
A Polynomial Time Algorithm for Hamilton Cycle
(Path)

 Lizhi Du

Abstract: This research develops a polynomial time algorithm
for Hamilton Cycle(Path) and proves its correctness. A program
is developed according to this algorithm and it works very well.
This paper declares the research process, algorithm as well as its
proof, and the experiment data. Even only the experiment data
is a breakthrough.

Keywords: Computer Algorithm, Hamilton Path, Hamilton
Cycle, Polynomial Time, Computational Complexity

Ⅰ INTRODUCTION

 Finding Hamilton cycles(paths) in simple graphs is a
classical NP Complete problem, known to be difficult both
theoretically and computationally (see [5],[6],[7]). In spite of
recent advances, the problem presents an imminent scientific
challenge.
 Over the past decades, Hamilton cycles and paths have
been widely studied. One direction is for their existence
conditions. Most existence conditions for general graphs
depend on degree sums. Using these techniques, a graph is
usually provably Hamiltonian only there are sufficiently
many edges in the graph. Yet such results are often possible
make sense that counterexamples exist when the conditions
are weakened. Another direction is to design a random
algorithm which usually succeeds in finding Hamilton cycles
or paths with high probability, or works well for some classes
of graphs.
 Yet no general polynomial time algorithms have been
developed for Hamilton cycles or paths. People even dare not
to try to do so, only because the problem is NP Complete and
its polynomial time algorithm means NP=P.

So, the challenging job still is: to develop a polynomial
time algorithm for all general graphs, i.e., no part of graphs
have specialties on this algorithm so as to make the algorithm
cannot work on them, and to prove the algorithm is correct
theoretically.
 The main problem is: why many random algorithms
work well on most graphs, only cannot work on a little part of
graphs. Why we cannot overcome the little part?

Manuscript received January 12, 2010.
Author Lizhi Du is with the College of Computer Science and Technology,
Wuhan University of Science and Technology P.R. of China
Tel: 86 13554171855 Email: dlz95@sohu.com

My point of view is: the little part does not have any strong
logical reason to be special.
 I develop a polynomial time algorithm for finding
Hamilton cycle(path) in undirected graphs. This algorithm
works very smooth for all kinds of undirected graphs, i.e., for
graphs with the same vertex size, except a little cases which
very quick, their run time are very close to one another. So
using my algorithm, there is no graph to cost much more time
than others, i.e., there is no “dead angle” for my algorithm.
My algorithm looks like a random algorithm. Yes, it is a
random algorithm. But if I can exhaustively compute all
undirected graphs using my algorithm in all possible steps, of
course, the random algorithm becomes a general algorithm. I
find a way to compute “all” graphs by only computing a
limited number of graphs. This is my big breakthrough. I cost
many years time to find it. A program on this algorithm has
been tested over a hundred million times for graphs whose
vertex number is between 100 to 10000, no fails.

Ⅱ STUDY PROCESS AND METHODS

A. Why the NP problem is so difficult?

Since the NP problem comes to the world, numerous
scholars have been studying it. However, up to now, people
can't still confirm: is the NP equal to the P or not? Where is
the reason?

In computer science, divide and conquer is an important
algorithm design paradigm based on multi-branched
recursion. A divide and conquer algorithm works by
recursively breaking down a problem into two or more
sub-problems of the same (or related) type, until these
become simple enough to be solved directly. The solutions to
the sub-problems are then combined to give a solution to the
original problem. After divided a big part into small parts and
studied each small part, we should combine all the small parts
together to study, because these small parts have connections
to each other, in order to get a final result, all these
connections must be considered thoroughly. The
NP-complete’s difficulty lies that: its parts’ connections are
very intensive and complicated. If an algorithm(polynomial
time) fully considers these connections, still can not get the
end result, it of course means that NPC can not be solved in
polynomial time. The question is: by now, no any
algorithm(polynomial time) can fully handles the intensive
and complicated connections among all parts of a NPC. For
example: using a tree to stand up an algorithm for a NPC. In

layer 0, it resolves to N parts, in layer 1, it resolves to N-1
parts, and so on. Thus, its time complicacy is N!. However,
because all nodes in this tree have many relations to each
other, a node can be got from its father, it may also be got
from its brothers or grandfather. So, many nodes repeat the
others’ information. If we can do our best to delete the
redundant nodes, the time complexity would be much less
than N!.

