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Abstract— This research develops a learning method for the 

pass selection problem of midfielders in RoboCup Soccer 
Simulation games. A policy gradient method is applied as a 
learning method to solve this problem because it can easily 
represent the various heuristics of pass selection in a policy 
function. We implement the learning function in the 
midfielders’ programs of a well-known team, UvA Trilearn 
Base 2003. Experimental results show that our method 
effectively achieves clever pass selection by midfielders in full 
games. Moreover, in this method’s framework, dribbling is 
learned as a pass technique, in essence to and from the passer 
itself. It is also shown that the improvement in pass selection by 
our learning helps to make a team much stronger. 
 

Index Terms— Multi-agent system, Pass selection, Policy 
gradient method, Reinforcement learning, RoboCup 
 

I. INTRODUCTION 
Recently, much work has been done on the learning of 

coordination in multi-agent systems [1][2]. The RoboCup 
Simulation League 2D is recognized as a test bed for such 
research because there is no need to control real robots and 
one can focus on learning coordinative behaviors among 
players. However, multi-agent learning continues to suffer 
from several difficult problems such as state-space explosion, 
concurrent learning [3], incomplete perception [4], and credit 
assignment [2]. These four problems should be studied and 
resolved to make multi-agent learning successful in the 
games of the RoboCup Simulation League 2D (Fig.1). 

As an example of multi-agent learning in a soccer game, 
Igarashi et al. proposed and applied a reinforcement-learning 
approach to realizing coordination play between a kicker and 
a receiver in direct free kicks [5]. They dealt with a learning 
problem between a kicker and a receiver when a direct free 
kick is awarded just outside the opponent’s penalty area. In 
such a situation, to which point should the kicker kick the 
ball? They proposed a function that expresses heuristics to 
evaluate a candidate target point for effectively 
sending/receiving a pass and scoring. However, they dealt 
only with the attacking problems of 2v2 (two attackers and 
two defenders). In this paper, we apply the method to a pass 
selection problem of four midfielders in a full soccer game. 
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Fig.1.  RoboCup Soccer Simulation League 2D. 

 

II. COORDINATION OF SOCCER AGENTS  

A. Cooperative Play in RoboCup Soccer Simulation 
Reinforcement learning is widely used [6][7] in the 

research areas of multi-agent learning. In the RoboCup 
Soccer Simulation League, Andou used Kimura’s stochastic 
gradient ascent (SGA) method to learn the dynamic home 
positions of 11 players [8]. Riedmiller et al. applied TD 
learning to learn such individual skills as intercepting the ball, 
going to a certain position, or kicking and to select those 
individual skills [9]. They investigated attacking problems 
with 2v1, 2v2, 3v4, and 7v8. Stone et al. studied keepaway 
problems with 3v2 [10] and half-field offense problems with 
4v5 [11] using Sarsa [6] to learn the selection of macro 
behaviors such as ball holding, passing, dribbling, and 
shooting. 

B. Coordination at Free Kicks 
In the previous section, we cited several research efforts on 

the cooperative behaviors of soccer agents. However, a 
crucial problem remains. In the previous research, each agent 
apparently learns its policy of action selection 
“autonomously” to complete the given task. However, 
Riedmiller et al. assumed that all agents share input 
information, i.e., the x-y positions of all players and the ball, 
with other agents [9]. Stone et al. used other agents’ 
experiences, which are time-series data on state, action, and 
reward, to accelerate learning in a large problem. For that 
purpose, agents must communicate their experiences with 
their partners to facilitate sharing information among them. If 
agents share input information and experiences with other 
agents, all agents will obtain the same value function by 
learning. This will simplify the realization of various 
cooperative plays among agents. However, if agents’ 
observations are imperfect or uncertain, none of the agents 
can share the same input information with all other agents: 
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Without perfect communication among agents, they cannot 
share their experiences with each other. Moreover, if only 
agents that have identical value functions are assumed, agent 
individuality and division of roles among them will not 
emerge from learning. 

Igarashi et al. proposed a method where all agents learn 
autonomously without assuming perfect communication or 
identical input information [5]. They applied it to an 
attacking problem with 2v2 when a direct free kick is 
awarded just outside the opponent’s penalty area. We briefly 
summarize the method in the next section. 

III. LEARNING BY A POLICY GRADIENT METHOD 

A. Policy Gradient Method 
A policy gradient method is a kind of reinforcement 

learning scheme that originated from Williams’s 
REINFORCE algorithm [12]. The method locally increases 
and maximizes the expected reward per episode by 
calculating the derivatives of the expected reward function of 
the parameters included in a stochastic policy function. This 
method, which has a firm mathematical basis, is easily 
applied to many learning problems. One can use it for 
learning problems even in non-Markov Decision Processes 
[13][14]. It was applied to pursuit problems where the policy 
function consists of state-action rules with weight 
coefficients that are parameters to be learned [14]. 

