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Predicting Cache Contention with Setvectors
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Abstract—In this paper, we present a new method
called setvectors to predict cache contention intro-
duced by co-scheduled applications on a multicore
processor system. Additionally, we propose a new
metric to compare cache contention prediction meth-
ods. Applying this metric, we demonstrate that
our setvector method predicts cache contention with
about the same accuracy as the most accurate state-
of-the-art method. However, our method executes
nearly 4000 times as fast.

Keywords:  Setvectors, Coscheduling, Cache con-

tention.

1 Introduction

With multicore processors, chip manufacturers try to sat-
isfy the ever increasing demand for computational power
by parallelization on thread or process basis, making per-
formance of computer systems more and more indepen-
dent from the saturated processor clock speed. However,
one important limitation that does not rely on proces-
sor clock speed, but on the computational power of the
processor, is the ever increasing processor memory gap:
Although both, processor and DRAM performance, grow
exponentially over time, the performance difference be-
tween processor and DRAM grows exponentially, too.
This happens due to the fact that“the exponent for pro-
cessors is substantially larger than that for DRAMs” [7]
and “the difference between diverging exponentials also
grows exponentially” [7].

A way to deal with the exponentially diverging mem-
ory gap is to transform computational performance into
memory hierarchy performance, making memory perfor-
mance not only benefit from improvements of the mem-
ory hierarchy system, but also from better (and in a much
higher rate evolving) processor technology. One possibil-
ity therefore is to spend computational power to find good
application co-schedules that minimize overall cache con-
tention. Reducing DRAM accesses by optimizing cache
performance is a key issue in todays and tomorrows com-
puter architectures.

L2 cache performance has been identified as a most cru-
cial factor regarding overall performance degradation in
multicore processors [2]. Figure 1 shows the effect of L2
cache contention on the SPEC2006 benchmark milc, run-
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Figure 1: L2 cache hitrate degradation for the milc

SPEC2006 benchmark when co-scheduled with different
applications.

nig on core c0 of a dual core processor, when co-scheduled
with applications astar, gcc, bzip2, gobmk and [bm on core
cl. It can easily be seen that the performance of milc
heavily degrades when co-scheduled with the lbm bench-
mark; other co-schedules however, have a much lower per-
formance burden.

A requirement in order to optimize co-schedules for cache
contention is a good metric to predict cache contention of
application co-schedules from specific application charac-
teristics. Although a number of methods have been in-
vestigated that predict L2 cache performance from some
application characteristics for single core processors, so
far only little effort has been spent to predict L2 cache
performance of co-scheduled applications in a multicore
scenario.

In this paper, we propose a new method called setvectors
to predict cache contention in multicore processors. We
compare our method to the activity vectors proposed by
Settle et al. [6] and the circular sequence based prob
model presented by Chandra et al. [1]. We show that
our setvector method predicts optimal co-schedules with
about the same accuracy of the best performing circular
sequence based method, but, on average, executes about
4000 times faster.
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The remainder of this paper is organized as follows:
Section 2 presents state-of-the-art techniques to pre-
dict cache contention; section 3 introduces our setvector
method. In section 4, we propose a new metric called
MRD (mean ranking difference) to compare cache con-
tention prediction techniques and discuss the parameters
applied to our simulation. In section 5, we present our
results. Section 6 concludes this paper.

2 State-of-the-art Cache
Prediction Techniques

Contention

In this section, we describe state-of-the-art techniques
to predict cache contention in multiprocessor systems,
namly Alex Settle et al.’s activity vectors [6] and Dhruba
Chandra et al.’s stack distance based FOA (frequency
of access) and SDC' (stack distance competition) model
[1] and their circular sequence based Prob (probability)
model [1].

2.1 Settle et al.’s Activity Vectors

Alex Settle et al. studied processor cache activity and ob-
served that “program behavior changes not only tempo-
rally, but also spatially with some regions hosting the ma-
jority of the overall cache activity.” [6] To exploit spatial
behavior of cache activity to estimate cache contention,
they divide the cache address space into groups of 32 so-
called super-sets and count the number of accesses to each
such super set. If, in a given time interval, the accesses to
a super set exceed a predefined threshold, a correspond-
ing bit in the so-called activity vector is set to mark that
super set as active.

