic technique. This 
improves the quality of a plan and subsequent decision-
making process in the coordination game significantly [3]. 
The proposed copg starts with the planning phase. The 



agents initiate several joint activities by specifying their 
objectives, preferences, aspiration and reservation levels and 
the communication mode. They set various agenda such as 
codm’s, the timing of exchanges, deadlines, priorities and 
constraints. They exchange offers and arguments; learn about 
the limitations of other agents; identify the areas of 
agreement and disagreement and modify negotiation 
strategies. Next, they develop joint proposals by relaxing 
their individual limitations and reach an agreement. Finally, 
the agents analyze the compromise proposals at the 
conclusion phase and may explore the scope of possible 
improvements. The game is analyzed here from three 
perspectives mainly, rationality of the agents, optimization of 
the process and preservation of privacy of information 
among the agents. 
  The present work had its root in [6] which looked at various 
scenarios of colp based supply chains. The latter had 
developed linear programming (lp) models for the same and 
also considered some issues of privacy. [17] had extended 
some of these models, improved upon it particularly from the 
point of view of security concerns and made some of these 
algorithms more efficient by minimizing the requirement of 
negotiations. It also suggested local domain based and global 
domain based plans for achieving the global minimum in 
total cost and introduced the idea of mechanism designs. [3] 
investigated some of these cases further. The present work 
develops a cooperative game to broaden the perspective of 
the colp and looks closely at the issue of cooperative 
mechanism design for several scenarios, particularly multiple 
stage LPDCM (local planning domain based coordination 
mechanism) and single stage GPDCM (global planning 
domain based coordination mechanism). This work also 
gives a secure multi-party extended linear programming 
protocol SMPELP by extending and also expanding upon 
Du’s work [5]. It applies SMPELP to GPDPM.  
  [16] deals with the algorithmic cooperative game theory and 
develops a variety of games, their cores and nucleolus (see 
below) considering efficiency and stability of these games. 
This however has not looked at the colp problem which is the 
main topic of the present work. Further, the former does not 
particularly give any mechanism design and also does not 
treat the issue of privacy and security which the current work 
emphasizes.  
The paper is organized as follows. Section II presents an 
overview of cooperative game; III defines the cooperative 
game for collaborative planning; IV describes local planning 
domain based coordination mechanisms:  SBSS, SBMS and 
MBSS; V presents global planning domain based 
coordination mechanism, while section VI discusses secure 
lp protocol SMPELP and smc issues in general. Finally, 
section VII concludes the paper highlighting some 
applications in operations research.   
 

II. COOPERATIVE GAME 
  Game theory is concerned with a complex decision making 
process in which two or more players who may have 
conflicting interests interact. Each of these players tries to 
optimize its own objective function. A game can be classified 

as cooperative game (copg) or a non-cooperative game. In a 
copg the players make agreements in order to minimize their 
common cost or to maximize their common pay-off. This is 
not possible in a non-cooperative game. This section defines 
the solution concepts of the cooperative game theory, core, 
shapely value, bargaining set, nucleolus and kernel [4],[10],  
[16].  
  Cooperative Game: A cooperative game is a game where a 
group of players enforce a cooperative behavior. A copg 
denoted (N, u) is defined by N = {1,2,…,N} denoting a set of 
players and u a real valued characteristic function.  A subset 
S ⊆ N is called a coalition, where N is called the grand 
coalition.  
  Imputation: The basic objective of a copg is to find an 
acceptable distribution of cost among the agents. Imputations 
are efficient and individually rational distribution. An 
imputation y = (y1, …, yN) is a vector in RN such that cost yi 

