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Abstract: This research develops a polynomial time algorithm 
for Hamilton Cycle(Path) and proves its correctness. A program 
is developed according to this algorithm and it works very well. 
This paper declares the research process, algorithm as well as its 
proof, and the experiment data. Even only the experiment data 
is a breakthrough. 
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Ⅰ INTRODUCTION 
 
   Finding Hamilton cycles(paths) in simple graphs is a 
classical NP Complete problem, known to be difficult both 
theoretically and computationally (see [5],[6],[7]). In spite of 
recent advances, the problem presents an imminent scientific 
challenge. 
 Over the past decades, Hamilton cycles and paths have 
been widely studied. One direction is for their existence 
conditions. Most existence conditions for general graphs 
depend on degree sums. Using these techniques, a graph is 
usually provably Hamiltonian only there are sufficiently 
many edges in the graph. Yet such results are often possible 
make sense that counterexamples exist when the conditions 
are weakened. Another direction is to design a random 
algorithm which usually succeeds in finding Hamilton cycles 
or paths with high probability, or works well for some classes 
of graphs. 
 Yet no general polynomial time algorithms have been 
developed for Hamilton cycles or paths. People even dare not 
to try to do so, only because the problem is NP Complete and 
its polynomial time algorithm means NP=P.  

So, the challenging job still is: to develop a polynomial 
time algorithm for all general graphs, i.e., no part of graphs 
have specialties on this algorithm so as to make the algorithm 
cannot work on them, and to prove the algorithm is correct 
theoretically. 
 The main problem is: why many random algorithms 
work well on most graphs, only cannot work on a little part of 
graphs. Why we cannot overcome the little part?  
 
 
 
 
Manuscript received January 12, 2010. 
Author Lizhi Du is with the College of Computer Science and Technology,  
Wuhan University of Science and Technology  P.R. of China 
Tel: 86 13554171855  Email: dlz95@sohu.com 

My point of view is: the little part does not have any strong 
logical reason to be special. 
 I develop a polynomial time algorithm for finding 
Hamilton cycle(path) in undirected graphs. This algorithm 
works very smooth for all kinds of undirected graphs, i.e., for 
graphs with the same vertex size, except a little cases which 
very quick, their run time are very close to one another. So 
using my algorithm, there is no graph to cost much more time 
than others, i.e., there is no “dead angle” for my algorithm. 
My algorithm looks like a random algorithm. Yes, it is a 
random algorithm. But if I can exhaustively compute all 
undirected graphs using my algorithm in all possible steps, of 
course, the random algorithm becomes a general algorithm. I 
find a way to compute “all” graphs by only computing a 
limited number of graphs. This is my big breakthrough. I cost 
many years time to find it. A program on this algorithm has 
been tested over a hundred million times for graphs whose 
vertex number is between 100 to 10000, no fails. 
 
Ⅱ  STUDY PROCESS AND METHODS 
 
A.  Why the NP problem is so difficult? 

Since the NP problem comes to the world, numerous 
scholars have been studying it. However, up to now, people 
can't still confirm: is the NP equal to the P or not? Where is 
the reason? 

In computer science, divide and conquer is an important 
algorithm design paradigm based on multi-branched 
recursion. A divide and conquer algorithm works by 
recursively breaking down a problem into two or more 
sub-problems of the same (or related) type, until these 
become simple enough to be solved directly. The solutions to 
the sub-problems are then combined to give a solution to the 
original problem. After divided a big part into small parts and 
studied each small part, we should combine all the small parts 
together to study, because these small parts have connections 
to each other, in order to get a final result, all these 
connections must be considered thoroughly. The 
NP-complete’s difficulty lies that: its parts’ connections are 
very intensive and complicated. If an algorithm(polynomial 
time) fully considers these connections, still can not get the 
end result, it of course means that NPC can not be solved in 
polynomial time. The question is:  by now, no any 
algorithm(polynomial time) can fully handles the intensive 
and complicated connections among all parts of a NPC. For 
example: using a tree to stand up an algorithm for a NPC. In 



layer 0, it resolves to N parts, in layer 1, it resolves to N-1 
parts, and so on. Thus, its time complicacy is N!. However, 
because all nodes in this tree have many relations to each 
other, a node can be got from its father, it may also be got 
from its brothers or grandfather. So, many nodes repeat the 
others’ information. If we can do our best to delete the 
redundant nodes, the time complexity  would be much less 
than N!.  
 