To predict the optimal co-schedule B, C or D for a thread
A, every bit in the activity vector of A is logically AND-
ed with the corresponding bit in each B, C' and D. The
bits resulting from that operation are summed up for each
thread combination A « B, A < C and A — D. As a
co-schedule for A, that thread in {B, C, D} is chosen that
yields the least resulting sum. [6]

2.2 Chandra et al.’s Stack Distance Based
FOA and SDC Methods

In [1], Dhruba Chandra et al. propose to use stack dis-
tances to predict cache contention of co-scheduled tasks.
Stack distances have originally been introduced by Matt-
son et al. [5] in 1970 to assist in the design of efficient
storage hierarchies in virtual memory systems. In [3],
Mark D. Hill and Allan J. Smith showed that they can
also be easily applied to evaluate cache memory systems.

The method assumes a cache with LRU (least recently
used) replacement policy and works as follows: Given a
cache with associativity «, the number of o + 1 counters
C1,...Cq41 have to be provided for each cache set to
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track the reuse behavior of cache lines. If, on a cache
access, the cache line resides on position p of the LRU
stack, counter C, of the corresponding cache set is in-
creased by one. If the cache access results in a miss, i.e.
if the cache line has no corresponding entry on the LRU
stack (and therefore the cache line does not reside in the
cache), then counter C,41 is increased. This procedure
leads to a so-called stack distance profile, as it is depicted
in figure 2. The stack distance profile characterizes the
positions of cache lines on the LRU stack when accessing
cache data.
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Figure 2: Stack distance histogram.

Given a stack distance profile, the total number of ac-
cesses to a specific cache set can simply be determined
by summing up all C; according to

a+1

accesses = Z C; (1)

i=1
and the cache miss rate can be calculated by

O()c+1

a+1 . (2)
Zi:l Ci
For a smaller cache with lower associativity o/, the miss
rate can be computed as

Prniss =

Cot1 + qu:a/ C;
Z?:ﬁl Ci
Chandra et al. exploit this equation to predict the cache
miss rate under cache sharing. They estimate the effec-

tive associativity o/ of a task when sharing the cache with
another task according to

o — effCacheSize,, (1)

numCacheSets’

Pmiss(a/) — (3)

where numCacheSets denotes the number of sets the
cache is composed of and effCacheSize, the effective
cache size that is available for thread x.

Within their FOA model, they calculate the effective
cache size according to
>t Ci

N +1
Zy:l Z?:l Ciyy

effCacheSize, = - CacheSize.  (5)
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Within their SDC model, they create a new stack dis-
tance profile by merging individual stack distance profiles
to one profile and determine the effective cache space for
each thread “proportionally to the number of stack dis-
tance counters that are included in the merged profile.” [1]

The shaded region in figure 2 shows how the effective
cache size is reduced by cache sharing.

While the FOA and the SDC model both are heuristic
models, Chandra et al. also developed an inductive prob-
ability model that is based on circular sequences rather
than on stack distances.

2.3 Chandra et al.’s
Based Prob Method

Circular Sequence

Circular sequences are an extension to stack distances in
that they do not only take into account the number of
accesses to the different positions on the LRU stack, but
also the number of cache accesses between accesses to
equal positions on the LRU stack.

Therefore, Chandra et al. define a sequence seq,(d;,n,)
as “a series of n, cache accesses to d, distinct line ad-
dresses by thread x, where all the accesses map to the
same cache set” [1] and a circular sequence cseq(dy,ny)
as a sequence seqy(d,,n,) “where the first and the last
accesses are to the same line and there are no other ac-
cesses to that address” [1]. Circular sequences can be
regarded as stack distances that have each counter C' aug-
mented with an additional vector n to hold a histogram
of accesses for each distance. Figure 3 illustrates the rela-
tionship between sequences and circular sequences when
accessing cache lines A, B, C' and D.

seq(4,7)
cseq(3,5)

ABCADDZC
cseq(3,4)

cseq(1,2)

Figure 3: Relationship between sequences and circular
sequences. A, B, C' and D depict different cache lines.

