
Decentralized Two-Level 0-1 Programming
through Distributed Genetic Algorithms

Keiichi Niwa ∗, Tomohiro Hayashida†, Masatoshi Sakawa‡, Yishen Yang§

Abstract—In this paper, we consider decentralized
two-level 0-1 programming problems in which there
are one decision maker (the leader) at the upper level
and two or more decision makers (the followers) at
the lower level, and decision variables of each deci-
sion maker are 0-1 variables. We assume that there is
coordination among the followers while between the
leader and the group of all the followers, there is no
motivation to cooperate each other. We propose a
modified computational method that solves problems
related to computational methods for obtaining the
Stackelberg solution. Specifically, in order to shorten
the computational time of a computational method
implementing a genetic algorithm (GA) proposed by
us, a distributed genetic algorithm is introduced with
respect to the upper level GA, which handles deci-
sion variables for the leader. Parallelization of the
lower level GA is also performed along with paral-
lelization of the upper level GA. In order to verify
the effectiveness of the proposed method, we propose
a comparison with the existing method by performing
numerical experiments to verify both the accuracy of
the solution and the time required for the computa-
tion.

Keywords: Decentralized two-level 0-1 programming

problem, Stackelberg solution, Distributed genetic al-

gorithm

1 Introduction

In the real world, we can often encounter situations that
there are two or more decision makers at the organiza-
tion with hierarchical structures and they make their de-
cisions in turn or at the same time in order to optimize
their objectives. For two-level programming problems,
the decision maker (the leader) at the upper level first
specifies a decision and then the decision maker (the fol-

∗Faculty of Economics, Hiroshima University of Economics, 5-
37-1 Gion, Asaminami-ku, Hiroshima 731-0192, Japan Tel/Fax:
+81-82-871-1048/1005 Email: ki-niwa@hue.ac.jp

†Graduate School of Engineering, Hiroshima University 1-4-1,
Kagamiyama, Higashi-Hiroshima, 739-8527, Japan, Tel/Fax: +81-
82-424-5267/422-7195 Email: hayashida@hiroshima-u.ac.jp

‡Graduate School of Engineering, Hiroshima University 1-4-1,
Kagamiyama, Higashi-Hiroshima, 739-8527, Japan, Tel/Fax: +81-
82-424-7694/422-7195 Email: sakawa@hiroshima-u.ac.jp

§Faculty of Economics, Hiroshima University of Economics, 5-
37-1 Gion, Asaminami-ku, Hiroshima 731-0192, Japan, Tel/Fax:
+81-82-871-1031/1005 Email: ys-yang@hue.ac.jp

lower) at the lower level determines a decision so as to
optimize an objective of the follower with full knowledge
of the decision of the leader.

In this paper, we consider two-level programming prob-
lems in which there are one decision maker (the leader) at
the upper level and two or more decision makers (the fol-
lowers) at the lower level of a hierarchical structure, and
decision variables of the leader and the followers are 0-1
variables, and call such problems decentralized two-level
0-1 programming problems.

As an overview of research dealing with two-level pro-
gramming problems that include discrete variables, Bard
et al. presented an algorithm based on the branch-and-
bound approach in order to derive the Stackelberg solu-
tion for two-level 0-1 programming problems [3] and two-
level mixed integer programming problems [2]. Wen et
al. [14] have presented a computation method for obtain-
ing the Stackelberg solution to two-level programming
problems which have 0-1 parameters for the decision vari-
ables in the upper level and continuous parameters for the
decision variables in the lower level.

