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Abstract—This paper presents a reduced-
complexity algorithm for exactly solving two-job
shop scheduling problems where an arbitrary number
of non-availability periods may occur on each of the m

machines (m > 2). Considering the limited availabil-
ity of machines makes the scheduling models more
realistic in comparison to usual ones. The proposed
solution algorithm is an extension of the geometric
approach developed for the classical two-job shop
problem. It is based on a new representation that
allows dealing with modified processing times and
thus considering unavailability constraints of several
kinds.
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1 Introduction

Integrating practical constraints into traditional models
is an important issue for researchers and practitioners in
scheduling. Among those realistic considerations is the
limited availability of the machines. Indeed in actual
workshops planning horizons may contain time periods
corresponding to preventive maintenance tasks or dedi-
cated to the execution of urgent orders. Those unavail-
ability constraints may prevent or postpon the ordinary
execution of jobs, and must be taken into account when
building schedules.

During the last decade a fast growing number of stud-
ies were dedicated to scheduling problems with machine
availability consideration. We may refer to the state of
the art proposed in [12]. Two-machine flow shop prob-
lems were studied in [4] and [7], who established com-
plexity and performance guarantee results. In [10], sev-
eral one machine and the associated job shop problems
were addressed. Several kinds of availability constraints
are defined in the scheduling literature. In the strictly
non-preemptive model [1], the execution of an operation
can be interrupted neither by an unavailability period
nor by another operation. In [8] and [9] the author de-
fined three models of availability constraints, namely the
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resumable, non-resumable and semi-resumable cases. In
the latter, it is possible to execute a part of an oper-
ation before the unavailability of a machine (hole) and
then to complete its execution after the hole, possibly
with a penalty proportional to the already executed part.
When there is no penalty, operation are said to be re-
sumable, whereas a maximal penalty corresponds to the
non-resumable model. In [10], the authors defined by
crossable availability periods the ones that allow jobs to
be preempted. Flexibility on the availability constraints
was introduced in [1]. In that study the maintenance
activity is not fixed in advance but must be determined
during the scheduling procedure. Time windows in which
their position may vary are thus assigned to maintenance
tasks. More recently, authors in [11] proposed heuristics
for the permutation flow shop problem, where the ma-
chines are not available at the beginning of the planning
period.

In this paper, we present a new polynomial algorithm for
scheduling job shops with two jobs and availability con-
straints. More precisely, we assume that there can be an
arbitrary number of non-availability periods on each of
the m machines (with m > 2). The unavailability peri-
ods, due to preventive maintenance activity for instance,
are supposed to be known in advance and fixed. The goal
of the algorithm is to schedule operations of the two jobs
in order to minimize the schedule length. The remain-
der of this paper is organized as follows. We first present
the considered problems in Section 2. Section 3 describes
in details the temporized geometric approach that allows
exactly scheduling two-jobs with non-preemptive avail-
ability constraints. The new solution algorithm and its
direct extensions to general availability models are finally
presented in Section 4. Section 5 concludes the paper.

2 Problem description

The job shop scheduling problem with two jobs and avail-
ability constraints can be stated as follows: Two jobs
J1 and J2 must be executed on a set of m machines
M = {M1,M2, ...Mm}. Each job Ji consists of a lin-
ear sequence of ni operations M = {Oi,1, Oi,2, ...Oi,ni

}.
Each machine can perform at most one operation at a



time and each operation Oi,j of job Ji needs one ma-
chine Mj at a time, during pi,j time-units. An arbi-
trary number Kj of unavailability periods may occur
on each machine Mj . Let K be the maximal number
of holes, i.-e. K = maxj=1,...,m {Kj}. Starting time
and duration of these tasks are known in advance and
fixed. Objective is to determine the execution dates for
the operations such that to above constraints are satis-
fied and the makespan is minimized. According to the
notation introduced in [12], the scheduling problem can
be denoted J,NCwin |n = 2|Cmax, where NCwin means
that unavailability periods are arbitrarily distributed on
the machines. It is shown in [2], that the strictly non-
preemptive scheduling problem is polynomial and its
complexity is equal to O(Ks4), where s = max {n1, n2}.
The solution algorithm applies for any regular criteria.
An extension of this work to the resumable case is also
proposed. In what follows we show that the complexity
of problem J,NCwin |n = 2|Cmax can be improved and
that the new polynomial algorithm applies not only to
the resumable model but to a general model including all
cases of fixed availability constraints. This general model
was introduced in [3].

