
Intelligent Co-operative PIM Architecture for
Image Analysis and Pattern Recognition

Zaki Ahmed, Reza Sotudeh, D. M. Akbar Hussain ∗

Abstract—Computer memory systems are increas-
ingly a bottleneck limiting application performance.
Processor-In-Memory (PIM) architectures, which
capitalize on merging the processing unit with its
memory unit on the same chip [1], promise to re-
move this limitation by providing a tremendous in-
crease in available memory bandwidth and significant
reduction in memory latency for a specific class of
computing that deals with significant amount of data
with relatively simple operations. Many image pro-
cessing and pattern recognition applications fall into
this category. In this paper, some key characteristics
with design philosophy of an intelligent co-operative
PIM architecture (CIM) are discussed, and examples
of image analysis algorithm that can run on it are
given.

Keywords: Co-operative Intelligent Memory (CIM),

Processor-in-Memory (PIM), Shared memory,

CPU major, CPU minor, Observer, Task optimizer.

1 Introduction

Generally, image processing algorithms have imple-
mented using parallel computation or special purpose
computing engines. The major motivation behind these
implementations, either by using a co-processor or vec-
tor/array processor, is to cope with the large compu-
tation required by these algorithms, in real time, with
the data-intensive computation loops. Data intensive ap-
plications require demandingly high number of memory
accesses which have operational characteristics that in-
clude a significant amount of memory-to-memory type
of instructions. This is in contrast to the usual statisti-
cally distributed register-to-register, memory-to-register
and memory-to-memory instructions that are found in
most programs. It is important to be able to expedite
process with data intensive computation loops, inherent
in many applications, especially image processing and
pattern recognition. These applications usually input
and output significant amounts of data which are pro-
cessed with relatively simple operations. The algorithms

∗Manuscript submitted February 3, 2010, Dr. Zaki Ahmed is
Principal Engineer at The Pakistan Institute of Laser and Optics,
Islamabad Pakistan (Email: zaki786@ieee.org), Dr. Reza Sotudeh
is Professor and Head of School for ECEE at The University of
Hertfordshire, UK (Email: r.sotudeh@herts.ac.uk), Dr. D. M. Ak-
bar Hussain is Associate Professor at The Aalborg University, Den-
mark (Email: akbar786@ieee.org)

deployed in these applications involve data intensive, iter-
ative and most often, highly parallel tasks [2]. For class
of tasks which are heavily reliant on memory to mem-
ory iterative instructions [3][4][5][6][7][8], the concept of
Co-operative Intelligent Memory (CIM) was developed
by the intelligent system group of University of Hertford-
shire, based on previously developed Co-operative Pseudo
Intelligent Memory (CPIM) to reduce the performance
gap [9] between the processor and memory by partition-
ing computation through dividing workload between ma-
jor (non-recursive) and minor (recursive) CPUs.

2 Philosophy Behind the Concepts

Both architectures (CPIM, CIM) fall into the category of
generalized intelligent system, designed for applications
which host inter-independent iterative loops. The sys-
tem possesses intelligent by observing activities that take
place between main processor (CPU major) and its main
memory. This is done in order to determine the nature of
operations or tasks performed on data entities residing in
main memory and bound by fixed memory partition or
frame. The intelligence develops in time as more obser-
vations lead to better formation of task identification and
once the threshold for recognition is reached, observation
ceases and further actions ensue. This clearly requires
that the input information (e.g. frame, segments....etc)
remains resident within the same memory boundaries
(static Locale), irrespective of the dynamic nature of the
content (Dynamic Content). It is under this condition
that the system exhibits performance gains since it only
invests a single learning phase to acquire the knowledge
about the Static-Locale-Dynamic-Content type of data
structure. Outside this condition a new learning cycle
must be entered every time a new data structure profile
is executed and hence the benefits will diminish. Any
reference to Intelligence in the context of our PIM ar-
chitecture is limited to the definitions that an intelligent
system (IS) is a system which learns how to act towards a
certain situation in order to reach its objectives by using
experiences and knowledge gained previously.

From the above statement, we can conclude that an intel-
ligent system has two fundamental characteristics learn-
ing and serving. Typically, an IS achieves its objective
through knowledge and experience, which it builds after
moments of its existence. It includes the situation that

occurred, the action done, and the results), which is ac-
quired through a learning process. This experience some-
time comes from static means, we can develop a, ROM
based, system that can act towards a defined situation
to reach its objective. This type of system learns how to
act towards a situation by an external teacher, ROM pro-
gram, and meets the objective by the knowledge provided
by the external teacher. An example of this is where the
ROM contents are merely used as a lookup table to guide
the process toward a predefined output based on a known
input scenario. This is primarily knowledge driven and
the knowledge does not expand beyond the predefined
boundaries coded in the lookup table. This is an open
loop system with repeated success (correct output) does
not build confidence factor or improve future decisions or
outputs because there is no feedback to enhance/reward
future decisions.