Genetic algorithms (GAs) were proposed by Holland [8],
as a new learning paradigm that models a natural evo-
lution mechanism. GAs were not much known before
Goldberg’s book [6] had been published; however, many
researchers in various fields have recently attracted much
attention to GAs as a methodology for optimization,
adaptation and learning [9, 13]. An example of research
related to two-level programming problems using GAs
is given by Anandalingam, et al. [1] which presents a
method for deriving a Stackelberg solution for two-level
linear programming problems. In order to derive a Stack-
elberg solution for 0-1 programming problems related to
two-level decentralized systems, the authors [11] have also
proposed a computational method that adopts the dou-
ble string proposed by Sakawa, et al [13] as the individ-
ual representation. The authors have proposed computa-
tional methods that implement sharing [10] and cluster
analysis [12] methods so as to improve the computational
accuracy of the Stakelberg solution. Use of these meth-
ods allows for the derivation of approximate Stackelberg
solutions with relatively high precision and in a relatively
short time, but there is still room for improvement, par-
ticularly with regards to calculation times.

This paper focuses on decentralized two-level 0-1 pro-
gramming problems, and proposes an improved compu-
tational method that addresses problems related to the
computational method proposed by the authors for de-
riving the Stackelberg solution. Specifically, in order
to shorten the computational time of a computational
method implementing a genetic algorithm (GA) proposed
by the authors, a distributed genetic algorithm is intro-
duced with respect to the upper level GA, which handles
decision variables for the leader. Parallelization of the
lower level GA is also performed along with paralleliza-
tion of the upper level GA. In order to verify the effective-
ness of the proposed method, we propose a comparison
with the existing method by performing numerical exper-
iments to verify both the accuracy of the solution and the
time required for the computation.

2 Decentralized two-level zero-one pro-
gramming problem

We consider two-level decision making situations where
there are one leader at the upper level and k followers at
the lower level, and decision variables of the leader and
the followers are integer variables. Let DM0 denote the
leader and DM1, . . ., DMk denote the followers.

DM0

DM1 DM2 DMkp p p

The leader

The followers

The lower level
The upper level

Figure 1: Decentralized two-level structure

The decentralized two-level 0-1 programming problem is
expressed as

maximize
x

z0(x, y) = c0x + d01y1 + · · · + d0kyk

where (y1, . . . , yk) solves
maximize

y1
z1(x, y) = c1x + d11y1 + · · · + d1kyk

· · · · · · · · · · · ·
maximize

yk
zk(x, y) = ckx + dk1y1 + · · · + dkkyk

subject to Ax + B1y1 + · · · + Bkyk 5 b
x ∈ {0, 1}n0

yj ∈ {0, 1}nj , j = 1, . . . , k,


(1)

where ci, i = 0, 1, . . . , k are n0-dimensional row coeffi-
cient vectors; dij , i = 0, 1, . . . , k, j = 1, . . . , k are nj-
dimensional row coefficient vectors; A is an m× n0 coef-
ficient matrix; Bj , j = 1, . . . , k are m×nj coefficient ma-
trices; and b is an m-dimensional column constant vector;
x is an n0-dimensional column decision variable vector of
the leader (DM0); yj , j = 1, . . . , k are nj-dimensional col-
umn decision variable vectors of the jth follower (DMj);
for the sake of simplicity, y = (yT

1 , . . . , yT
k)T , where T

denotes transposition; z0 is a objective function of DM0;
zj , j = 1, . . . , k are objective functions of DMj.

It is natural that decision makers have fuzzy goals for
their objective functions when they take fuzziness of hu-
man judgments into consideration. For each of the ob-
jective functions zi, i = 0, 1, . . . , k of the problem (1), we
assume that the decision makers have fuzzy goals such
as “the objective function zi should be substantially less
than or equal to some value pi.”