We associate with each operation Oi,j a coefficient αi,j

which represents the proportion of operation Oi,j to redo
after the unavailability period interrupting the operation.
It represents its resumable character. Thus αi,j = 0 if
Oi,j is resumable, αi,j = 1 if Oi,j is non-resumable and
0 ≤ αi,j ≤ 1 if Oi,j is semi-resumable. We also associate
coefficient βi,j,k to an operation Oi,j which must be pro-
cessed on machine Mr and which can be interrupted by an
unavailability period hr,k. It represents the preemptive
character of Oi,j or the crossable character of availabil-
ity period hr,k. Thus, βi,j,k = 0 if hr,k is non-crossable
or Oi,j is strictly non-preemptive. In this case, there is
a disjunction between Oi,j and hr,k. On the opposite,
βi,j,k = 1 if hr,k is crossable and Oi,j is preemptive. In
this case, the position of Oi,j in relation to hr,k, depends
on the resumable character of Oi,j .

3 Temporized geometric approach

In this section, we present the temporized geometric ap-
proach proposed in [2], which allows solving two-job shop
scheduling problems with availability constraints. For
sake of clarity, we first describe the classical geometric ap-
proach for the makespan minimization and give complex-
ity results. Then, we explain how the algorithm is mod-
ified to integrate non-premptive availability constraints.
For sake of clarity, we use example the following example
in the remainder of the paper to illustrate the approaches.
There are two jobs to be scheduled on four machines. The
manufacturing processes of jobs are as follows:
J1 = {M1(2),M2(4),M3(2),M4(1)} and J2 =
{M3(1),M1(2),M2(3),M4(2)}.

3.1 The geometric approach

The idea behind the graphical approach consists in re-
ducing the two-job shop scheduling problem in a shortest
path one (see for instance [5] and the references therein).
The approach starts by representing the scheduling prob-
lem in a two-dimension plane with rectangular objects as
obstacles defined as follows:

• Each axis corresponding to one job is decomposed
in ni sub-intervals according to the manufacturing
process of the job. A sub-interval Ii,j corresponds
to operation Oi,j (i.e. operation j of job Ji) and its
length is equal to the processing time of that opera-
tion.

• A rectangle defined by sub-intervals I1,k1
and I2,k2

is an obstacle, denoted as (k1, k2), if and only if op-
erations O1,k1

and O2,k2
use the same machine.

• The upper and right boundaries of the rectangle
defined by the origin O (which indicates the start
of processing of the two jobs) and the final point
F = (

∑n1

k=1 p1,k,
∑n2

k=1 p2,k) (which points out the
finish of processing of the two jobs) is considered as
a degenerated obstacle (see Figure 1).

In Figure 1, the rectangle defined by I1,1 and I2,2 is an
obstacle as the first operation of J1 and the second oper-
ation of J2 are both performed on machine M1.

A feasible solution of the two-job shop scheduling prob-
lem corresponds to a path going from the origin O to the
final point F , which avoids the interior of any obstacle
(k1, k2) seeing that operations O1,k1

and O2,k2
are per-

formed on the same machine and the preemption is not
allowed. The path is composed of horizontal segments
where only job J1 is processed (segment HS in Figure 1),
vertical segments where only job J2 is processed (seg-
ment V S in Figure 1) and diagonal segments where jobs
J1 and J2 are performed concurrently using different ma-
chines (segment DS in Figure 1). The length L of a path,
which is equal to the duration of the associated schedule,
is L =

∑
(horizontal segments)+

∑
(vertical segments)+

(1/
√

2)
∑

(diagonal segments).