is allocated to player i and y(N)=∑
=

N

i 1
yi. An imputation is a 

pre-imputation that satisfies the requirement yi ≤ c(i). Let 

c(N)=∑
=

N

i 1
c(i), where c is the characteristic function in the 

game (N, c). The excess of a coalition S w.r.t. cost allocation 
vector y is e(S,y) = c(S) - y(S). (N,c) is a monotone game if c 
is monotone, i.e. c(S) ≤ c(T) for S ⊂ T ⊂ N. (N, c) is proper 
if the characteristic function is sub-additive, i.e. c(S)+C(T) ≥ 
C(S ∪ T) for all S, T ⊂ N, S ∩ T = φ. In a proper copg it is 
always cost effective to form large coalitions. 
  Solution Concept: A solution concept of a copg must satisfy 
a number of properties. The total cost allocated to the players 
must be equal to the total cost of the game, i.e. y(N) = c(N). 
This is also known as pareto-optimality. The cost allocated 
to a player should not be higher than the cost the player 
would have to incur if he acts individually without joining 
others. This property is known as individual rationality. The 
allocation of costs should be symmetric. The solution should 
satisfy the property of monotonocity. If the overall cost 
increases, the allocation of the player should increase 
accordingly. 
  Core: If the players of a game work jointly then the critical 
issue is the allocation of profit among those players. If one or 
more players consider that the proposed allocation is 
disadvantageous to them they can decide to leave. The core 
is the most significant fair solution concept of a copg. In a 
core solution there is no incentive for any player to leave the 
grand coalition, the core solutions are stable. In a game (N, 
c), the core is defined as those imputations y that satisfy y(S) 
≤ c(S), S ⊆ N  and y(N) = c(N). The total cost allocated to 
the players in a copg should not exceed the cost of a system 
dedicated to the coalition and should satisfy group and 
individual rationality constraints. The efficiency constraint 
implies that the total cost of the game is to be equitably 
distributed among the players.  
  Shapely Value: The shapley value is the unique payoff 
vector that is symmetric, additive and efficient. This also 



satisfies anonymity and assigns zero payoffs to dummy 
players. The order of the players does not affect the costs 
allocated to the players. 
  Bargaining Set: A set of objections and counter objections. 
An imputation y belongs to a bargaining set M(c) of the 
game if for any objection of a player against another with 
respect to y there exists a counter objection. 
  Nucleolus: The nucleolus indicates those imputations that 
minimize the maximum discontent of any player of a copg.  
  Kernel: The kernel of a game indicates the imputations for 
which no player outweighs another player. 
  There are many illustrations of cooperative combinatorial 
games such as assignment, permutation, sequencing, 
travelling salesman, delivery, packing and covering, 
matching, routing games, minimal cost spanning tree, facility 
location and network flows games [4].  
The main purpose of this paper is to demonstrate how the 

cooperative game theory can be applied to the problem of 
multi-agent collaborative planning. It deals with cost 
allocation methods involving combinatorial optimization. 
Several codm’s have been proposed based on domain 
planning, data exchange and compensation negotiation. 
These mechanisms are categorized as: a) Multi-stage Local 
Planning Domain based Coordination Mechanism (LPDCM) 
: SBSS (Single B Single S), SBMS (Single B and Multiple S) 
and MBSS (Multiple B Single S), and b) Single stage Global 
Planning Domain Based Coordination Mechanism 
(GPDCM). 
 

III. COLLABORATIVE PLANNING GAME 
Two Classes – B and S Agents: This section proposes a 

copg for the problem of colp where each participant has a 
well-defined objective function and a set of constraints that 
represent its preferences over the possible outputs of the 
game. These participants act rationally to optimize their 
objective functions and follow the codm’s correctly. For the 
purpose of explaining the present copg, the codm for the 
single ‘B’ and single ‘S’ (SBSS) is being used here. There 
are two different classes of agents involved in the 
coordination game: class B and class S. As such B and S do 
not signify anything or any particular behaviours. Except that 
the B class of agents will have similar interests. The same 
holds for the S class. But the B class and the S class agents 
will have opposite (or complementary) types of behaviour or 
interests. For example, B could represent the Buyer class and 
S the Supplier class in two successive tiers of a supply chain 
(SC). The most important point is that the B agents can 
collaborate among themselves (i.e. form coalitions), so also 
the S agents. B agents can either singly or as a coalition 
interact with the individual S agents or a subset of or all of 
the S agents in a coalition. For different purposes (operations 
or computations) the agents will act singly or jointly in a 
coalition of agents belonging to the same class. They can 
even act in a grand coalition of all the agents of both classes 
for yet another computation (e.g. GPDCM). The specific 

codm will specify the sequence of individual and joint 
computations among the partners involved.    
In case of the bi-party negotiation (SBSS) only  two agents 

are involved in the mechanism – one B agent and one S 
agent. Similarly, for other negotiation situations varying 
number of B and S agents are involved, such as single B 
agent and multiple S agents in SBMS, multiple B and 
multiple S agents in MBSS and multiple B agents and 
multiple S agents in MBMS mechanisms. 
  Planning domains: Local and Global: The local planning 
domain (lpd) of B is defined through the constrained 
optimization problem:  

min (oB)TxB, s.t. MBxB ≤ bB 
 
where xB, oB, bB and MB are the decision variable vector, the 
cost vector, the constraint lower bound vector and the 
constraint matrix respectively of B (T: matrix transpose 
operation). Similarly, the lpd of S is: 

min (oS)TxS, s.t. MSxS ≤ bS. 
 