Let S denote the feasible region of the problem (1), and
then, the individual minimum of the objective function
for DMi, i = 0, 1, . . . , k is

zmin
i = min

x,y∈S
cix + di1y1 + · · · + dikyk, (2)

and the individual maximum of the objective function for
DMi is

zmax
i = max

x,y∈S
cix + di1y1 + · · · + dikyk. (3)

The individual minimum and the individual maximum
are helpful for DMi to identify a membership function
prescribing the fuzzy goal for his/her objective function
zi. Consulting the variation ratio of degree of satisfac-
tion in the interval between the individual minimum (2)
and the individual maximum (3), DMi determines the
membership function µi(zi), which is strictly monotone
increasing for zi. The domain of the membership func-
tion is the interval [zmin

i , zmax
i], i = 0, 1, . . . , k, and DMi

specifies the value z0
i of the objective function such that

the degree of satisfaction is 0, µi(z0
i) = 0, and the value

z1
i of the objective function such that the degree of satis-

faction is 1, µi(z1
i) = 1. For the value undesired (smaller)

than z0
i , it is defined that µi(zi) = 0, and for the value

desired (larger) than z1
i , it is defined that µi(zi) = 1.

In this paper, for the sake of simplicity, we adopt a linear
membership function which characterizes the fuzzy goal
of DMi. The corresponding linear membership function
µi(zi) is defined as:

µi(zi) =


0, if zi < z0

i

zi − z0
i

z1
i − z0

i

, if z0
i 5 zi < z1

i

1, if zi = z1
i ,

(4)

and it is depicted in Figure 2.

For the leader and the followers, suppose that DMi de-
termines his/her linear membership function by choosing
z0
i = zmin

i and z1
i = zmax

i .

We assume that the followers (DM1,..., DMk) choose in
concert so as to maximize a minimum among degrees of
their membership functions. Then we can model the sit-
uation as the following decentralized two-level 0-1 pro-

�
�

�
�

�
�

6

-

µi(zi)

1.0

0 z1
iz0

i
zi

Figure 2: Linear membership function.

gramming problem:

maximize
x

µ0(c0x + d01y1 + · · · + d0kyk)
where y solves
maximize

y
min

j=1,...,k
µj(cjx + dj1y1 + · · · + djkyk)

subject to Ax + B1y1 + · · · + Bkyk 5 b,
x ∈ {0, 1}n0

yj ∈ {0, 1}nj , j = 1, . . . , k.


(5)

In this formulation, the followers (DM1, ..., DMk) max-
imize their aggregated degree of satisfaction minj=1,...,k

µj(cjx + dj1y1 + · · · + djkyk). This aggregated degree
of satisfaction is nothing else but the fuzzy decision pro-
posed by Bellman, et al [4], which is often employed as a
solution concept in fuzzy environments.

3 GA based computational method

We propose a computational method through GAs in or-
der to obtain Stackelberg solutions to the decentralized
two-level 0-1 programming problems. In this section, we
describe fundamental elements of GAs, which are coding
procedure, a decoding procedure and genetic operators,
used in the proposed computational method.

3.1 Coding and decoding

Binary strings are usually adopted to express individu-
als [7, 6] when solving 0-1 programming problems using
GAs. However, under this representation it is possible
that infeasible individuals that do not satisfy the con-
straints may be generated, so there is a danger that the
performance of the GAs may degrade. Thus, in this pa-
per, in order to derive only feasible solutions, a double
string [13] is used which is composed of the substring
corresponding to the decision of the leader (DM0), x,
and the substring corresponding to the decisions of the
followers (DM1, . . . , DMk), y, as shown in Fig.3. The
decisions of the leader (DM0) and the followers (DM1,
. . . , DMk) are handled by performing genetic operators
on each sub-individual. In this paper, the GA handling
the decision of the leader (DM0) is called the upper level
GA, and the GA handling the decisions of the followers
(DM1, . . . , DMk) is called the lower level GA.