A more sophisticated system would use experience to-
gether with knowledge to improve decision making and
evolves intelligence through accumulation of success or
failure metrics from the tasks performed, like people
learning by example. This is a closed-loop system since
a confidence factor is built by reflecting on the positive
or negative outcome from the previous decisions/tasks.
Information from the output is weighted and returned
back to form part of the input that drives the next deci-
sion making process. Our CPIM system uses the open-
loop scenario, means that once the re-assimilated code is
linked and executed by the CPU major, it continues on
its non-iterative job. When the by-pass is encountered,
the vector components will be loaded into the CPIM reg-
isters. This transfer of information about the iterative
loop tells the CPIM system how to act towards a certain
situation. Information about the desired loop is provided
to the system by an external teacher, which is a special
program, Taskoptimizer.

The information provided cover the address range that
include starting address, ending address (address of the
operand block) and address of destination where the com-
puted results are to be stored, with job size, job nature
and the number of iterations in the loop. As CPIM is an
application specific block and deals with highly iterative
memory-to-memory tasks, number of iterations can be
used as a job size. Once all the registers have been initial-
ized, CPIM interrupts CPU major by using an external
unit located outside the CPIM namely, Interrupt Man-
agement Unit (IMU), for the transfer of related data from
main to shared memory. Thereafter, application specific
block commences the designated task. During the course
of executing the same program, where the corresponding
CPIM registers are re-initialized due to the work load
or task partitioning technique, by-passed iterative loop
is replaced by the extracted vectors and the remaining
parts of the loop are filled with NOP, to keep the pro-
gram sequence unchanged. However, the system enjoys

the benefits of CPIM with the computational results ob-
tained during learning cycle to enhance its performance
over CPU major by offering highly optimized job process-
ing algorithm as well as its ability to be clocked at higher
speed.

The notable characteristic of CPIM is that whenever the
CPIM registers are filled with new entries or data set
changed, task specific processor (CPU minor) performs
its job. A widely accepted assumption which is echoed
in the above is that an intelligent system has ′′learning′′

and ′′serving′′ phases. Vector loading into the CPIM reg-
isters demonstrate a learning phase, the application spe-
cific block trained for a particular situation. Due to re-
initialization of CPIM registers during the course of exe-
cuting the same program, serving stage, with same data
set shows that the system is unable to use experience and
knowledge gained previously. However, in the presence of
new data set, when a taught situation is detected (itera-
tive loop), it partially (re-initialization of CPIM registers)
behaves like an intelligent system, with a new set of re-
sults. This new set of results or output partially exhibits
the use of experience and knowledge gained previously
for a particular situation.

The CIM uses learn and serve policy, which follows
the closed-loop doctrine alluded earlier. Migration from
CPIM to CIM needs an additional vector, vector instruc-
tion block. The vector instruction block, corresponds to
the start and end address of the bypassed loop. The ma-
jor characteristics that make CIM distinctive from the ex-
isting PIM systems, is its run time learning capability to
gather knowledge for future work. During the first execu-
tion cycle, an additional hardware unit called ′′observer′′

collects information about the desired loop. Eventually
information related to the vectors; characterize iteration.
The information collected cover the address range that
include: starting address, ending address, destination ad-
dress, and address of instruction block that corresponds
to the situation (iterative loop) with the vectors job size
(number of iteration in the loop) and job nature. Once
the task is completed the vectors component loaded into
the application specific block (CPIM) and the related
data transfer from main to shared memory.

The vector instruction block is used to apply bypass. The
bypass effectively removes the set of instruction related
to the situation (iterative loop). Vector loading into the
CIM registers demonstrates a learning phase, the appli-
cation specific block trained for a particular situation.
During the course of executing the same program, serving
stage, due to use of bypass with same data set or in the
presence of new data set system demonstrates the ability
to use experience and knowledge gained previously. Thus,
the proposed system obeys the basic rules developed for
an intelligent system.

3 Architectures Description

The CPIM and CIM architectures are shown in figure 1
and 2 respectively. The main CPU, CPU major, has a
conventional architecture and poses no real design con-
straints on the CPIM architecture and backed up by a
deep cache hierarchy and suffers high latency to access
memory. The enhancement called CPIM, introducing a
new block of memory (shared memory), shared through
arbitration between CPU major and task specific pro-
cessor, CPU minor, that consists of a small computa-
tional unit performing iterative processing and an Iter-
ation Control Unit (ICU). ICU provides an instruction
format for the CPU minor, consists of a set of registers,
namely address register (addr-register), job size register
(jobsize-register), job nature register (jobnature-register)
and destination register (dest-register).

