
Automated Test Data Generation For Programs
Having Array Of Variable Length And Loops

With Variable Number Of Iteration

H. Tahbildar and B. Kalita ∗

Abstract—In this paper, we propose a heuristic

called longest path criterion for test data generation

of programs having arrays of variable length, loops

with variable number of iteration. Our heuristic

is computed by a mathematical relation of array

size(arr) and number of iteration(k). The relation

we found is based on our experiment result at a

saturation point after which no more longer path

is executed. Our relation computed k can be found

directly in stead of trial and error procedure for

finding k. Test data with our k achieves better

code coverage. We achieved 97% accuracy for pre-

dicting the value of k generating the longest path.

The time required to generate test data for longest

path criterion shows the effectiveness of our heuristic.

Keywords: longest path, saturation point, lmax,

kL, kS

1 Introduction

Software testing is a process, which is used to identify
the correctness, completeness and quality of a software.
Software testing is very expensive. Statistics says that
50% of the total cost of software development is required
for testing phase. There are various methods of test
data generation [3]: Random [5, 10, 12], Path oriented
[14, 4, 9, 1], and Goal oriented [17]. Our ultimate aim is
to get 100% automation in test data generation process
[7]. Test data can be generated using static approach
[15] based on symbolic execution, dynamic approach [14]
based on actual value. It has been found that neither
static nor dynamic method of test data generation is
efficient. A combined approach which takes the merits of
both is more efficient. Test data generation for programs
having arrays of variable length, loops with variable
number of iteration is a challenging problem. Although
test data for such program is generated using path

∗Hitesh Tahbildar, Department of Computer Engineering, As-
sam Engineering Institute, Guwahati-781003, INDIA Tel/Fax:91-
9864018339 Email: tahbil@rediffmail.com, B. Kalita, Depart-
ment of Computer Application, Assam Engineering College,
Guwahati-781013, INDIA Tel/Fax:91-9954936116 Email: bi-
chitra1 kalita@rediffmail.com, Manuscript submission: Septem-
ber’2009

prefix method but it causes a combinatorial explosion
in the number of execution paths. Therefore it imposed
coverage of only those paths containing number of
iterations within user defined limit k. The method fails
to cover upper bound testing. In [11], Williams combine
the merits of both static and dynamic techniques. The
method avoids the traditional path finding step and cover
only feasible path but problem is with k path criterion.
It is seen that k value exponentially increase the number
of infeasible paths. Without testing with upper bound
of k, which is done in domain testing, we can not have
reliable test data. In this paper we modified the k = 2
user defined limit path criterion to longest path criterion
that can be computed from our mathematical relation
and it will generate test data for all paths containing
the longest path. We found a mathematical relation for
finding k by inputting array length which covers longest
path criterion. The relation we found is based on our
experiment’s result at a saturation point after which no
more longest path is created. We have eliminated the
problem of user defined k-path criterion by introducing
longest path criterion. In [11], user determines k value
using trial and error method and k is limited to 2.
Therefore the time required for finding k will be more
than our longest path criterion and code coverage of
longest path criterion will be more than k = 2 path
criterion.
The rest of the paper is organized as follows: The
section 3 presents a survey of related works of path
oriented test data generation. The section 4 describes
our method of test data generation. The section 5
shows our experimental results. Section 6 explain our
mathematical relation for longest path criterion k with
justification. Finally in section 7 we conclude with some
observations and future research direction for automatic
test data generation.

2 Related Work

There are various methods of implementation for test
data generation: Symbolic value [15, 16], actual value
[14, 9], path prefix [13], combined symbolic and ac-
tual value [11], prioritized constraints and data sampling

scores [2, 8, 6]. Nicky Williams in [11], presented the
PathCrawler prototype tool for automatic test data gen-
eration that satisfies all-paths criterion, with user defined
limit on the number of iterations. It is based on path
prefix method [13] and it does code instrumentation and
constraint solving. But PathCrawler does not use any
heuristic to determine the value of k(number of itera-
tions). It compromises from rigorous all-paths criterion
to k = 2 path criterion. It does not take any effort to
achieve the saturation point for variable length array. It
selects a single test case for each feasible path and avoids
all other test-cases that follows an already traversed path.
Information collected during execution of the program
under test influences the test selection.