← Individual for x → ← Individual for y →
ix(1) · · · ix(n0) iy(1) · · · iy(n1 + · · · + nk)

Six(1) · · · Six(n0) Siy(1) · · · Siy(n1+···+nk)

Figure 3: Double string

six(m) ∈ {0, 1}, ix(m) ∈ {1, . . . , n0}, and for m ̸= m
′

it is assumed that ix(m) ̸= ix(m
′
). Similarly, siy(m) ∈

{0, 1}, iy(m) ∈ {1, . . . , n1+ · · ·+nk}, and for m ̸= m
′
it is

assumed that iy(m) ̸= iy(m
′
). Also, in the double string,

regarding ix(k), iy(k) and six(k), siy(k) as the index of an
element in a solution vector and the value of the element
respectively, a string s can be transformed into a solution
x = (x1, . . . , xn0) and yj = (yj1, . . . , yj nj), j = 1, . . . , k
as:

xi(m) = six(m), m = 1, . . . , n0,
y1i(m) = siy(m) for 1 5 iy(m) 5 n1,
y2i(m) = siy(m) for n1 + 1 5 iy(m) 5 n2,

· · · · · · · · ·
yki(m) = siy(m) for nm−1 + 1 5 iy(m) 5 nk.

In this paper, a decoding algorithm propoesd by the au-
thors [11] is also applied to the upper level and lower level
GA, generating only feasible solutions.

3.2 Reproduction

First, we describe the reproduction operator of the lower
level GA. In the lower level GA, by using the value of y
obtained by decoding individuals in the lower level GA,
and the given values of the decision variables in the up-
per level GA, x, a value of the aggregated fuzzy goal
minj=1,...,k µj(cjx + dj1y1 + · · · + djkyk) is evaluated,
and a evaluation value for each individual is thus ob-
tained. Next, the fitness value for each individual is de-
rived using linear scaling, and the individuals remaining
in the next generation are determined by applying elitist
expected value selection.

Next, we show the reproduction operator of the upper
level GA. In the upper level GA, by using the value of x
obtained by decoding individuals in the upper level GA
and the value of the rational reaction obtained by ap-
plying the lower level GA, a value of fuzzy goal of the
leader µ0(c0x + d01y1 + · · · + d0kyk) is evaluated, and
a evaluation value for each individual is obtained. Fur-
thermore, the fitness value for each individual is calcu-
lated by applying linear scaling and adopting a clustering
method. The individuals remaining in the next genera-
tion are determined by applying elitist expected value
selection based on these fitness values.

3.3 Crossover and mutation

If single-point or multi-point crossover operators are ap-
plied to double string individuals, then there is a possibil-

ity that infeasible individuals may be generated because
the indexes occurring in the offspring, ix(m), ix(m

′
),

m ̸= m
′

or iy(m), iy(m
′
), m ̸= m

′
, may have the same

number. Recall that the same violation occurs in solv-
ing traveling salesman problems or scheduling problems
through GAs. Partially matched crossovers (PMX) have
been devised to stop this violation. In this paper, a mod-
ified version of PMX is used in order to handle the double
strings proposed by Sakawa et al. [13]. Also, when deter-
mining whether or not to apply the crossover operator, a
probability pc is used. Its value is set in advance.

The mutation operator is thought to fulfill the role of a
local random search in genetic algorithms. For double
strings, the index string expresses the priority of the pa-
rameters. For binary strings, since the value of the 0-1
parameters themselves are expressed, strings with differ-
ing properties coexist in a single string, and it is neces-
sary to apply mutations to each string. In this paper,
the mutation operator is applied to each string, and in-
version is used for additional strings. For binary strings,
bit-reverse is introduced. When applying the mutation
operator to individuals, it is first determined whether or
not the mutation operator will be applied to an individ-
ual according to the mutation probability pm. In the case
that mutation is applied, it is then determined whether to
apply inversion or bit-reverse according to the mutation
selection constant MPum.

3.4 Application of the parallel genetic algo-
rithm

In this study, we aim for reductions in computational
time, and consider parallelization of the upper level GA
and the lower level GA implemented by the computa-
tional method proposed by the authors [11].