For their circular sequence based Prob model, Chandra
et al. compute the number of cache misses for a thread
x when sharing the cache with an additional thread y
by adding to the stand-alone cache misses C, 41 the val-
ues of the other counters C ... C,, each multiplied with
the probability that the corresponding circular sequences
cseq(dy, M) will become a miss, where 7, corresponds to
the estimated mean n for a specific d:

missx = Ua+1 + Z Pmiss(cseqx(dzvﬁr)) X Cdz (6)
dy=1
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Chandra et al. calculate the probability that the circular
sequence cseq(d,, ;) will become a miss by summing up
the probabilities that there are sequences seq, (dy, E(ny))
in thread y with o — d, +1 < d, < E(n,), where E(n,)
represents the expected value of n in the thread y:

>

dy=a—d;+1

P(seqy(dy, E(ny)))

(7)
E(n,) is estimated by scaling 7, proportionally to the
ratio of accesses of y and x:

Z?:f G .
S G,

The probability of sequences P(seqy(d,, E(ny))), in short
P(seq(d,n)), is calculated recursively according to

Pmiss (CseQx (dm7n791)) =

E(ny) = 3 (8)

P(seq(d,n)) =
1 ifn=d=1

P((d—1)") x P(seq(d —1,d — 1)) ifn=d>1
P(17) x P(seq(1,n — 1)) ifn>d=1
P(d™) x P(seq(d,n — 1))+

P((d—1") x P(seq(d —1,n—1) ifn>d>1

where P(d™) = Y% | P(eseq(i,+)) and P(dt) = 1 —
P(d™) (cgf. [1]) and the asterisk () in cseq(i, *) denotes
all possible values.

3 Setvector Based Cache Contention

Prediction

In this section, we describe our setvector method. First,
we present the algorithm to obtain setvectors. Second,
we show how setvectors can be used to predict cache con-
tention.

3.1 Generating Setvectors

Setvectors are composed of cache set access frequencies
a and the number of different cache lines d referenced
within a specific amount of time, typically about an op-
erating system’s timeslice. Within this paper, we collect
one setvector for every interval at 220 instructions. Ac-
cording to our proposal in [9] where we presented setvec-
tors to predict L2 cache performance of stand-alone ap-
plications, we assume an L2 cache with 32 bit address
length that uses b bits to code the byte offset, s bits to
code the selection of the cache set and k = 32 — s — b
bits to code the key that has to be compared to the tags
stored in the tag RAM. The setvectors are gathered as
follows:

For every interval i of 22 instructions do:
e First, set the 1 x 2° sized vectors a and d to 0.

e Second, for every memory reference in the current
interval, do:
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— Extract the set number from the address, e.g.
by shifting the address k bits to the left and
then unsigned-shifting the result k& + b bits to
the right.

— Extract the key from the address, e.g. by un-
signed shifting the address s+b bits to the right.

— Increase afset number].

— In the list of the given set, determine whether
the given key is already present.

— If the key is already present, do nothing and
proceed with the next address.

— If the key is not in the list yet, add the key and
increase d[set number].

We end up with two 1 x 2% dimensional vectors a and
d. At index j, a holds the number of references to
set 7 and d holds the number of memory references
that map to set j, but provide a different key.

e In a third step, subtract the cache associativity «
from each element in d and store the result in d’. If
the result gets negative, store 0 instead.

e In a forth step, multiply each element of a with the
corresponding element in d’ and store the result in
the 1 x 2° dimensional setvector s;.

e Finally, add s; as the ith column of matrix S that
holds in each column 7 the setvector for interval 1.

Process next interval.

3.2 Predicting Cache Contention with

Setvectors

The compatibility of two threads for a time interval ¢ can
easily be predicted by just extracting s;, from S, and s;,
from Sy and calculating the dot product s;, -s;, of the
setvectors in order to obtain a single value. A low valued
dotproduct implies a good match of the applications, a
high dotproduct value suggests a bad match, i.e. a high
level of cache interference resulting in many cache misses.

The dotproducts do not have any specific meaning like
number of additional cache misses, as it is the case with
Chandra’s circular sequence based method. However,
comparing the dotproducts of several thread combina-
tions in relation to each other has been proven to be
an effective way to predict which threads make a better
match and which threads do not.

4 Evaluating Cache Contention Predic-
tion Techniques — Simulation Setup

In order to prove the effectiveness of the setvector method
with its relative comparison of dotproducts, we com-
pared it to Settle’s activity vector method and to Chan-
dra’s circular sequence based method. We refrained from
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additionally comparing the setvector method to Chan-
dra’s stack distance based method, as Chandra already
reported that the circular sequence based method out-
performed the stack distance based methods — and our
setvector method showed nearly the same accuracy as
the circular sequence based method.