3 Our Approach

3.1 k Vs execution time

We have observed the execution time behavior of the pro-
gram with respect to different values of k. Graphs appear
to be linear for lower values of k and becomes exponential
at higher end as shown in figure 1.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 0 1 2 3 4 5

T
im

e

Value of k

Time Vs Executiom speed

Figure 1: k Vs execution speed of program

3.2 k Vs new and unique feasible paths

The lower value of k does not satisfy upper bound testing
for large array size. If k is small compared to the array
size then many feasible paths are left out. After a cer-
tain value of k for a particular array size, the number of
feasible paths become constant and do not increase any
further even if k is increased. This is the point of satu-
ration. The k value at this point is denoted by kS . We
have successfully achieved the saturation point for arrays
of size 5 at k = 940 generating 926 unique feasible paths
as shown in figure 2.

3.3 k Vs longest feasible path

We studied the behaviour of feasible paths produced with
different values of k. No more new feasible paths will be
created after saturation point. We have observed that
the length of the paths generated, increases with increase
of k as shown in figure 3.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 0 200 400 600 800 1000 1200

N
um

be
r

of
 u

ni
qu

e
fe

as
ib

le
 p

at
hs

 p
ro

du
ce

d

Value of k

k Vs Number of unique feasible path

Figure 2: k Vs number of unique feasible paths

 0

 5

 10

 15

 20

 25

 30

 35

 0 2 4 6 8 10
Lo

ng
es

t p
at

h
C

ov
er

ed
Value of k

k Vs length of Longest path

Figure 3: k Vs length of longest feasible path

Although k is increased further, at a particular value,
the length of the paths become constant and does not
increase further even if the value of k is increased. This
is the longest path criterion. We are denoting the value
of k at this point as kL. In the figure 3, the length of the
paths become constant at 32.

3.4 Our Heuristic

It is fact that kS is optimum value of k. We can get
best coverage and best test data if we generate our test
data with kS . But running a program with kS increases
the number of execution path and time exponentially for
large array size. Our heuristic finds kL and we can gen-
erate test data of all paths containing longest path. Al-
though the k value that is determined by our heuristic
is not optimum, yet it gives better coverage than k = 2
path criterion [11]. Instead of only a single test case, sev-
eral test cases are selected for each path which improves
the chances of detecting coincidental correctness. In our
implementation we are considering the 1000 as domain
range for the sample program given in Annexure I.

4 Mathematical Relation

After the study of different behaviors in which the feasible
paths respond to different values of k, we have derived a
mathematical relation between kL (minimum number of

iteration where longest path is covered), arr (array size)
and kL, lmax (longest path length).

We have evaluated the lmax and kL for different values
of arr. Then we found out their relation in the form of
lmax/kL and kL/arr. The experimental data are shown
in Table 1

Table 1: Computation of α and β

arr size kL Lpath β = lmax/kL α = kL/arr
4 4 24 6 1
5 8 32 4 1.6
6 5 35 7 0.83
7 7 44 6.3 1
8 8 49 6.13 1
9 9 53 5.9 1

10 11 62 5.64 1.1
11 11 68 6.2 1

Relation between kL and arr

kL/arr = α
kL = alpha× arr,
where alpha = 1.0663

Therefore,
kL = alpha× arr

The constant alpha is average value of different
array size

Relation between kL and lmax is:

lmax/kL = β
lmax = β × kL,
where β = 5.896

The constant beta is average value of different
array size

Therefore,
lmax = beta× kL

From above two equations, we get
lmax = 6.2869× arr

4.1 Justification

To check the value of kL and lmax we are taking different
array size. For example arr = 12 using the above two derived
equations we check for their accuracy with the true value.