In GAs, it is possible to perform parallel processing in
the greater part of the operations included in the algo-
rithm. In reproduction operations, however, because it is
necessary to calculate evaluation values for each individ-
ual in a population, and based on that value determine
the fitness of each individual, direct application of par-
allel processing is difficult. Research related to the par-
allelization of GAs started with improvements to such
barriers to the implementation of parallelization, and a
variety of types of models have been proposed and their
effectiveness noted by numerous researchers [5]. Today,
GAs that implement parallel processing have come to be
called parallel genetic algorithms.

Broadly classified, there are four types of parallel genetic
algorithms:

1) Single-population master-slave GAs In these
models, the population is not divided, and repro-
duction and crossover are performed globally, with
only individual evaluation performed on multiple

processors.

2) Multiple-population GAs In these models, the
population is divided into multiple partial popula-
tions, and the partial populations are assigned to
multiple processors. Reproduction, crossover and
mutation are then performed on the assigned proces-
sors, and at some fixed period an operation called
migration is performed to swap individuals among
populations. These models are also known as dis-
tributed GA.

3) Fine-grained GAs In these models, each processor
is assigned one or a very small number of individuals.

4) Hierarchical hybrids These models combine
multiple-population GAs or fine-grained GAs.

The computational method proposed by the authors in-
cludes an upper level GA and a lower level GA, and par-
allelization of each must be considered. We will describe
the parallelization of upper level GAs. In this paper, we
will employ multiple-population GAs. First, in our pro-
posed method, the population of the upper level GA is
divided into multiple subpopulations, and the subpopula-
tions are assigned to multiple processors. Next, reproduc-
tion operator, crossover operator and mutation operator
are applied on the assigned processors, and migration is
performed to swap individuals among subpopulations.

We will describe the parallelization of the lower level GA.
A lower level GA is used to obtain the rational reaction
y(x) to a given upper level GA individual x. For each
individual x of the upper level GA therefore there is an
independently operating lower level GA, and so it is pos-
sible to divide the lower level GA operations and assign
them across multiple processors.

It is possible to reduce calculation times and improve
calculation precision by employing such a model.

3.5 Lower level GA avoidance procedures

By introducing a lower level GA avoidance procedure it
is possible to reduce the number of unneeded rational re-
action calculations, and so calculation times are reduced.
In this paper, we introduce storage regions as shown in
Fig. 4.

x y1

0

1
x

1

x y x

x y

0 x

x

y x z (,)

2 22

x_max x_max x_max x_maxx_max x_max
x x_maxcounter

x 2
counter

x 1
counter

()

0 0 x y x z (,)1 11()

0 0 x y x z (,)2 22()

x_max x_max x_max
x y x z (,)()j j

min
j=1,...,k

x y x z (,)()2 22
j j

min
j=1,...,k

x y x z (,)1 11()j j
min
j=1,...,k

Figure 4: Storage for saving x and y(x)

xi, i = 1, . . . , x max indicates those values of x that were

used in the past for handling individuals of the upper
level GA, and yi(xi), i = 1, . . . , x max indicates the val-
ues of the rational reactions associated with xi obtained
by the lower level GA. xi

counter ∈ {1, 2, . . . , y max}, i =
1, . . . , x max indicates the number of times that the lower
level GA was used to find the rational reaction yi(xi) for
xi. x max indicates the maximum number of the leader’s
(DM0) decisions x saved, and y max indicates the max-
imum number of times that the lower level GA can be
repeatedly used to find the rational reaction yi(xi) for
xi. µ0(z0(xi,yi)) is a value that is obtaiend by substitut-
ing stored xi, yi(xi) values into fuzzy goal of the leader.
Also, minj=1,...,k µj(zj(xi, yi)) is a value that is obtained
by substituting stored xi and yi(xi) values into aggre-
gated fuzzy goal of the flollowers. By furthermore using
an algorithm like the following, the number of applica-
tions of the lower level GA is reduced, and unnecessary
calculation times eliminated.

Storage of the rational reaction y(x) and lower
level GA avoidance procedures

Step 1 If there exists in xi an upper level GA individual
x̄, proceed to Step 2. If one does not exist, then
check if the number of xi has reached x max, and if
so continue on to Step 3. If not, proceed to Step 4.