To compare and evaluate the cache contention prediction
techniques, we generated tracefiles with memory accesses
representing 512 million instructions for each of the ten
SPEC2006 benchmark programs astar, bzip2, gcc, gobmk,
h26/ref, hmmer, lbm, mcf, milc and povray applying the
Pin toolkit [4]. Of these ten programs, we executed ev-
ery 45 pairwise combinations on our MCCCSim multicore
cache contention simulator [8] that had been parameter-
ized as follows:

Parameter | private L1 cache | shared L2 cache
Size 32 k 2 MB
Line size 128 Byte 128 Byte
Associativity 2 8
Hit time 1.0 ns 10.0 ns
Miss time depends on L2 100.0 ns
Replacement LRU LRU

For each program of each combination, we calculated
the difference between the stand-alone memory access
time and the memory access time when executed in co-
schedule with the other application. From this difference,
we calculated the additional penalty in picoseconds per
instruction, that is shown for every combination in table
3a). Additionally, we sorted the results according to 1st)
this penalty and 2nd) the application’s name.

Then, we calculated the predictions for the activity vector
method, Chandra’s circular sequence based method and
our setvector method and sorted them accordingly, as can
be seen from table 3b) - 3d).

To evaluate the prediction methods, we introduce a
method we call mean ranking difference (MRD): We com-
pare the rows of table 3a) that represent values gath-
ered from MCCCSim with those of the predictions, ex-
emplarily shown in table 3b) - 3d). Figure 4 shows that
we calculate the absolute difference between the position
(ranking) determined by MCCCSim and the position de-
termined by the prediction for each combination. The
results are summed up and divided by the total num-
ber of co-scheduled applications (9) to yield the average
mean ranking distance (MRD), i.e. the mean number of
positions, a co-schedule’s prediction differs from the real
values obtained from MCCCSim.

We evaluated several variations of all three methods.

With Chandra et al.’s method, we were interested in com-
paring the predictions for the following variations:
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Ranking: 3 4 ‘ 5 ’ 6 7 8
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time penalty: 2.7 23.0 38.9 65.3 95.2 101.6 137
/7~ N\, /j\

Prediction with astar bzjp2 nflc gce gobmk ([ hmmerY/ h264ref| Ibm mcf povray

activity vectors: 202 2p2 300 623 652 662 808 1054 1071
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\\{

+ ..

9

= 3.56 mean ranking difference for astar

Figure 4: Determination of the mean ranking difference (MRD) for astar.

e Chandra cseq chunkset: Prediction while applying
only one circular sequence stack to a chunkset (i.e.
interval of 22° instructions).

e Chandra cseq Af(set): Prediction while applying a
circular sequence stack to every cache set within an
interval and measuring the memory access frequency
on a per cache set basis.

e Chandra cseq Af(chunkset): Prediction while ap-
plying a circular sequence stack to every cache set
within an interval without partitioning the memory
access frequency on the cache sets, i.e. providing
only one memory access frequency value per inter-
val.

Settle et al. stated that “the low order bits of the cache
set component of a memory address are used to index the
activity counter associated with each cache super set.”
[6] However, we expected that the method would achieve
better results when using the high order bits to index the
activity counters since addresses with equal high order
bits are mapped to equal cache sets. Therefore, we eval-
uated the activity vector method for these two variants
naming them high respectively low (cf. table 1).

With the setvector method, we were interested in analyz-
ing the following variations (cf. table 1):

o diff. x access: The setvector method as it had been
presented in chapter 3.

e access: Utilizing only the access frequency. This
way, the performance of the activity vector method
can be estimated for the case that the number of su-
persets reaches its maximum (i.e. the over all num-
ber of sets) and the activity expresses the number
of accesses to a set and not just the one-bit infor-
mation, whether or not a specific threshold has been
reached.

e diff: Utilizing only the number of different cache
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lines that are mapped to the same cache set, i.e
ignoring any access frequency.

e add, mul: Combining the vectors of two threads by
applying either elementwise addition or multiplica-
tion and calculating the average of the elements af-
terwards, rather than by applying the dot product.