A detailed discussion of the CPIM architecture with dis-
tribution of workload and code optimization technique
can be found in [9][10]. The CIM architecture (figure
2) differs from CPIM in terms of approach; instead of
Von-Neumann (instruction and data are stored in a single
memory) it requires a Harvard approach towards mem-
ory (Separate memory for instruction and data). This
approach may simplify read / write mechanism, partic-
ularly as programs are normally read during execution,
while data might be read or altered. Also establish a
path for the extraction of vector components by monitor-
ing the activity operating on the address and data buses.
The detection of iterative tasks, conducted by an addi-
tional hardware unit called observer having additional
knowledge of the location of specific logic blocks (CPIM)
with reference to their computational capability.

Figure 1: CPIM Architecture

The following jobs are performed by the observer;

• Extraction of vectors that characterize the iteration.

• Transfer of vector components with the related set
of data into specific logic block.

• Removal of selected / corresponding iterative loop
from the main stream.

Figure 2: CIM Architecture

A detailed discussion of the CIM architecture with design
methodology, acceleration and speedup parameter can be
found in [9][10].

Our CPIM and CIM architectures have the following
characteristics:

• The memory capacity is large enough to hold large
data frames synonymous with high resolution image
frames.

• Eliminates the overhead associated with the time it
takes to fetch and execute the instruction in a specific
program loop.

• No need for special instructions as required in the
case of co-processor.

• CPU major (main CPU) can continue with other op-
erations while the CPIM is completing its allocated
task.

The major characteristics that make CIM distinctive
from the existing PIM systems, is its learning capability
to gather intelligence from the current program execution
profile.

4 Implementation Examples

Emerging computer applications in multimedia, specifi-
cally in image processing are heavily reliant on memory-
to-memory iterative process (memory intensive). Data
bandwidth, which is critical for DIP applications due to
the memory-intensive nature of most DIP algorithms, ex-
ploited in intelligent memory architectures. Implementa-
tions of some low-level image processing operations are
described below. Low level image processing is suited
for two reasons. First, the same computational opera-
tion is applied to a number of pixels data. Second, most
low-level image processing operations are computed over
small pixel neighborhoods. Implemented scenarios with
algorithms are described below. These scenarios have
been simulated using Mentor graphics with PS6.2 and
implemented on a SPARTAN II, XC2S300E-6PQ208C
FPGA using the NEXAR 2004 EDS environment.

These implementation shows that the DIP is one of the
areas, where applications require high bandwidth, low
latency access to image data, and most often decomposed
into simple iterative operations/loops. Thus, computing
in memory or intelligent memory architectures best fit
for co-operative processing, executing the functions that
they are optimized for, while leaving functions that are
mostly serial and compute intensive to the main processor
(CPU major).

4.1 Brightness Adjustment

Brightness adjustment is done by adding or subtracting
a value to or from each pixel in order to shift the pixel
intensity by the specified number of grey level. Algorithm
shows the brightness adjustment for a given image.

Algorithm Brightness adjustment

/ ∗ Brightness adjustment ∗ /
for pixel=0 to N−1 pixels
add or subtract a value to or from the pixel;
if pixel is greater than grey-level limit
saturate the pixel;
end for

4.2 Low Pass Filtering

Apart from poor contrast, images may contain random
pixels that have values higher or lower than what they
should be. One way to reduce this type of noise is to
replace the value of each pixel with the weighted average
of its neighborhood pixels [11].

Algorithm Weighted Average Filter (Neighbor-
hood Pixels)

/ ∗ Weighted Average F ilter ∗ /
for pixel=0 to N−1 pixels
find average of 3 × 3 neighborhood pixels;
replace pixel value with this average;
end for

4.3 Edge Detection

The real-time detection of edges in digital images is
widely used in robot navigation, industrial inspection,
and virtual reality. Convolution is often used to provide
an edge filter. In essence, convolution provides gradient
operators in both the horizontal and vertical directions
and the final edge image is formed by marking pixels of
high gradient intensity [12]. The Prewitt and the Sobel
are two of the most commonly used 3 × 3 neighborhood
edge detection operators. These compute both the mag-
nitude and direction of the edge.