Combining these two one obtains the joint optimization 
problem: 

min oTx, s.t. Mx ≤ b 
where x=xB ⊕ xS, o=oB ⊕ oS, M=MB ⊕ MS and  b=bB ⊕ bS 

 
for the entire system referred as the global planning domain 
(gpd). Here, x, o, M and b represent the decision variable set, 
the cost vector (i.e. objective function), the constraint matrix 
and the constraint upper bound vector for the global plan. 
The combination operator ⊕ has to be defined appropriately. 
The basic problem is to develop a codm which ensures that 
consistent plans are generated by reducing planning cost, 
total negotiation time, information disclosure to any agent 
and asymmetry of information disclosure to the parties. 
  Plan: In the case of bi-party negotiation, the B agent gives 
its plan to the S agent. The latter executes the plan for the 
former. The negotiation starts with B bidding a plan P to S. S 
evaluates P and counter bids an alternative plan P’. B in turn 
evaluates P’ and counter proposes yet another P”, and so on. 
Finally, if the negotiation ends successfully, S executes the 
commonly accepted agreed plan. The negotiation for a plan 
consists of successive bidding cycles. In each bidding round, 
a plan P is bid by either B or S. A successful negotiation 
process consists of a starting plan (initial plan) followed by a 
series of compromise plans which culminates in a finally 
accepted plan (see below):  
  Initial Plan: B proposes P0 which is optimal for B. 
  Compromise Plan, Plan Evaluation and Compensation 
Negotiation: Subsequently compromise plans Pi, i>1, are 
(alternatively) bid by B and S. Pi

B (Pi
S) denotes a plan bid by 

B (S). A compromise plan Pi is generated based on the 
evaluation of the previous plan Pi-1 bid by the opponent. This 
plan evaluation is done both in terms of costs and fulfillment 
of the plan objective. Further, each compromise plan also 
involves a compensation amount to be given to B by S, 
which is settled through one or more internal rounds of 
compensation negotiations. Further, it is also quite possible 
for an agent to bid a plan Pi against an earlier plan Pj, j < i-1, 



of the opponent based on further information revealed during 
the subsequent negotiation process (i.e. after Pj was bid). But 
this fact can optionally be revealed by the bidder to make it 
possibly easier for the opponent to make a decision.  
  Final Plan: Pf is the final plan that is agreed by both the 
parties irrespective of who offered it. 
  Plan Cost: For any plan P the cost components of B and S 
are denoted by CB(P) and CS(P) respectively. These are 
private to the agents and will not be disclosed to the 
opponent, i.e. what is revealed in the negotiation process is 
the proposal for B and the proposal for S without any cost 
implications. The total cost for a plan P, C(P)= CB(P)+CS(P), 
is also not revealed to either agent. 
Cost Effects – Local and Global: Since P0 is optimal for B, 

CB(P0) < CB(Pi) for all i ≥ 1, i.e. the cost effect for B (S) for 
Pi, ΔCB(Pi) = CB(Pi) - CB(P0) (ΔCS(Pi) = CS(P0) - CS(Pi)). 
Note that both the cost effects are positive. Cost effect of a B 
agent or an S agent is also referred as local cost effect, 
whereas the global cost effect or total cost effect for Pi is sum 
of the local cost effects of all the agents. This is because the 
objective of the coordination process is to decrease the total 
cost, not the individual costs. However, B is entitled to ask 
for suitable compensation from S to compensate for the 
additional cost it has to incur in Pi. Individual cost effects are 
treated as private information.  
  Compensation Amount and Cost Sharing: B will always ask 
for a compensation amount, which is at least the cost effect. 
The compensation negotiation has basically two purposes: i) 
to determine whether the current plan Pi is a feasible one, i.e. 
whether total cost of Pi has increased over the previous plan 
Pi-1 (or any other past plan Pj, j < i-1); and ii) to determine 
the amount of savings in costs to be shared between B and S. 
This is known as savings sharing or cost sharing. 
  Cost Implication (CI): CI for B for a plan P is the cost 
component of P (CIB(P)) minus the compensation settled 
(Comp(P)). Similarly, for S. Note, the total of cost 
implications for B and S is same as the total cost for the plan, 
C(P). Thus,  
CIB(P) = CB(P) - Comp(P), 
CIS(P) = CS(P) + Comp(P), and 
C(P) = CB(P) + CS(P) = CIB(P) + CIS(P). 
  Compensation Negotiation, Rational Behaviors of the 
agents and Privacy Preservation: Compensation negotiations 
are realistic. The agents behave rationally. If the total cost 
reduces, compensation will always be settled such that no 
agent loses compared to the previous round. In other words 
the cost implications for both parties improve. Further, if the 
compensation negotiation fails, it only means that the total 
cost for the current bid is more than that for the previous bid. 
When the negotiation ends successfully in the final plan Pf, 
the total cost achieved is nothing but C(Pf). The total savings 
through the negotiation will be C(P0) -  C(Pf) > 0, which is 
apportioned as Comp(Pf) for B and C(P0) - C(Pf) - Comp(Pf) 
for S. Both B and S are assumed to be rational in exchange 
of truthful communication and are interested in reducing total 
plan cost. If none of the parties respond then there will be a 
deadlock. That means that neither B nor S is interested in 
cost reduction, which violates our assumption. 