Accordingly, the determination of the optimal schedule
for the J |n = 2 |Cmax becomes a shortest path problem
in the two-dimension plane, which consists of finding a
shortest trajectory that connects the origin O to the final
point F . This shortest path problem can equivalently be
obtained in a digraph G = (V,E, d) defined as follows:

• The set of nodes V is composed, in addition to
the origin O and the final point F , of South-East
(SE) and North-West (NW ) corners of obstacles
met when progressing diagonally in the plane.
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Figure 1: The shortest path in the plane

• Each node vi ∈ V − {F} has at most two outgoing
arcs. These arcs are obtained by progressing diag-
onally (45◦) until an obstacle (k1, k2) is hit. If the
obstacle (k1, k2) is the final obstacle, the node F
is the only successor of vi, otherwise the SE and
NW corners of (k1, k2) are immediate successors of
vi (see Figure 1). Hereafter, the south-east corner
of an obstacle (k1, k2) is denoted SE(k1,k2) and the
north-west corner is denoted NW(k1,k2).

• The distance between vi and a south-east (resp.
north-west) corner is the projection along the x
(resp. y) axis.

In Figure 1, diagonal progress from NW(2,3) hits the up-
per boundary of the final obstacle and hence the only
successor of NW(2,3) is the node F . Diagonal progress
from SE(1,2) hits the obstacle (2, 3) and thus the SE(2,3)

and NW(2,3) are its two immediate successors. The path
((O,SE(1,2)), (SE(1,2), SE(2,3)), (SE(2,3), F )) is the short-
est path of length 11 corresponding to perform J1 and J2

in parallel until instant t = 1, finish O1,1 while J2 waits,
perform J1 and J2 in parallel between t = 2 and t = 4,
finish O1,2 while J2 waits, perform again J1 and J2 in
parallel between t = 6 and t = 9, and then finish with
the last operation of J2.

The graphical approach can be extended to solve the two-
job shop scheduling problem with any regular criterion
Φ(C1, C2) where Ci(i = 1, 2) is the completion time of
job Ji. This extension has been proposed in [14] and
consists in evaluating the criterion each time the upper
or right boundary of the final obstacle is reached, i.-e
when a job is completed.

The complexity of the graphical approach is based on
the property that the constructed digraph is sufficient to
find an optimal solution of J | n = 2 | Φ ([5]) and can
be ontained in O(r log r) steps where r is the number
of obstacles ([13], and [5]). The graphical approach can
be extended to solve the two-job shop scheduling prob-
lem with additional constraints, namely when preemp-
tion [14], precedence constraints and release dates [6] are

considered.

3.2 Temporized approach

The temporized geometric approach (TGA) proposed in
[2] is a polynomial algorithm for solving the two-job shop
scheduling problem with availability constraints in the
strictly non-premptive case. TGA is mainly based on the
definition of earliest dates associated with each vertex of
the network representing the problem. This characteriza-
tion allows to integrate the evolution of time and thus to
deal with the limited availability of the machines. More
precisely, we compute for each vertex v of the plane with
obstacles the earliest date, noted h(v), and which corre-
sponds to the smallest duration to reach vertex v from
the origin O (note that h(O) = 0). Thus, h(v) is equal to
the length of the shortest path going from O to v. Tests
are realized each time an operation has to be started, i.-
e. each time a path crosses a vertical or horizontal line,
so as to verify if the machine necessary for its execution
is available. Knowing the earliest date h(v) of vertex v,
an availability test on direction J1 (resp. J2) consists in
determining the availability time T1,h(v) (resp. T2,h(v)) of
the machine associated with the next operation of job J1

(resp. J2).

In Figure 2, operation O1,j job J1 cannot be processed
at time h(v) = 2 , since it cannot be completed before
the first unavailability period of the machine. Operations
being strictly non-premptable, the execution of O1,j can
start (in the earliest) at time T1,h(v) = 8 which is equal
to the ending time of the first unavailability period.

Starting from a given vertex v with earliest date h(v),
several ways to progress and determine its successors are
to be considered:

• If the operations of the two jobs cannot start at time
h(v), vertex v is duplicated. A waiting vertex vw is
created and vw is the only successor of v.

• If there is an availability problem in direction J1

(resp. J2), the progression is made along the verti-
cal (resp. horizontal) line, that corresponds to only
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Figure 2: Availability test on direction J1

execute the operations of job J2 (resp. J1), until job
J1 (resp. J2) becomes available. A singular vertex
s, from which a diagonal progression is possible, is
added as the unique successor of v.