5 Results

Table 1 shows the accuracy of the evaluated methods and
variations, table 2 shows the execution time of the meth-
ods, subdivided into time that has to be spend offiine
(row cseq profiling and vector creation), and the time that
has to be spend online (row prediction) when calculating
the prediction for a specific combination. Table 1 shows
that Chandra’s circular sequence based method that uti-
lizes the access frequency on a per set basis performs with
the highest accuracy (M RD = 0.58). However, 676.83
picoseconds have to be spent per instruction (ps/instr.)
on average to calculate the predictions, i.e. prediction
takes about 6768 times longer than for the activity vec-
tor method (0.10 ps/instr.) and about 3981 times longer
as for the setvector method.

Although the activity vector method performs quite fast,
it shows a high error rate (M RD = 3.07 and MRD =
2.38 respectively). However, selecting the higher part of
the set bits had been a good idea. Increasing the number
of super sets to the number of sets and applying natu-
ral numbers to count the number of accesses to each set
instead of using only a single bit per set significantly im-
proves accuracy (M RD = 0.64, as seen from Setvector —
access, add), but also increases prediction time (0.16).

The setvector method that utilizes both access frequency
and number of accesses from different keys shows about
the same prediction time (0.17 ps/instr.), but a slightly
better accuracy (M RD = 0.60), that nearly matches that
of the about 3981 times slower circular sequence based
method.
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Chandra cseq | Chandra cseq | Chandra cseq | Activityvector | Activityvector

chunkset Af(set) Af(ChuIlkSBt) low hlgh

astar 1.56 0.89 0.89 3.56 2.00
bzip2 0.89 0.44 0.89 2.67 1.33
gce 0.89 0.67 0.89 3.11 2.00
gobmk 0.67 0.67 0.44 3.11 3.33
h264ref 0.67 0.67 0.89 2.67 2.44
hmmer 0.89 0.67 1.11 2.89 2.44
Ibm 1.11 0.67 1.33 4.00 2.22
mef 0.44 0.22 1.33 3.11 2.22
milc 0.67 0.00 0.44 2.89 3.11
povray 2.00 0.89 0.89 2.67 2.67

[ average | 0.98 0.58 0.91 3.07 \ 2.38 |
Setvector Setvector Setvector Setvector Setvector
diff. x access access, add access, mul diff., add diff., mul
astar 0.67 0.67 0.44 0.89 0.89
bzip2 0.67 0.67 0.22 0.44 0.89
gce 0.89 0.89 0.67 0.67 0.67
gobmk 1.11 1.33 1.56 0.89 0.67
h264ref 0.44 0.44 0.44 1.11 1.11
hmmer 0.22 0.22 0.67 0.89 0.89
Ibm 1.33 1.33 1.56 0.89 0.44
mef 0.00 0.00 0.89 0.22 0.22
milc 0.22 0.44 0.89 0.22 0.44
povray 0.44 0.44 0.22 1.11 1.11
[ average | 0.60 \ 0.64 \ 0.76 \ 0.73 \ 0.73 |

Table 1: Mean ranking difference (MRD) for each benchmark and method.

6 Conclusion

In this paper, we presented state-of-the art methods to
predict cache contention and proposed a new predic-
tion method based on the calculation of so-called setvec-
tors. We simulated the additional memory access time
introduced by cache contention during application co-
scheduling and compared those values to the prediction
methods by applying a new metric called MRD (mean
ranking distance) that calculates the mean difference be-
tween the predicted and the simulated ranking.

Our results showed that the method introduced by Chan-
dra et al. [1] might be the most accurate one, but it
is nearly 4000 times slower than the proposed setvec-

tor method, that achieves nearly the same accuracy
(MRD = 0.60 instead of M RD = 0.58).
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Table 2: Comparison of the execution times of the prediction methods.