Note, privacy preservation of individual agents is an 
important concern for this copg. For this purpose the cost 
effects are compared privately. Because the cost effect 
amounts are kept secret from the respective opponents the 
compensation negotiation becomes relevant and the parties 
feel encouraged to participate in this negotiation.   
  Stopping Criteria: Stopping the game is possible on various 
counts: total time taken, total number of plan bidding rounds, 
number of successive failed biddings, satisfaction of both 
parties, etc. If any agent withdraws prematurely the game 
ends unsuccessfully. 
 

IV. COORDINATION MECHANISM: LPDCM 
  An algorithmic coordination mechanism is composed of 
various types of elements –  a finite set of agents; a finite set 
of inputs as possessed by each agent; a finite set of outcomes 
as defined by output function;  an utility function what each 
agent aims to optimize;  payments, i.e.  compensation and 
bonus;  strategies: an agent selects a strategy from a family 
of strategies defined by the mechanism;  a dominant strategy 
that maximizes the utility of an agent for all possible 
strategies of other agents involved in the mechanism; 
revelation principle by which the agents report their 
strategies and truthful implementation [9], [10]. A 
mechanism is truthful if all the agents report their strategy 
types. Truth telling may be a dominant strategy. A 
mechanism is strongly truthful if truth telling is the only 
dominant strategy.  
  This section presents LPDCM for the proposed 
coordination game. Optimization of a collaborative planning 
process can happen in two principal ways. A gpd is obtained 
by combining the lpd’s which includes optimizing functions 
and constraints of all the agents involved and then optimize 
the global plan in this domain based on all the domain 
variables and constraints. A lpd is obtained for each agent 
and local plans optimized in these domains given static or 
dynamic set of constraints. The constraints become dynamic 
if it is not necessary that all the constraints are previously 
known to each agent a priori. Actually, often, constraints of 
one agent become dependent on the constraints of other 
agents. Finally, global plans which are intended to be optimal 
for all the parties together are obtained usually through an 
iterative process of optimizing the plans locally. 

    A. SBSS Coordination Mechanism 
 
 
1. B bids optimal plan P0 to S. Set i=0. Reference plan = P0. 
2. Repeat until the stopping criteria is satisfied: 
  a. Set i = i + 1; 
  b. B counter bids Pi

B to S, or S bids Pi
S to B. 

  c. B and S compute local cost effects ΔCB(Pi) and ΔCS(Pi). 
  d. B and S privately compare ΔCB

 (Pi) and ΔCS
 (Pi) and sets 

the reference plan to Pi if ΔCS
 (Pi) > ΔCB

 (Pi). 
3. If both parties agree, output plan Pf =Pi. B and S jointly 
settle the compensation for B through negotiation, based on 
relative cost effects for the final plan Pf.  



 
    B. SBMS Coordination Mechanism 
 
1. B bids its optimal plan P0 by splitting into subplans P01, 
…, P0m (s.t. P0=P01⊕ … ⊕P0m) for m S agents. Set i=0. Set, 
Reference plan = P0. (⊕ is the plan combination operator.) 
2. Repeat until the stopping criteria is satisfied: 
  a. Set i = i + 1;  
  b. B agent’s  round: For each j, j=1,…,m, B counter bids 
Pij

B to Sj in parallel.  
       S agents’ round: For each j, j=1,…,m, Sj counter bids 
Pij

Sj to B. Thus, the combined delivery plan Pi received from 
m S-agents is Pi = Pi1 ⊕…..⊕ Pim. 
  c. B and S agents (Sj,j=1,…,m) compute local cost effects 
ΔCB(Pi) and ΔCS(Pi). 
  d. The leader of the S agents (say, Sl) and B privately 

compare ΔCS(Pi) = ∑
=

m

j 1

ΔCSj(Pi) and ΔCB(Pi) and sets the 

reference plan to Pi  if  ΔCS(Pi) > ΔCB(Pi) (The sum and 
comparison will be computed privately.). 
3. If all the parties agree, the output is the final plan Pf = Pi. 
B and S agents jointly settle the compensation to be given to 
the losing parties (The agreement will be reached and 
negotiations conducted privately.).  
 