• If there is no availability problem, i. -e. if the oper-
ations of the two jobs can be executed at time h(v),
the progression works as in the classical geometric
approach: It is made in the diagonal direction until
an obstacle is hit. If this obstacle represents a ma-
chines conflict, its NW and SE corners are the two
direct successors of vertex v. If the hit obstacle is the
final one, point F is added as the unique successor
of v.

In [2], it is proved that network N composed by the points
listed above is sufficient to find an optimal solution for
problem J,NCwin |n = 2|Cmax, and that N can be ob-
tained in O(Ks4) steps, where s is the number of obsta-
cles, equal to O(n1.n2). Then, the complexity of problem
J,NCwin |n = 2|Cmax is O(Ks4). Using the same pro-
ceed as in [14], it can be shown that the results applies to
any regular criterion Φ(C1, C2). The resumable problem
is also sovable in O(Ks4) steps [2]. However, the tem-
porized geometric approach does not apply to the semi-
resumable case. Finally, the consideration of head and
tails, and precedence constraints as in [6] is also possible
and problem J,NCwin |n = 2 ; prec ; ri | max(Ci,j + qi,j)
is solvable in O(Ks6) steps, what provides lower bounds
for the job shop scheduling problem with availability con-
straints [2]. Note that the increasing in the complexity
of TGA regarding the classical geometric approch is due
to the introduction of new points, namely singular and
waiting vertices, during the construction of the network
associated with the search of a shortest path.

4 Improved approach

We develop in this section the improved approach for
problem J,NCwin |n = 2|Cmax including all cases of
fixed availability constraints. As the TGA algorithm,
it is based on the introduction of earliest dates for the
vertices of the network associated with the problem. We
propose a new definition of availability tests that allows
to integrate the actual availability of the machines with-
out introducing additionnal points. Indeed, we propose
not to focus on the time an operation can start according

to the availability of the involved machine but the time
needed to complete the operation. It is thus necessary to
modify the way the graphical representation is defined.

4.1 New Representation

In the proposed approach we keep the classical represen-
tation in the plane with obstacles of the scheduling prob-
lem. However, the two axis are decomposed into unitary
sub-intervals Ii,j which lenght are no more proportional
to the processing times of the associated operations Oi,j .
Instead, we propose to divide the sub-intervals according
to the processing times. As a consequence, the simulta-
neous execution of two operations O1,j and O2,k job J1

and J2 cannot be not represented by a diagonal leg (with
an angle of 45 deg), but follows a direction induced by
the processing times of the involved operations. Let us
consider the following example, illustrated in Figure 3,
where one operation O1,j of job J1 and two operations
O2,k and O2,k+1 of jobs J2 are represented by unitary
intervals. The processing times are respectively equal to
p1,j = 4, p2,k = 2 and p2,k+1 = 5. Starting from vertex v,
the simultaneous execution of O1,j and O2,k corresponds
to a progression in the direction given by angle α.

Since p1,j > p2,k, the execution of O2,k finishes before the
one of O1,j . Thus, the path crosses the upper boundary of
the square corresponding to the operations. When oper-
ation O2,k+1 can start, ∆1,j = 2 units of O1,j are already
executed. As in the classical geomtric approach, the min-
imal quantity between p2,k+1 and p1,1 − ∆1,j = 2 can be
executed before the path crosses the next horizontal or
vertical line.

Angle α is such that the length of its opposite side
L2,k,which correponds to the progression of job J2 is:

L2,k =
min(p1,j − ∆1,j , p2,k − ∆2,k)

p2,k

, (1)

where ∆2,k and ∆1,j represent respectively the portion
of operation O1,j and O2,k already executed. Note that
these values are both equal to 0 for the classical vertices.
However, it is necessary to evaluate the direction of the
progression each time the path crosses a horizontal or
vertical line. In fact in this case only one operation is to
be started, the other one being partially executed.
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The lenght L1,j of the adjacent side of angle α, which
corresponds to the execution of job J1 is given by:

L1,j =
min(p1,j − ∆1,j , p2,k − ∆2,k)

p1,j

. (2)

Finally, angle α is defined by:

tanα =
L2,k

L1,j

=
p1,j

p2,k

. (3)

In the example considered in Figure 3, the path progress-
ing from v first goes in direction α = arctan(

p1,j

p2,k
) =

arctan( 4
2 ) ≈ 63deg. Then, the direction is given by

arctan(
p1,j

p2,k+1
) = arctan( 4

5 ) ≈ 39deg.