IMECS 2010

978-988-17012-8-2
2078-0958 (Print)

ISBN
ISSN

2078-0966 (Online)

ISSN:

>



Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I,

IMECS 2010, March 17 - 19, 2010, Hong Kong

Pradire 90vet L1201 €689 yove L6LT jiag 6LE 91¢ Seinod 8LVC L1ve 89LT 0991 991 941 et 9LTT 1L0T Setaod
wq| yuqo8  gdizq Jowr oqu 208 oW Iese  JPIF9ZY ) P9 uqod Jour 008 [ oI umry - gdizq Ie)Se o
9€E66TT owmvmom ¢69600T  €6£0€S  9L9.c€ mmmmﬁm 1960€T  T9Ve6 199€8 op G941 €8¢1 0L21 L60T 9€6 168 098 £ve (444 op
wq urqos Jout zdizq 003 Ie)se Towy  Arviaod  JOIp9zq Aernod  ywqo8  pIp9zy  gdizq Jowr wq| 003 Jotuuuy] Iejse :
GI6S8LIT  6LI899  PEGRIS  L96C0E  TE88IT  CET66 LYY S1V8¢ 009v¢ S 89LT 09¢1 AN 6,01 7601 9€6 9 119 96€ e
wq yuqo3 ofrur zdizq 003 Iejse Towwy  Arviaod  JPIFYZY ! Aernod  ywqo3 wq[ 192U Iejse o[ cdizq  ouwrmuy 003 3
LTeee OVLLT V€6 Lve €l 4 14 0 0 991 €641 9€41 60ST 8VIIT €L6 168 808 G669
Nuwqo3 Jowt ofrur zdizq 008 Iejse Aernod oWy - JPIFYZY wa Aernod  PIpYZY oWy - YW(oS Jowt 008 o[ Iejse cdizq Al
¥¢se c0ST €00T €€g 687 Vs 49 0€ Lg . 9€4T 88VL 1829} GLTT ¢%9 119 aLG 19¢ £ve
wq[ yuqos  gdizq Jou o Iejse Aranod 003 JOIF9ZY o wq| o179z Aeanod  ywqoS Iejse Jour 003 cdizq o[ o
70061 LSVVT VL8L ve8¢e 117¢ PARY 8€C ¢0¢ 61 8LVT 708T €691 88V1 0LeT 0LTT 6L0T 926 99
wq[ yuqos Jou zdizq o[t Iejse 008 Aeirod  TowIIIY owoet Aeanod  yyuqod wq[ Joururyy o[ 008 Jour cdizq Iejse oot
T188¢ 0GLLT L9566 vyl ¥r9€ €01€ LG6T 166 868 L1V¢ V08T 60ST €8¢€1 09€T 8€CT GLTT 8.8 €29
wq| Jow o[ zdizq Iejse 208 Towwy - Avisod  JPIF9ZY quqos Lerrod  JOIR9ZY wq| Pl Jow 208 Towrtny - gdizq Iejse uqos
66¢c9e  8IV0EC  ¥6860C  900S€T  LPL60T  0S66€ eIV 4t 8ILE 98 0991 8€CT 0LTT €L6 098 889 cLS 96¢ 00€ 993
wq| yuqo3 Jow o cdizq Iejse Aeirod  TowwIy - JOIF9gY Lerrod  ywqo8  JoIp9zy wq| o[t gdizq oy Jowr Iejse
0SE6T8  G0ELPS  90L8LV  VIvECE  CSPELT  9V199 [dligrd ¥89¢¢ 1¢0LT zduz 9LTT L60T 9¢6 8.8 G69 779 88¢ 194 a0g iz
wqp yuqo3 Jow oI 208 Iejse  Aeisod oW JOIFYZY #q Aeinod o[ JOIp9zy  YwqoS wqp Jow 208 Iowuy  Iejse e
0619¢1T  86ScCl  8VEEL VLY 6901V 60€CE 6057 £€9¢e 879¢ Tejse 1201 ¥S0T 808 299 ¢%9 €29 00€ [4%4 a0g Teyse
wq| yuwqos o[ zdizq Jow 208 owwy  JeIp9zgy  Avisod Aeasod Jou wq| PIpYZY  Iewmuy  YwqoS 203 o[ cdizq
108 ayord 1od uorjRMO[Rd — potjeut boaso o) Aq pojorperd sesstur [RUOIIPPY o1 15 §10s Todns ge — S10309AK)IAIJOR [[JIM TOIPIIPAI] e
J[se) PUg POMpatos-0d ST AST y[sR) PUg POINPOTDS-00 e ST