    C. MBSS Coordination Mechanism 
  Let an S agent be involved in negotiation with m B agents. 
One of the B agents plays the role of the leader and interacts 
with the S agent. There can be two types of MBSS 
mechanisms. If each B agent communicates its plan to S 
individually, MBSS mechanism will be similar to SBMS. For 
a particular bidding round S may treat the plans of B agents 
simultaneously or according to different priorities. The 
second scenario will be a multi-stage mechanism. If the 
leader of B agents conducts a negotiation among the B 
agents and generates a combined plan and interacts with S on 
the basis of this combined plan, MBSS mechanism will 
converge into SBSS mechanism.   
 
  Theorem I: SBSS, SBMS and MBSS codm’s preserve the 
privacy of cost and cost effects of B and S under the 
assumptions of relevant smc protocols.  
  (For brevity we are putting the arguments in a combined 
fashion.) The sole B agent or any of the multiple B agents 
(singly or collectively) does not disclose its cost or cost 
effect to S (i.e. either to the single S agent or to any of the 
multiple S agents singly or collectively), as the case may be. 
The converse is also true for S. Then B and S agent(s), singly 
or jointly, as the case may be, evaluate the relative cost 
effectiveness of any two successive plans – one proposed by 
the sole B agent (or one of the B agents, or one set of plans 
by multiple B agents combined into one plan – as the case 
may be), and the other by S agent(s) (locally single, or 
locally combined into a single one as required). Note, here 
the aggregation was done only for computing the total cost or 
cost effect, when required. The smc is applied for secure 
summation, privacy preserving comparison and consensus 

building. Each of them finds out local cost effects for a plan 
and compares that with that of the other agent privately. 
Here, only the relative cost effectiveness (i.e. positive or 
negative sign of the cost effect) of two successive plans is 
disclosed to both parties but none of B and S agents can get 
any idea of individual cost effects. Only the finally agreed 
plan which is targeted to achieve the maximum cost saving is 
disclosed. The privacy holds under the assumptions that the 
relevant secure and privacy preserving cryptographic smc 
protocols are in place. 
  For the issue of convergence, for example, in step 2(d) of 
SBSS, if ΔCS(Pi) > ΔCB(Pi), the plan Pi  becomes the 
reference plan for next iteration (i.e. Pi has improved in the 
total cost over Pi-1). Thus to show, C(Pi)<C(Pi-1), i.e. 
CB(Pi)+CS(Pi)<CB(Pi-1)+CS(Pi-1) i.e. ΔCS(Pi)>ΔCB(Pi), which 
is given. Thus, the algorithm accepts a counter proposal only 
when the corresponding plan is better than the previous plan. 
Thus, the algorithm basically ensures a sequence of plans 
having monotonically reducing cost (by ignoring the 
expensive plans which are generated and then not considered 
further). The finally accepted plan has the minimum cost 
among the plans generated by both B and S.  
  There is however no guarantee of achieving the globally 
minimum cost plan, as the negotiation process does not 
necessarily converge to the global optimum solution. The 
negotiation, which is being done based on the local 
information of an agent or a subset of B or S agents, can not 
guarantee the global optimum which will require total 
information. Only repeated application based on progressive 
computation can achieve a mutually acceptable solution 
which hopefully is one of the better local optima. Finding the 
global optimum would as such be a combinatorially 
explosive problem, even in the presence of total information. 
It will be a lp problem for the current case, where we have 
assumed a linear model. Thus, the following result. 
 