Algorithm Prewitt Edge Detection

/ ∗ Prewitt Edge Detection ∗ /
for pixel=0 to N−1 pixels
find the gradient images in the x y direction;
find a common pixel wise norm;
find he output of the norm block using maximum norm;
find the sum of the absolute value;
find the difference with the threshold limit
if pixel value is greater than threshold saturate it to 255;
end for

The Prewitt operator has been used as an example. Af-
ter an image frame is loaded into shared memory, the
CPU major simply instructs the CPIM to perform the
multiplication-accumulation (MAC) for each pixel, figure
3 shows this scheme.

Figure 3: Edge Detection by Prewitt Gradient Masks

4.4 Morphological Processing

Morphology is related to shape, and digital morphology
is a way to describe the shape of a digital object. The
two basic morphological operations are erosion, in which
pixels matching a given pattern are deleted from the im-
age and dilation, in which a small area about a pixel is
set to a given pattern.

Algorithm Erosion of a Digital Image

/ ∗ Binary Erosion ∗ /
Find start and end pixels (is, js) and (ie, je)
for pixel=starting value to end value
Place Structuring element (SE) over the image
if corresponding pixel in image agree
set pixel in result image;
else
do nothing;
end for

Algorithm Dilation of a Digital Image

/ ∗ Binary Dilation ∗ /
Find start and end pixels (is, js) and (ie, je)
for pixel=starting value to end value
Place Structuring element (SE) over the image
if corresponding SE pixel is 1
set pixel in result image;
else
do nothing;
end for

The computation procedure is similar to the
edge detection mentioned above. The difference
is comparison−merge operation instead of the
multiplication−accumulation operation.

5 Conclusion

Both CPIM and CIM architectures have been de-
scribed; using two level hierarchical architectures. CPIM
uses a pre-compilation task optimization methodology
for the workload distribution between CPU major and
CPU minor. In the CIM, the whole process is divided
into learning and serving stages. During learning stage,
CPU major works on both iterative and non-iterative
parts of the task. However, observer monitors the ac-
tivities taking place on the address and data buses. If an
iterative activity is detected, after a qualifying threshold
(Job size), observer records the vectors into the specific
registers. Once the learning stage is completed, Informa-
tion Transfer Control, a sub part of the observer transfers
all the recorded information with the related set of data
involved in the iteration into specific logic blocks placed
in the memory system. During serving stage, When the
CPU major reiterates the same program and encounters
the iterative loops; the CPU major will stop executing
task. The CPU minor does the task that the Major
leaves. Thus, CIM serves the system through the knowl-
edge gained during the learning stage.

Application examples described above, show that the
DIP is one of the areas that seems well-matched to the
computing in memory design. Image processing appli-
cations generally require high bandwidth, low latency
access to image data, and generally decomposed into
simple iterative operations. For this reason, computing
in memory or intelligent memory architectures best fit
for co-operative processing, executing the functions that
they are optimized for, while leaving functions that are
mostly serial and compute intensive to the main processor
(CPU major). Hence, the described architectures have
the potential for scaling up to tackle more demanding
jobs that exhibit frequent and intense program locality
behavior. This, directly enhance the capability of secu-
rity systems that most often use image processing algo-
rithms.

References

[1] D. Patterson, T. Anderson, N. Cardwell, R. Fromm,
K. Keeton, C. Kozyrakis, R. Thomas and K. Yelick.
A Case for Intelligent RAM: IRAM. IEEE Micro,
April 1997.

[2] Y. Kang, J. Torrellas and T. S. Huang, An IRAM
Architecture for Image Analysis and Pattern Recog-
nition. 14th International Conference on Pattern
Recognition, 1998.

[3] M. Oskin et al., Active Pages: A computation model
for intelligent memory, IEEE, 1999.

[4] Y. Kang et al., FlexRAM: Towards an intelligent
memory system, ICCD, Oct 1999.

[5] J. Darper et al., The architecture of DIVA processing
in memory chips, ICS, June 2002.

[6] A. Saulsbury et al., Missing the memory wall: The
case for processor/memory integration, ICSA,May
1996.

[7] D. Burger et al., Memory bandwidth limitations of
future microprocessors,I SCA, Aug 1996.

[8] K. Mai et al., Smart memories: A modular reconfig-
urable architecture, ISCA, June 2000.

[9] Zaki Ahmad Co-operative Intelligent Memory, PHD
thesis, University of Hertfordshire, United Kingdom,
2007.

[10] R.Sotudeh, Z.Ahmad, F.Bensaali Intelligent Co-
operative Processor in Memory Architectures The
Mediterranean Journal of Electronics and Commu-
nication, Vol. 3, 2007, pp 17-30.

[11] R. Boyle and R. Thomas Computer vision: A first
course, Blackwell Scientific Publications, 1988.

[12] R. Dougherty and A. Laplante, Introduction to RE-
ALTime IMAGING, SPIE optical Engineering Press,
1995.