(p @
reee8T  0807Lc  0160€T  LE106 L5326 V61 €4 8 0 Seinod 9'L¢C G'er 0Tt 0ot €8 [ [t €0 0 Seiaod
wq| o8 Jour oIt cdizq Ie)Se 208 PIFYZY  ToTIUIY ) [ uqod opru Jowr ¢dizq 008 Iejse  JoIpQgy towmy ||
6c0798¢  61L60L 069919  €61€CE  98E€SE8T  L8LEIT  C66CIT  LET106 8168 . L0L¢ 00 V'L8€ 10Le gIat €'8V1 [ €'9¢ e
wq Jowr Nwqos zdizq 003 Iejse Towwy  Aeviaod  JOIF9ZY o [ ywqos Jow cdizq 003 Iejse Towrtny  Aeraod  JPIFYZY o
GL9ETLE  61L60L  66C6VS  88T8GC  L916Cc  0866LT  GeveSl 016061 GPE9Tl St 0768 8V61 07091 9'86 8'8¢ 8°LT 991 €T e
wq[ ofrur Nwqos zdizq 003 Iejse Towwy  Arviaod  JPIF9ZY ! wqp o[rux Nuqos cdizq 003 Towrtny — Aeraod  JPIFYZY 3
600798¢  GLIETLT 9LT69€C 96€LCCC €STRI0C LO996ST SOVGLST 96C6EST TPEEElT o 10 00 00 00 00 00 00 00 w
o[ Jowr Nwqos zdizq 0038 Iejse owwy  Jop9gy  Avisod Al ywqos ofrux cdizq Jowr Iejse Aersod oWy - JOIFYZY ql
GOV6LST wm@mcm qorest Nmmm: ¥9L0T Sove ¢L9 0 0 oty 08y 0°1¢ 0€1 170t 61 €0 1o 00 oty
wq[ yuqos Jour orut cdizq 208 Iejse Aeanod  JoIp9zy wq| yurqos Jour o cdizq Iejse 003 Aeinod  JoIp97Y
9606€E8T  L8CI8G  GPE9CT 8168 756 008 €60 8 0 ¥'0¢ 061 L0T1 G0t 0v Ve [t 90 00
wq[ Jwqos Jou orut cdizq Iejse 008 Aearod  TowITIIY owoet wq| o3 oru Jow cdizq 008 Iejse Aeirod  Towrmy oozt
9L169€c  069GL9  66C6VS  19999€ 84606 ¥0S9C0€  TL666C  L8STI8C  080V.LT waos 0'1¢ et LTT 'L 9V 0€ it T 80 3
wq| o[ Jou gdizq  Jowuy 208 eyse  JoIpogy  Aeviaod T wq| Jou O[T cdizq 208 Iejse Aersod  JoIpgzy  IowMIy o
€47890¢  70Sc0E n.oﬂmmm 98€S8T  T6CEV 9,96 Sove €6¢ £ 938 G961 8'8¢1 9611 6°€TT 188 1'8¢ LG [ €C 998
wq| yuqo3 Jou oTu cdizq Iejse  Iowway  Joapggy  Aviaod wq| o[ Juqos Jow cdizq Iejse Leirod  JoIpgzy  Iowmuuy
96€L00C  19999¢  €616CE  88¢86C  T6TEV Y0102 ¥9L0T 756 L3c6 zduz €11E €°€61 7691 Va1 a8 &'LE [ [ @6 iz
wqp yuqo3 ot Jowt 208 Iejse  Towway JoIp9gy  Aeisod 7q wqp ot Juqos o 208 Iejse  Aeisod oWy JOIF9ZY e
L09968T  T1L666¢  0866LT  L8.29T  ¥0T0T 9,96 008 ¢L9 V61 Tegse LVET 9101 G986 €99 6°€€ 0°€c Lg ¥'e €C Teyse
wqp yurqo3 Jour oI cdizq 208 PIp9gy  Jowrmy  Aviaod ’ wqp ot Juqos o cdizq 203 JPIp9gy  Aersod  Iouwnmuy
Ayurenuetd 4os oypRd — $S900R X JJIP ‘POYIOW 10900A0S ) )M UOIIIIPAIJ T wISHODIN Aq pajenuuis se yse) 4s] 10j wonponasut wd spuodesootd ur Ajpeus g I
[SB} PUZ PO[NPAYDS-09 B AST 3[SB} PUg PO[NPAYDS-09 ST
(4

Co-scheduling penalty and its prediction.
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