B. Study process 

To try to overcome the NP problem, one has two ways: 
or thinks that the NP is unequal to the P, then give the united 
proof theoretically or prove some NP problem time 
complexity’s low bounds is higher than polynomial time; or 
thinks the NP is equal to the P, then proves any NPC has a 
polynomial time algorithm. The current academic circles 
incline to think that the NP is unequal to the P(see[2]). One of 
their reasons is: the computation process should be different 
from the test process in time cost. However, the polynomial 
includes very wide scope, one power of N is a polynomial, 
10,000 powers of N is also a polynomial. Therefore there is 
reason to think such possibility: low polynomial time for 
“test”, high polynomial time for “compute”. I strongly belive 
that NP is equal to P. Why?  What is my logic? First, by 
now, a lot of NPC have been discovered, and the number may 
increase continuely. If any one of them has polynomial time 
algorithm, it means all the NP problems have polynomial 
time algorithm. This fact itself strongly implies that: the 
complexity of NP problems is not very uneven, but is 
uniform. They may have some uniform rules(of course each 
one has its specialty). These uniform rules are meaningful 
only in polynomial, especially when considering that many 
NP problems in most cases can be solved quickly. Secondly, 
let’s take an example: Hamilton path. If a undirected graph 
has only N nodes and N-1 lines, sure, we can quickly get the 
path. Along with the increment of its lines, the complicacy 
increases. But the line number is limited, less than N times N 
in total. And the line number increases, the possibility to get 
more paths also increases. If I can discover the intricate 
relations between these two factors, I may get a path within 
polynomial time.  
   After determining the research direction, next step is to 
choose an available NPC as the research object. A good 
choice can make my job much easier than other choices. By a 
lot of comparing, contrasting and analysing, I choose the 
Hamilton path(cycle) as my study object. Reasons:(1) 
Hamilton path is a strong NPC(see [3]). Usually a strong 
NPC is harder than un-strong one, but as it is strong, I can try 
to get a polynomial time algorithm for it in any way,the result 
is always valid;(2) I use “divide” and “conquer” method to do 
it. After dividing,the mutual relative imformations among all 
parts is easier to discover for Hamilton path than for other 
NPC, because Hamilton path can “naturally” show its relative 
information by showing that whether two vertices are 
connected. Thus we donot need to cost much time to get this 
information. Especially, by comparing different combinations 
and their different results, a lot of relative information can be 
got easily. 
 
 

C. Principle and Method 
   This algorithm uses the principle of “divide” and 
“conquer”, does its best to utterly make use of the relative 
informations among all parts. First, using the idea from the 
Greedy Algorithm, for each step, the algorithm try to get the 
final result as quickly as possible. In order to limit its time to 
polynomial, the algorithm draws references from the 
State-Space Method. The state-space contains at least one 
final result(if exist). For each element in the state-space, the 
calculation time is polynomial and all elements number is 
polynomial, so the algorithm is polynomial. In order to limit 
the number of elements in the state-space to polynomial, the 
algorithm draws references from the Genetic Algorithm. In 
each step, optimize the elements in the state-space, only 
keeps and calculates the optimized elements. The biggest 
speciality of this algorithm is: dynamically to combine some 
parts, dynamically to transform them, by comparing different 
combinations’ results, to deduce the relative informations in 
as less as possible time, so as to make all the algorithm 
polynomial. 

   My algorithm’s key technologies are: 1)It is based on 
a lot of generalizations, but its correctness and polynomial 
complexity have been proved.2)In its calculating process, it 
dynamically decides its calculating direction according to 
new produced messages. Dynamic adjustment is my 
algorithm’s big specialty. 3)My algorithm has found a method 
to transform “infinite” to “finite”. This is a very new method 
which does not appear before. I deduce this method may be a 
common way to solve all NPC. 
 
D. Algorithm 

(1) Assume the graph has at least one Hamilton cycle. I 
first get a cycle which includes all n vertices in any way. In 
this cycle, some two neighbor vertices may not be adjacent, I 
call this point “break point”. For each break point, I add an 
edge between the two neighbor vertices except for one, i.e. 
only one break point to be left(remember the added edges, 
later, each time delete one, then do the algorithm from a 
NEW start). I call the one break point being left “main break 
point”. Now my algorithm only needs to handle this one 
break point. Each time handles one break point, at most n 
times(because the number of the added edges at most n). So it 
does not affect the polynomial. 