Figure 4 (left) shows the new representation for the prob-
lem given by previous example and where no availability
constraint is considered. Numbers represent the earli-
est dates associated with the vertices. We can see that
the set of vertices is the same as in Figure 1. Indeed,
the new representation respects the rates of executions
between operations of the two jobs. Pathes hit the ob-
stacles at the same portions of operations. The main
difference with the classical graphical approach is that it
is no more possible to read the distances between ver-
tices by (orthogonal) projections of the legs on the axis.
However, we are more interested in the time needed to
reach a vertex v′ starting from vertex v, than in the ge-
ometrical distance between them. That information is
already included in the definition of the earliest dates of
the vertices. The general distance, which is the length of
the shortest path between two vertices v and v′ is thus
defined by formula d̃(v, v′) = h(v′) − h(v).

4.2 Availability Constraints

The main advantage from using this new representation
is that it allows dealing with modified processing times
and thus easily integrate availability constraints in the
scheduling problem. In fact, the only additional step is
to suppose that the processing times of operations are

not fixed in advance but depend on their starting times
(which are given by the earliest dates h(v) of the consid-
ered vertices) and the availability of the machines. Given
a vertex v with earliest date h(v), we compute the time
needed to complete next operations of job J1 and J2.

The new availability tests we propose thus consist in find-
ing the modified processing times of operations. In the
stricly non-preemptive model, the new processing times
include the initial ones and possibly an iddle time (cor-
responding to the time preceding an availability period)
and the duration of an availability period. In the ex-
ample provided by Figure 2, the modified processing
time of operation O1,j is p̃1,j = 10. More precisely,
p̃1,j = (Sr,1 − h(v)) + Pr,1 + p1,j , where Sr,1 and Pr,1

are respectively the starting time and the duration of the
first unavailability period of the considered machine Mr.

When the modified processing times p̃1,j and p̃2,k are cal-
culated for operations O1,j and O2,k of jobs J1 and J2 re-
spectively, the progression is done in the direction given
by angle α such that:

tanα =
p̃1,j

p̃2,k

. (4)

For instance, let suppose that machine M3 is unavail-
able between times S3,1 = 7 and S3,1 + P3,1 = 9 in the
considered example. The first part of the shortest path
given by Figure 4 remains the same. If we consider the
last two operations of jobs and vertex v which earliest
date is h(v) = 6, then processing time of operation O1,3

of job J1 becomes p̃1,3 = (S3,1 − h(v)) + P3,1 + p1,3 =
(7 − 6) + 2 + 2 = 5. The other processing times remain
unchanged. Thus, the path from vertex v goes first in the
direction given by angle α = arctan(

p̃1,3

p2,3
) = arctan( 5

3 ).

Then the path crosses the horizontal line corresponding
to the last operation of job J2. The new direction for the
path is given by α = arctan(

p̃1,3

p̃2,4
) = arctan( 5

2 ). The next

Figure 4 (right) shows the modifications of the shortest
path. It is easy to see that to the general model including
all cases of fixed unavailability periods can be addressed
the same way. Indeed, the modified processing time for
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Figure 4: New representation, without (left) and with (right) availability constraints

an operation Oi,j which starts at time h(v) and cannot
be completed before the starting time Sr,k of an unavail-
ability period hr,k is obtained by the general formula:

p̃i,j = (Sr,k−h(v))+Pr,k+pi,j+βi,j,k(αi,j−1)(Sr,k−h(v)).
(5)

= Pr,k + pi,j + [1 + βi,j,k(αi,j − 1)](Sr,k − h(v)).

5 Conclusions and Future Work

We proposed in this paper a new polynomial algorithm
for solving two-job shop scheduling problems with avail-
ability constraints. This algorithm outperforms existing
one not only in term of complexity but also regarding
its applications. Indeed, the new algorithm solves two-
jobs problems for all fixed availability constraints mod-
els. A problem that remains open is wether a similar
approach can be developed in case of flexible availaibility
constraints.
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