Step 2 If xi
counter has reached y max, then the saved

yi(xi) is returned to the upper level GA as the ra-
tional reaction and the algorithm terminates. If not
reached, proceed to Step 4.

Step 3 Select the least of the values µ0(z0(xi, yi(xi)))
from the saved xi, and take that xi value as
xk. After applying the lower level GA and thus
obtaining the rational reaction y(x̄) for x̄, if
µ0(z0(xk,yk(xk))) 5 µ0(z0(x̄, y(x̄))), save x̄, y(x̄),
µ0(z0(x̄, y(x̄))), minj=1,...,k µj(zj(x̄, y(x̄))) in the
storage region xk, and terminate the algorithm.

Step 4 After obtaining the rational reaction y(x̄) for
x̄ by applying the lower level GA, save x̄, y(x̄),
µ0(z0(x̄, y(x̄))), minj=1,...,k µj(zj(x̄, y(x̄))), and ter-
minate the algorithm.

3.6 The algorithm for the improved compu-
tational method

The following is a summary of the algorithm used in
the computational method after improvement. Here, the
number of processors used in the experiment is taken to
be p.

Step 1 For each processor q, q = 1, . . . , p, apply the up-
per level GA operations on Step1 through Step7.
Taking the generation of the upper level GA as
tuq := 0, Nu initial individuals are randomly gen-
erated.

Step 2 For each individual x in the upper level GA, de-
termine whether or not to apply the lower level GA,
and find the number of lower level GA to apply Nul.
For those individuals to which the lower level GA
will be applied, apply the lower level GA operations
in Step 2-1 through Step 2-3, and obtain the ratio-
nal reaction y(x). For those Nu −Nul individuals to
which the lower level GA will not be applied, take
the saved y(x) as the rational reaction, and proceed
to Step 4.

Step 2-1 Set tl := 0. Randomly generate Nl lower
level GA individuals y, and take these as the
initial population of the lower level GA . Pro-
ceed to Step 2-2.

Step 2-2 Use x given as the upper level GA indi-
vidual and y generated by the lower level GA
to calculate the value of the aggregated fuzzy
goal minj=1,...,k µj(zj(x,y)), and after apply-
ing linear scaling use that value to generate an
individual. Proceed to Step 2-3.

Step 2-3 If tl has exceeded the previously defined
a maximum number of generation Ml, take the
individual with the best fitness value as the op-
timal individual y(x), and proceed to Step 3.
Otherwise, apply crossover operator and muta-
tion operator to each lower level GA individual,
let tl = tl + 1, and proceed to Step 2-2.

Step 3 Calculate the value of fuzzy goal of the leader
(DM0) µ0(z0(x, y(x))) and the value of the aggre-
gated fuzzy goal minj=1,...,k µj(zj(x, y(x))) using
the lower level rational reaction y(x) obtained by
operation of the lower level GA, and the individual
x of the upper level GA. Perform the procedures re-
quired to save x and its rational reactions y(x) to
the storage region, and proceed to Step 4.

Step 4 Calculate the value of fuzzy goal of the leader
(DM0) µ0(z0(x, y(x))) for each upper level GA in-
dividual x, and after performing linear scaling apply
the clustering method to measure the level of conver-
gence of the individuals. Depending upon the degree
of convergence, calculate the fitness value of each in-
dividual. Proceed to Step 5.

Step 5 If tuq has exceeded the previously set a maxi-
mum number of generation Mu, then terminate the
algorithm. In that case, the individual obtained up
to that generation with the best fitness value is taken
as the optimal individual (x,y). Otherwise, proceed
to Step 6.

Step 6 Reproduction operator is performed using the
fitness values of each individual of the upper level
GA. Apply crossover operator and mutation opera-
tor to each upper level GA individual, and proceed
to Step7.