  Theorem II: SBSS, SBMS and MBSS codm’s converge to 
a plan Pf which is only locally optimum w.r.t. the total cost. 
  In these codm’s, the agents select their dominant strategies 
to optimize individual utilities. The agents act rationally and 
reveal their strategies truthfully. These mechanisms are 
strongly truthful since truth telling is the dominant strategy. 
B and S agents go through a series of plans. If the stopping 
criteria is satisfied, the B agent(s) start negotiation with the S 
agent(s) on the basis of the plan resulting in possibly 
maximum cost saving and settles the claim for compensation. 
The proposed codm requires only one round of negotiation 
for settling the compensation claim and this corresponds to 
the plan of minimum cost. The trading agents try to follow 
the solution concepts as discussed in section II for fair 
allocation of the cost savings among themselves. The 
stopping criteria is used to decide whether or not to continue 
the iterative negotiation process based on the current and 
previous best outcome detected so far. The improvement in 
the total cost is an important criterion in this connection. 
Another stopping criterion can be time passed, i.e. deadline 
of planning. Both the B and S agents get the information 



regarding relative cost-effectiveness of various plans. This 
leads to the following result. 
 
  Theorem III: SBSS, SBMS and MBSS are efficient 
mechanisms in terms of fair cost allocation.  
  The computation and communication costs depend on the 
number of plans generated. Each plan generation requires 
computation for estimation of local cost effects of B and S 
and private comparison of the cost effects. Local cost effect 
is estimated by solving an optimization problem. For each 
plan generated, B and S solve Yao’s millionaire problem [13] 
in order to compare local cost effects. This is an expensive 
smc protocol requiring a lot of communication between B 
and S. There is however no need of a third-party mediator.  

 

V. COORDINATION MECHANISM: GPDCM 
  Global planning domain (gpd) is basically a combination of 
lpd’s which are distributed among the agents of both B and S 
classes and are private to them. The coordination game 
comprises two or more lpd’s, one domain for each agent. For 
the linear case, it is assumed that linear models are useful to 
generate plans within individual planning domains. Each 
individual planning domain has its own objective function 
and constraints involving its own set of variables. The 
objective function for a planning domain mainly refers to the 
cost components for the respective domain. The total cost is 
the sum of costs for all the domains. Thus the objective 
functions and constraints are distributed across the agents. 
This is basically a lp problem of finding the global optimum 
plan related to the minimum cost subject to linear constraints 
on the decision variables.  
The traditional lp solution methodology such as the simplex 

method assumes centralized computation wherein the 
centralized solver knows all objective functions and 
constraints. But, this situation is not valid for distributed 
computing and particularly for smc scenario. The objective 
functions and constraints are distributed among the 
respective agent(s) as private information.  Therefore the 
usual solution methodology such as simplex method cannot 
be used directly to solve the problem of colp. In this case the 
agents require jointly construct a combined matrix of 
constraints and the combined objective function, which 
refers to the gpd. Here we have described a gpd based codm 
which is uniformly applicable for different multi-agent 
scenarios (SBSS, SBMS, MBSS). The scheme generates 
global optimum plan related to the minimum total cost and 
that solution should be acceptable to all the parties involved 
in collaborative planning.  
  

1. The agents jointly run SMPLPEP (which constructs the 
global plan as an lp and solves it to finds the globally 
optimum solution in a secure manner) (See VI.). The agents 
then accept the solution without any claim for any 
compensation. 
2. Each agent finds only its own contribution to the total cost. 
 

The mechanism preserves the privacy of objective function 
and constraints of each agent involved in the collaborative 
planning. There is no disclosure of any agent (of B or S) to 
any other agent because of the application of secure sum 
protocol. The question of cost effects do not arise because 
the optimization is now a one step process (single stage). 
And the privacy of individual components in the constraint 
matrix and cost vector is taken care of by the secure lp 
protocol. The mechanism generates a gpd by combining the 
lpd’s of all the agents involved and then optimize the global 
plan in this domain based on all the domain variables and 
constraints. But, the scheme is currently suitable only for the 
linear model. The cost of computation depends on the 
number of decision-making agents and the complexity of 
optimization problem.  

 