(2) At each step, cut a segment from the main break 
point, insert the segment in some place of the cycle. How to 
cut and insert? The rule is: make the number of new break 
points the least, and one new break point must be different 
from all former main break points(this new one as the new 
main break point ,I use a symmetric matrix to record all main 
break points, this guarantees my algorithm’s polynomial). 
Notes: when calculating the number of new break points for 
getting the least, if more than one case have the same least 
number, compare their next step(only one time “next step”, 
do not need to continue to do so);also, avoid inserting the 
same segment in different places consecutively. Then with the 



new main break point, do the same job until getting a 
Hamilton Cycle. If one step does not get a new break point 
and there are some break points at other place, get one of 
them as the new main break point and continue. 

 
Example 1: 

dhijklabcmpefqr*u   vertex r and u are not adjacent, as the 
main break point. 
Other edges: d-q, h-c, i-l, j-u, a-p,m-f,e-r. 
S 
tep 1: dhijklabcmperqf*u  the pair f*u is different from 
r*u,cut the segment 
rq, insert it between e f.  Case 1—one new break point. 
Step 2:dhijklabcmfqrep*u 
Step 3:dhijklaperqfmcb*u 
Step 4:dhi*bcmfqrepalkju 
Step 5:dhilaperqfmcb*kju 
Step 6:dhilabcmfqrep*kju 
Step 7:dhi*perqfmcbalkju 
Step 8:dhi*fqrepmcbalkju 
Step 9:dhi*rqfepmcbalkju 
Step 10:dhilabcmpefqr*kju 
Step 11:dhilabcmperqf*kju 
Step 12:dhilabc*fmperq*kju  Case 2—two new break points, 
you cannot get less. Choice q*k as the new main break point, 
another break point can be the same as formers. 
Step 13:dhilabc*fqrepm*kju   m*k as the new main break 
point, cannot choice c*f at current step 
Step 14:dhi*mperqf*cbalkju 
Step 15:dhi*qrepmf*cbalkju 
Step 16:dqrepmf*cba*hilkju    the main cycle has 3 parts 
Step 17:dqrepmf*abchilkju    the main cycle has 2 parts 
Step 18:dqrefmpabchilkju    Case 3—no new break point, 
only one part 
 
E. Proof Sketch: 
   My main proof idea is: using limited number of graphs, 
each graph only has 12 vertices(also 11,10), to constitute 
unlimited number of all kinds of graphs. Then I only need to 
prove all cases of graphs with 12 vertices(also 11,10) to fit 
my algorithm(need to combine and to separate) by calculating 
all. 

 
  

Ⅲ  EXPERIMENT DATA 
 

Though I have theoretically proved this algorithm. Here 
I give the experiment data. 

A program on this algorithm has been designed in VC++. 
Not losing generality, for a undirected graph with N nodes, 
node number is 0,1,2…N-1, the algorithm calculates 
Hamilton path from node 0 to node N-1. The input data is 

randomly produced un-directed graphs. In order to test the 
program, each graph includes a randomly produced Hamilton 
path which the program does not know. I have tested the 
program over one hundred million inputs, no one fail. The 
data is as Table 1 (computer:HP PC, CPU:Intel 1G, 
Memery:1G): 

 
           Table 1   experiment data 
number 
of Nodes 

calculation 
times on 
different 
inputs 

success 
times 

fail 
times 

average 
run time 

100 100000000 100000000 0 0.0014 
second 

1000 10000000 10000000 0 0.07 
second 

10000 10000 10000 0 48 
seconds 

 
Many NP-complete problems turn out to be easy for 

random inputs (see[9],[10]).Hamilton path problem is 
solvable in linear average time (see[8]).But the algorithm in 
[8] is a random algorithm. My algorithm is a fixed algorithm 
that fits all graphs, and is proved theoretically. 

When randomly producing the un-directed graphs, I try 
to make the graphs as hard as possible to calculate. A lot of 
tests show that when its average vertex degree is about 3 or 4 
or 5, the graph is hardest to calculate(Even its biggest vertex 
degree is 3, this problem still is NP-Complete [4]). With the 
vertex number much greater, the hardest average vertex 
degree may increase very slowly. Also I try to produce each 
edge with different probability in a graph independently. 
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