Expected value of kL for array of length 12:
kL = 1.0663× arr

= 1.066312
= 12.79
= 13(approximately)

Expected value of lmax for array of length 12:
lmax = 5.896× k
= 5.896× 13(derived from above)
= 76(approximately)

True Value
For arr = 12, using our tool we get the result as shown in Table 2
kL = 12 and lmax = 74

Table 2: Value of k and longest path

k lpath value of k lpath
0 4 7 47
1 11 8 53
2 17 9 59
3 23 10 64
4 29 11 70
5 35 12 74
6 42 13 74

4.2 Error Analysis for Array Size

For given array size

Absolute Error =|True value−Expected Value|
=| 12− 13 |
= 1

Relative Error =Absolute Error/True Value
= 1/12 = 0.083

Percentage Error =Absolute Error/True value×100
= 8.3%

Percentage of Accuracy = (100− 8.3)%
= 91.7%

For longest path length

Absolute Error =|True Value−Expected Value|
=| 74− 76 |
= 2

Relative Error = Absolute Error/True Value
= 2/74
= 0.027

Percentage Error=Absolute Error/True value×100
= 2.7%

Percentage of Accuracy = 100− 2.7%
= 97.3%

4.3 Comparison between theoretical and
practical values

Our experiment results show that the value computed from
our heuristic (Theoretical) and the value found from our
experiments as shown in Table 3 differ a little amount that
has negligible effect on test data generation process. The

graph of theoretical value and experimental value of kL and
lmax is shown in figure 4 and 5 respectively.

Table 3: Theoretical and practical values of kL, lmax

Array size Theoretical Practical
arr kL lmax kL lmax
2 2.136 12.59 3 14
4 4.27 25.14 4 24
6 6.4 37.72 6 35
8 8.53 50.29 8 49
10 10.66 62.87 11 62
20 21.33 125.74 21 121
25 26.66 157.17 26 151
30 31.99 188.6 31 182
35 37.34 220.04 37 212

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 5 10 15 20 25 30 35

K
L

Array size

Theoritical value
Practical value

Figure 4: Comparison between Theoretical and practical
value of kL

4.4 Accuracy

The accuracy of the kL is inversely proportional to the array
size. The average accuracy of kL computed from our heuristic
is 97.3%

5 Conclusion and Future Work

The automatic test data generation for programs with vari-
able length of array with variable number of iterations using
traditional path oriented method is very costly. Because the
number of infeasible paths increase exponentially. Although
the path prefix method solves this problem to some extent but
it fails in terms of code coverage. we have got a mathematical
relation between number of iterations and array size that can
easily compute best k for maximum coverage.

Of course, our k can not cover all-paths criterion but it covers
longest path criterion. The percentage of code coverage is
improved. No backtracking is required and thus, time is saved
as there is no need to check for maximum code coverage with
k value less than that computed from the tool. Our method

 0

 50

 100

 150

 200

 250

 0 5 10 15 20 25 30 35

Lm
ax

Array size

Theoritical value
Practical value

Figure 5: Comparison between Theoretical and practical
value of lmax

does not guarantee testing of boundary values of the domain
where bugs are often found. Our approach can be modified
to statically inject the values at the domain boundaries into
the array extreme positions. The accuracy and scalability of
our relation can be improved by making more observations
using different array size, loop construct, and varying number
of iterations. Finally the execution time depends to a great
extent, on the machine configuration. The graph will vary
from machine to machine. Future research can be done on
the heuristic constant α and β to improve our accuracy.

References

[1] C. Cadar and D. Engler, Execution Generated Test
Cases: How to Make systems Code Crash Itself, Tech-
nical Report, Computer Systems Laboratory Standford
University, Standford CA-94305, U.S.A. 2005.

[2] M. Gittens, K. Romanufa, D. Godwin, J. Racicot, All
Code Coverage is not created equal: A case study in pri-
oritized code coverage, Technical Report, IBM Toronto
Laboratory, 2006.