B. Study process

To try to overcome the NP problem, one has two ways:
or thinks that the NP is unequal to the P, then give the united
proof theoretically or prove some NP problem time
complexity’s low bounds is higher than polynomial time; or
thinks the NP is equal to the P, then proves any NPC has a
polynomial time algorithm. The current academic circles
incline to think that the NP is unequal to the P(see[2]). One of
their reasons is: the computation process should be different
from the test process in time cost. However, the polynomial
includes very wide scope, one power of N is a polynomial,
10,000 powers of N is also a polynomial. Therefore there is
reason to think such possibility: low polynomial time for
“test”, high polynomial time for “compute”. I strongly belive
that NP is equal to P. Why? What is my logic? First, by
now, a lot of NPC have been discovered, and the number may
increase continuely. If any one of them has polynomial time
algorithm, it means all the NP problems have polynomial
time algorithm. This fact itself strongly implies that: the
complexity of NP problems is not very uneven, but is
uniform. They may have some uniform rules(of course each
one has its specialty). These uniform rules are meaningful
only in polynomial, especially when considering that many
NP problems in most cases can be solved quickly. Secondly,
let’s take an example: Hamilton path. If a undirected graph
has only N nodes and N-1 lines, sure, we can quickly get the
path. Along with the increment of its lines, the complicacy
increases. But the line number is limited, less than N times N
in total. And the line number increases, the possibility to get
more paths also increases. If I can discover the intricate
relations between these two factors, I may get a path within
polynomial time.
 After determining the research direction, next step is to
choose an available NPC as the research object. A good
choice can make my job much easier than other choices. By a
lot of comparing, contrasting and analysing, I choose the
Hamilton path(cycle) as my study object. Reasons:(1)
Hamilton path is a strong NPC(see [3]). Usually a strong
NPC is harder than un-strong one, but as it is strong, I can try
to get a polynomial time algorithm for it in any way,the result
is always valid;(2) I use “divide” and “conquer” method to do
it. After dividing,the mutual relative imformations among all
parts is easier to discover for Hamilton path than for other
NPC, because Hamilton path can “naturally” show its relative
information by showing that whether two vertices are
connected. Thus we donot need to cost much time to get this
information. Especially, by comparing different combinations
and their different results, a lot of relative information can be
got easily.

C. Principle and Method
 This algorithm uses the principle of “divide” and
“conquer”, does its best to utterly make use of the relative
informations among all parts. First, using the idea from the
Greedy Algorithm, for each step, the algorithm try to get the
final result as quickly as possible. In order to limit its time to
polynomial, the algorithm draws references from the
State-Space Method. The state-space contains at least one
final result(if exist). For each element in the state-space, the
calculation time is polynomial and all elements number is
polynomial, so the algorithm is polynomial. In order to limit
the number of elements in the state-space to polynomial, the
algorithm draws references from the Genetic Algorithm. In
each step, optimize the elements in the state-space, only
keeps and calculates the optimized elements. The biggest
speciality of this algorithm is: dynamically to combine some
parts, dynamically to transform them, by comparing different
combinations’ results, to deduce the relative informations in
as less as possible time, so as to make all the algorithm
polynomial.

 My algorithm’s key technologies are: 1)It is based on
a lot of generalizations, but its correctness and polynomial
complexity have been proved.2)In its calculating process, it
dynamically decides its calculating direction according to
new produced messages. Dynamic adjustment is my
algorithm’s big specialty. 3)My algorithm has found a method
to transform “infinite” to “finite”. This is a very new method
which does not appear before. I deduce this method may be a
common way to solve all NPC.

D. Algorithm

(1) Assume the graph has at least one Hamilton cycle. I
first get a cycle which includes all n vertices in any way. In
this cycle, some two neighbor vertices may not be adjacent, I
call this point “break point”. For each break point, I add an
edge between the two neighbor vertices except for one, i.e.
only one break point to be left(remember the added edges,
later, each time delete one, then do the algorithm from a
NEW start). I call the one break point being left “main break
point”. Now my algorithm only needs to handle this one
break point. Each time handles one break point, at most n
times(because the number of the added edges at most n). So it
does not affect the polynomial.

(2) At each step, cut a segment from the main break
point, insert the segment in some place of the cycle. How to
cut and insert? The rule is: make the number of new break
points the least, and one new break point must be different
from all former main break points(this new one as the new
main break point ,I use a symmetric matrix to record all main
break points, this guarantees my algorithm’s polynomial).
Notes: when calculating the number of new break points for
getting the least, if more than one case have the same least
number, compare their next step(only one time “next step”,
do not need to continue to do so);also, avoid inserting the
same segment in different places consecutively. Then with the

new main break point, do the same job until getting a
Hamilton Cycle. If one step does not get a new break point
and there are some break points at other place, get one of
them as the new main break point and continue.