    A. LPDCM vs. GPDCM 

  GPDCM is naturally more intensive computationally as 
well as communication wise compared to LPDCM. This is 
mainly because much bigger matrices and vectors are 
required to be processed in GPDCM. Further, these matrices 
and vectors involved in matrix-vector product protocols 
require a lot of communication to maintain privacy [5]. 
Whereas in LPDCM most of the computations are held 
locally, only the plans are to be exchanged securely (mainly). 
On the other hand GPDCM achieves the global minimum 
cost without requiring any negotiations, but LPDCM 
achieves only a locally optimum cost yet requiring 
negotiations which may also be time consuming. Further, the 
process of giving counter plans in LPDCM during the main 
iterations need not be easily automated, in which case 
LPDCM could become quite inefficient in terms of both 
speed and quality. However, if the model is non-linear 
GPDCM in its current form will fail, and LPDCM can still 
work provided the players have adequate domain knowledge 
to come out with good feasible plans. 
  Nucleolus: The basic objective of the coordination 
mechanisms is to explore the imputation that minimizes the 
maximum discontent of the players of the game. This is only 
possible if the players of the cooperative game act rationally 
and share the correct information cooperatively maintaining 
privacy at desired level. LPDCM tries to reduce the 
discontent of the players through a bargaining set – a set of 
objections and counter-objections. This is a multi-stage 
coordination mechanism. GPDCM does not consider any 
bargaining set; this is a single stage mechanism. The major 
challenge of GPDCM is to define combinatorial optimization 
problem correctly by combining the rational business 
objectives and constraints of each decision making agent. 
  Core: The players of a game work jointly, then the critical 
issue is the allocation of profit among those players. If one or 
more players consider that the proposed allocation of profit is 
disadvantageous to them they can decide to leave. The core 
is the most significant fair solution concept of copg.  In a 
core solution there is no incentive for any player to leave the 
grand coalition, the core solutions are stable. LPDCM tries to 



explore the core solution. It though can not ensure the global 
optimal solution. Therefore, the chance of getting the core 
solution is less. LPDCM is basically an approximation 
algorithm. On the other side, the chance of getting stable 
core solution, i.e. global optimal solution, is more in case of 
GPDCM. 

 

VI. SECURE MULTI-PARTY LINEAR PROGRAMMING 
EXTENDED PROTOCOL (SMPLPEP) 

In the proposed copg two or more agents want to conduct a 
computation based on their private inputs but none of them 
wants to share its proprietary data set to others. The objective 
of smc is to compute with each agent’s private input such 
that in the end only the outputs (and implied knowledge 
thereof) are known to the respective target agents (as per 
design). The agents are semi-honest in that they are free to 
use intermediate results. Here we are not discussing standard 
smc protocols such as secure sum and private comparison. 
We are also skipping protocols like Matrix Vector product 
which can be obtained by extending Du’s work [5]. We are 
proposing here a secure multi-party extended lp protocol 
which has been used in GPDCM. 

Du [5] solved secure two party cooperative lp where the two 
parties keep their own constraint matrix (Mi) and constraint 
vector (vi) private to themselves [5]. Du did not consider the 
privacy of the objective function and the solutions of the 
decision variables to the respective parties (agents). We have 
extended Du’s method in a few ways: (i) m parties, m ≥ 2 (ii) 
keep the respective part of optimization function oi private to 
each agent i and (iii) keep the solutions of decision variables 
private to the respective agents (excluding common decision 
variables). But, the main integrity in Du’s method comes 
from the following result: 
y*  =  argmaxy  oTy subject to My ≤ v  --- (1) 
z*  =  argmaxz   oTHz subject to GMHz ≤ Gv --- (2) 
where G and H are random matrices having all positive 
elements and H is nonsingular. Then y* = Hz* holds. 
We give below our m-agent privacy-preserving lp. 
 
a) There are m decision makers or agents 1, …, m who wish 
to solve an lp jointly, yet maintaining privacy regarding their 
own part of the constraints and the objective function. The 
agent i has the local constraint matrix Mi, constraint vector vi 
and its part of the optimization vector oi. The global 
constraint matrix, constraint vector and the optimization 
vector are M, v and o are obtained as follows (* is the 
combining operator):  
M =  M1 * .….* Mm, v = v1*…..*vm, and o = o1 *…..*om. 
Note, the solution vector of the global optimization problem 
maxyoTy s.t. My≤v will also be appropriately split, i.e. 
x=x1*…*xm, s..t. xi is the relevant local solution vector for i. 
Mathematically it will be easier to handle if there is a simple 
transformation of the local constants Mi, vi and oi  to  M’i, v’i 
and o’i, s.t. M=M’1+…+M’m, v=v’1+...+v’m and o=o’1 
+…+o’m. 

b) Alice and Bob exchange relevant components of their 
shares and sums up to get the relevant component of the final 
solution x. Alice and Bob send to each agent i the 
components of the solution of its decision variables. Each i 
combines these components and gets the solution of its 
decision variables. 
  