Step 7 If tuq mod mi (migration interval) = 0, after
performing synchronization between the processors,
apply migration. Return to Step 2 with tuq := tuq +
1.

4 Conclusion

In this paper, we have focused on decentralized two-level
0-1 programming problems, and have proposed a modi-
fied computational method that solves problems related
to computational methods for obtaining the Stackelberg
solution. Specifically, in order to shorten the computa-
tional time of a computational method implementing a
GA proposed by the authors, a distributed genetic algo-
rithm has been introduced with respect to the upper level
GA. Also, parallelization of the lower level GA has been
performed along with parallelization of the upper level
GA. In order to verify the effectiveness of the proposed
method, it is intended to conduct numerical experiments
into both the solution precision and computation time,
and thus compare the proposed method with the existing
method.

References

[1] G. Anandalingam, R. Mathieu, C.L. Pittard, and
N. Sinha, “Artificial intelligence based approaches
for solving hierarchical optimization problems,” in:
Sharda, Golden, Wasil, Balci and Stewart (eds.), Im-
pacts of Recent Computer Advances on Operations
Research, North-Holland, pp. 289–301 (1989).

[2] J. Bard and J. Moore, “The mixed integer lin-
ear bilevel programming problem,” Operations Re-
search, Vol. 38, pp. 911–921 (1990).

[3] J. Bard and J. Moore, “An algorithm for the discrete
bilevel programming problem,” Naval Research Lo-
gistics, Vol. 39, pp. 419–435 (1992).

[4] R.E. Bellman and L.A. Zadeh, “Decision making in
a fuzzy environment,” Management Science, Vol. 17,
pp. 141-164 (1970).

[5] E. Cantú-Paz: Efficient and Accurate Parallel Ge-
netic Algorithms, Kluwer Academic Publishers, Nor-
well, Massachussets (2000).

[6] D.E. Goldberg, Genetic Algorithms in Search, Op-
timization, and Machine Learning, Addison Wesley,
Massachusetts (1989).

[7] D.E. Goldberg and R. Lingle: “Alleles, loci, and
the traveling salesman problem,” Proceedings of the
First International Conference on Genetic Algo-
rithms and Their Applications, Lawrence Erlbaum
Associates, Hillsdale, NJ, pp. 154–159 (1985).

[8] J.H. Holland, Adaptation in Natural and Artificial
Systems, University of Michigan Press (1975), MIT
Press, Cambridge (1992).

[9] Z. Michalewicz, Genetic Algorithms + Data Struc-
tures = Evolution Programs, Springer-Verlag, Third,
revised and extended edition, Berlin, (1996).

[10] K. Niwa: “Revised computational methods for us-
ing genetic algorithms for obtaining Stackelberg so-
lutions to two-level 0-1 programming problems,” Es-
says and Studies in Commemoration of the 40th An-
niversary of the Founding of Hiroshima University
of Economics, Hiroshima University Economics, pp.
771–794, in Japanese (2007)

[11] K. Niwa, I. Nishizaki and M. Sakawa, “Decentral-
ized two-level 0-1 programming through genetic al-
gorithms with double strings,” in: L.C. Jain and
R.K. Jain (eds.), In proceedings of Second Inter-
national Conference on Knowledge-Based Intelligent
Electronic Systems, vol. 2, pp. 278–283 (1998).

[12] K. Niwa, I. Nishizaki and M. Sakawa: “Two-Level
0-1 Programming Using Genetic Algorithms and a
Sharing Scheme Based on Cluster Analysis,” Inter-
national MultiConference of Engineers and Com-
puter Scientists 2008 Proceedings, pp. 1931–1936
(2008).

[13] M. Sakawa, M. Tanaka: Genetic Algorithms,
Asakura Publishing, in Japanese (1995).

[14] W.P. Wen, and Y.H. Yang: “Algorithms for solv-
ing the mixed integer two-level linear programming
problem,” Computers and Operations Research, Vol.
17, pp. 133–142 (1990).