Example 1:

dhijklabcmpefqr*u vertex r and u are not adjacent, as the
main break point.
Other edges: d-q, h-c, i-l, j-u, a-p,m-f,e-r.
S
tep 1: dhijklabcmperqf*u the pair f*u is different from
r*u,cut the segment
rq, insert it between e f. Case 1—one new break point.
Step 2:dhijklabcmfqrep*u
Step 3:dhijklaperqfmcb*u
Step 4:dhi*bcmfqrepalkju
Step 5:dhilaperqfmcb*kju
Step 6:dhilabcmfqrep*kju
Step 7:dhi*perqfmcbalkju
Step 8:dhi*fqrepmcbalkju
Step 9:dhi*rqfepmcbalkju
Step 10:dhilabcmpefqr*kju
Step 11:dhilabcmperqf*kju
Step 12:dhilabc*fmperq*kju Case 2—two new break points,
you cannot get less. Choice q*k as the new main break point,
another break point can be the same as formers.
Step 13:dhilabc*fqrepm*kju m*k as the new main break
point, cannot choice c*f at current step
Step 14:dhi*mperqf*cbalkju
Step 15:dhi*qrepmf*cbalkju
Step 16:dqrepmf*cba*hilkju the main cycle has 3 parts
Step 17:dqrepmf*abchilkju the main cycle has 2 parts
Step 18:dqrefmpabchilkju Case 3—no new break point,
only one part

E. Proof Sketch:
 My main proof idea is: using limited number of graphs,
each graph only has 12 vertices(also 11,10), to constitute
unlimited number of all kinds of graphs. Then I only need to
prove all cases of graphs with 12 vertices(also 11,10) to fit
my algorithm(need to combine and to separate) by calculating
all.

Ⅲ EXPERIMENT DATA

Though I have theoretically proved this algorithm. Here
I give the experiment data.

A program on this algorithm has been designed in VC++.
Not losing generality, for a undirected graph with N nodes,
node number is 0,1,2…N-1, the algorithm calculates
Hamilton path from node 0 to node N-1. The input data is

randomly produced un-directed graphs. In order to test the
program, each graph includes a randomly produced Hamilton
path which the program does not know. I have tested the
program over one hundred million inputs, no one fail. The
data is as Table 1 (computer:HP PC, CPU:Intel 1G,
Memery:1G):

 Table 1 experiment data
number
of Nodes

calculation
times on
different
inputs

success
times

fail
times

average
run time

100 100000000 100000000 0 0.0014
second

1000 10000000 10000000 0 0.07
second

10000 10000 10000 0 48
seconds

Many NP-complete problems turn out to be easy for

random inputs (see[9],[10]).Hamilton path problem is
solvable in linear average time (see[8]).But the algorithm in
[8] is a random algorithm. My algorithm is a fixed algorithm
that fits all graphs, and is proved theoretically.

When randomly producing the un-directed graphs, I try
to make the graphs as hard as possible to calculate. A lot of
tests show that when its average vertex degree is about 3 or 4
or 5, the graph is hardest to calculate(Even its biggest vertex
degree is 3, this problem still is NP-Complete [4]). With the
vertex number much greater, the hardest average vertex
degree may increase very slowly. Also I try to produce each
edge with different probability in a graph independently.

REFERENCES
[1] Alfred V.Aho.etc. The Design and Analysis of Computer

Algorithms[M]. New York: Addison Wesley Publishing
Company，1974.

[2] Chen-zhiping, Xu-zongben. Computing Mathmatics[M].
Peking: Science Express,2001.

[3] Christos H. Papadimitriou. Computational Complexity[M].
New York: Addison Wesley Publishing Company，1994.

[4] Sara Baase etc. Computer Algorithms: Introduction to Design
and Analysis[M]. New York: Addison Wesley Publishing
Company，2000.

[5] R.Diestel,Graph Theory,Springer, New York 2000
[6] M.R.Garey,D.S.Johnson,Computers and Intractability:A Guid

to the Theory of NP-Completeness,Freeman,San
Francisco,1979

[7] L.Lovasz,Combinatorial problems and exercises, Noth-Holland,
Amsterdam(1979)

[8] Yuri Gurevich and Saharon Shelah Expected computation time
for Hamiltonian Path Problem SIAM J. on Computing 16:3
(1987) 486—502

[9] Yuri Gurevich,Complete and Incomplete Randomized NP
Problems 28th Annual Symposium on Foundations of
Computer Science(1987), 111-117.

[10] D.Johnson,The NP-completeness column-an ongoing
guid,Journal of Algorithms 5(1984), 284-299