[3] J. Edvardsson,, “A Survey on Automatic Test Data Gen-
eration,” In Proceedings of the Second Conference on
Computer Science and Systems Engineering(CCSSE’99),
Linkoping, pp. 21-28 10/1999.

[4] Chen Xu, J. Zhang, Xiaoliang Wang, “Path Oriented
Test Data Generation Using Symbolic execution and
Constraint solving Techniques,” In Proceedings of the
Second International IEEE Conference on Software En-
gineering and Formal Methods(SEFM’04),2004.

[5] A. Gotlieb, M. Petit, “Path-Oriented Random Testing,”
Proceedings of the First International Workshop on Ran-
dom testing(RT’06), Portland, ME, USA, 07/2006

[6] Xiao Ma, J. Jenny Li, and David M. Weiss, “Prioritized
Constraints with Data Sampling Scores for Automated
Test Data Generation,” Eighth ACIS International Con-
ference on Software Engineering, Aritificial Intelligence,
Networking, and Parallel/Distributed Computing, 2007.

[7] A. Bertolino, “Software Testing Research: Achievements,
Challenges, Dreams,” In Future of Software Engineer-
ing(FOSE’07),2007.

[8] J. Jenny Li, “Prioritize Code for Testing to Improve
Code Coverage of Complex Software,” In Proceedings of

the 16th IEEE International Symposium on Software Re-
laibility Engineering(ISSRE’05), 2005.

[9] Jun-Yi Li, Jia-Guang Sun, Ying-Ping Lu, “Automated
Test Data Generation Based on Program Execution,” In
Proceedings of the Fourth IEEE International Conference
on Software Engineering Research, Management and Ap-
plications(SERA’06), 2006.

[10] N. Klarlund, P. Godefroid, and K. Sen, “Directed Au-
tomated Random Testing,” In Proceedings of the ACM
SIGPLAN 2005 Conference on Programming Language
Design and Implementation(PLIID’05), 2005

[11] N. Williams, B. Marre, P. Mouy, and M. Roger,
“PathCrawler: Automatic Generation of Path Tests by
Combining Static and Dynamic Analysis,” Springer-
Verlag Berlin Heidelberg, LNCS 3463, pp. 281-292, 2005.

[12] Koushik Sen, Darko Marinov, Gul Agha, “CUTE: A Con-
colic Unit Testing Engine for C ,” ACM, pp. 5-9, 09/2005

[13] R. E. Prather, J. P. Myers, “The Path Prefix Software
Engineering,” IEEE Trans on Software Engineering, SE-
13(7), pp. 761-766, 07/1987

[14] B. Korel, “Automated Software Test Data Generation,”
IEEE Trans on Software Engineering, Vol. 16, No.8, pp.
870-879, 08/1990

[15] L. A. Clarke , “A System to Generate Test Data and
Symbolically Execute Programs,” IEEE Trans on Soft-
ware Engineering, Vol. SE-2, No.3, pp. 215-222, 09/1976

[16] J. Zhang, Xiaoxu Wang., “A Constraint Solver and its
Application to Path Feasibility Analysis,” International
Journal of Software Engineering and Knowledge Engi-
neering, 11(2): pp. 139-156, 2001.

[17] R. FerGuson, B. Korel, “The Chaining approach for Soft-
ware Test Data Generation ,” ACM Transactions on
Software Engineering and Methodology, 5(1): pp. 63-86,
01/1996.

Annexure I

void Merge(int t1[], int t2[], int l1, int l2, int q) {
int i=0, j=0, k=0, t3[20];
while(i < l1 && j < l2)
{
if(t1[i] < t2[j])
{
t3[k]=t1[i];
i++;
}
else
{
t3[k]=t2[j];
j++;
}
k++;
}
while(i < l1)
{
t3[k]=t1[i];
i++;
k++;
}

while(j < l2)
{
t3[k]=t2[j];
j++;
k++;
}
}