1. Let two out of m parties be selected at random be called 
Alice and Bob. Renumber the agents: Bob 1, Alice 2, others 
3,…, m. The agent 1<i<m has inputs M’i, v’i and o’i. 
2. Bob splits his constants into (m-1) random parts one for 
each of the remaining agents (including Alice) as follows: 
M’1=M’12+...+M’1m, v’1=v’12+…+v’1m , o’1= o’12+...+o’1m. 
3. For each agent i = 2,…,m ( call it Sally) 
  a) Bob generates G and H. 
  b) Sally and Bob share 'o T

i
H using the matrix vector 

product protocol. (Note, Bob already has 'o T

i
H). 

  c) Sally computes ( '1o T

i
H + 'o T

i
H) and sends it to Alice. 

(N.B.: Bob does not learn 'o T

i
H and Sally does not learn 

'1o T

i
H; this is not strictly required for m>2). 

  d) Sally computes G(M’1i+M’i)H and G(v’1i+v’i) and sends 
these to Alice. (N.B.: Sally does not learn G, H, M’1i, v’1i, 
GM’1i H, Gv’1i; Bob does not learn GM’iH, Gv’i). 
  4. a) Alice constructs the global optimization problem (with 

the noisy matrices G & H): O’=∑
=

m

i 2
(o’1i+o’i) 

GM’H=G∑
=

m

i 2
(M’1i+M’i)H, Gv’=G∑

=

m

i 2
(v’1i+v’i)H,  

(N.B: Alice does not learn G, H and any of the individual 
constants M’1 ,v’1 or o’1.) 
  b) Alice solves the optimization problem (2) and finds z*. 
5. a) Bob shares x=Hz* with Alice using matrix-vector 
product protocol which is the solution of the global 
optimization problem  (1).  
  b) Alice and Bob exchange relevant components of their 
shares and sums up to get the relevant component of the final 
solution x. Alice and Bob send to each agent i the 
components of the solution of its decision variables. Each i 
combines these components and gets the solution of its 
decision variables. 
 
  Theorem IV: SMPLPEP preserves the privacy of objective 
functions and constraints of the decision-making agents.  
  The secure lp treats the objective function and constraints of 
each agent as private inputs. Sally computes ( '1o T

i
H + 

'o T

i
H) privately. Bob does not learn 'o T

i
H and Sally does 

not learn '1o T

i
H. Thus, the protocol preserves the privacy of 

objective function of each agent. Sally also computes 
G(M’1i+M’i)H and G(v’1i+v’i) privately such that Sally does 
not learn G, H, M’1i, v’1i, GM’1iH, Gv’1i; Bob does not learn 
GM’iH, Gv’i. In 4th step of the protocol, Alice learns GM’H, 
Gv’ and o’ but does not learn G, H and any of the individual 



constants M’1, v’1 or o’1. In step 5, Alice holds a vector z* 
and Bob holds a matrix H. The objective is to compute Hz* 
using privacy preserving matrix-vector product protocol. 
Here, Alice cannot get any information of H and Bob cannot 
know the content of z*. Alice and Bob exchange each other’s 
components of final solutions so that any agent cannot know 
the solution of the decision variables of other agent except 
the solution of common decision variables.  

 

VI. CONCLUSION and APPLICATION 
  Multi-agent negotiation based colp is important for efficient 
SC management in e-market. The proposed game and the 
codm’s can be applied to collaborative planning, forecasting 
and replenishments (CPFR) in retail and manufacturing 
business. Dudek worked on collaborative SC planning by 
setting up an lp framework [6]. This work was extended by 
exploring various scenarios of multi-party negotiation among 
the trading agents [3]. The sharing of correct strategic 
information is important for efficient coordination of 
operational processes across a SC. But the buying and selling 
agents of a SC are often reluctant to disclose sensitive 
strategic information since the information can either be used 
by the SC agents or can be revealed to their competitors. 
Lack of information exchange gives rise to information 
asymmetry and causes problems related to capacity 
utilization, inventory control, transportation, distribution and 
customer service. CPFR is a strategic tool for comprehensive 
value chain management of an organization. This is an 
initiative among all the stakeholders of the SC in order to 
improve their relationship through jointly managed planning, 
process and shared information. The ultimate goal is to 
improve a firm’s position in the competitive market and the 
optimization of its own value chain in terms of optimal 
inventory, improved sales, higher precision of forecast, 
reduced cost and improved reaction time to customer 
demands. 

Future vision of the present works: A supply chain can 
become a revenue chain. Different types of algorithmic 
codm’s can be developed through different types of business 
intelligence moves which can enhance profit and revenue in 
SC coordination. Moreover, an efficient negotiation support 
system can automate the proposed copg of colp. 
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