B. Stochastic Policy for Action Decision 
Igarashi et al.[5] state policy π (a;s,ω) for determining 

action a (∈A) of all agents when a multi-agent system is in 
state s (∈S), and this policy is given stochastically by a 
Boltzmann distribution function with object function 
E(a;s,ω) as 
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Weight parameters ω ={ωj} (j=1,2,…,Nω) in (1) are 

determined by a policy gradient method described in the next 
section. T is a parameter called temperature. 

C. Autonomous Action Decision and Learning 
For the autonomous action decisions and the learning of 

each agent, policy function π (a;s,ω ) for the entire 
multi-agent system was approximated by the product of each 
agent’s policy function πλ (aλ;sλ,{ωλ

j}) as [13]-[15] 
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where aλ is the action of agent λ and sλ is the state perceived 
by agent λ. ωλ

j is the j-th parameter in agent λ’s policy 
function πλ(aλ;sλ,{ωλ

j}). In (2), it seems that the correlation 
among agent action decisions is neglected. However, each 
agent can see other agents’ states, even if they are not perfect, 
and use them in its policy function πλ(aλ;s,{ωλ

j}). Thus, the 
approximation in (2) will partially contribute to learning of 

coordination among agents. 
We assume that agent λ’s policy function πλ(aλ;s,{ωλ

j}) is 
also given by a Boltzmann distribution function with 
objective function Eλ (aλ ;sλ,{ωλ

j}) defined by 
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where function Uj (aλ;sλ) is the j-th heuristics that evaluates 
action aλ [5]. 

At the end of each episode, common reward r is given to 
all agents that made their decisions during the episode. The 
derivative of expectation of reward E[r] for parameter ωλ

j is 
shown as 
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where L is an episode length. 

With (2), characteristic eligibility eω on the right-hand side 
of (4) can be written as [13][14] 
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Substituting (2) and (3) into (5), the policy gradient in (4) 
gives a learning rule as 
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where aλ(t) is an action actually selected by policy πλ and 
sλ(t) is a state perceived by agent λ at time t. Each agent 
updates ωλ

j by the learning rule in (6) at the end of each 
episode [5]. 

IV. PASS SELECTION PROBLEM 

A. Pass Selection in a Soccer Game 
A pass is a typical cooperative play between two players in 

a soccer game. Determining the receiver from among 
teammates is very important in a pass play. The first action to 
consider is passing the ball to a receiver safely. However, 
useless iteration of backward passes should be avoided. Thus, 
a player must select a receiver who stands in a position to 
receive the pass safely and who has a relatively high 
possibility of scoring a goal after receiving the ball. For this 
purpose, we use heuristics functions that seem to be useful 
for selecting a pass receiver as Uj (aλ;sλ) in (3), where aλ is a 
passer λ’s action of selecting a pass receiver and passing the 
ball to the receiver.  

B.  Reward 
In this paper, we apply the policy gradient method 

summarized in Section III to pass selection problems of 
midfielders. Dribbling is considered a pass from and to the 
passer itself. If midfielders can pass and dribble the ball 



 
 

 

safely without being intercepted, the length of time their team 
holds the ball will be longer. Keeping the ball for as long a 
time as possible is obviously one of the effective strategies of 
midfielders in a soccer game. Here, we define the term “team 
X is keeping the ball” as the situation where the nearest player 
to the ball is a member of team X and this situation continues 
for a duration of more than five simulation cycles. 

We define learning episode σ of team X by a history of 
states and actions of agents while team X keeps the ball, and 
we define reward r of episode σ as r(σ) = -1/L(σ). Length 
L(σ) of episode σ is defined by the difference between the 
time when team X begins to keep the ball and the time when 
the ball is taken by the opponent team. Since r takes a 
negative real value, it is actually a penalty rather than a 
reward. The shorter the duration time of keeping the ball is, a 
larger common penalty r(σ) is given to team X’s midfielders 
who made pass selection during episode σ.  

C. Heuristics for a Pass Selection Problem 
We used five heuristics from U1 to U5 for evaluating the 

current position of a teammate as a desirable pass receiver. U1, 
U2 and U3 are heuristics for passing the ball safely. U4 is 
heuristics for making an aggressive pass. U5 is used for 
treating reliable information as more important knowledge 
than unreliable information. All Ui are normalized between 0 
and 10. 

The meanings of the five heuristics are summarized as 
follows. U1 considers the existence of opponents on the pass 
course. U2 evaluates a distance between a receiver and the 
opponent nearest to the receiver. U3 takes into account the 
number of opponent players around a receiver. U4 expresses 
a heuristics that the nearer receiver to the opponent’s goal has 
a greater chance of scoring a goal. U5 evaluates the degree of 
certainty of a receiver’s position perceived by the passer. The 
definitions of the five heuristics are shown in Appendix. 

V. EXPERIMENTS 

A. Team Used in Learning Experiments 
We used UvA Trilearn Base 2003 as a base team for 

learning experiments. UvA Trilearn 2003 is a team of the 
University of Amsterdam and champion over 46 qualified 
teams in the 2D Simulation Soccer League of RoboCup2003 
Padova. The team released a part of the source code of UvA 
Trilearn 2003 [16].  

According to the home page of the UvA team [16], the 
released code contains low-level and intermediate-level 
implementation (agent-environment synchronization method, 
world model, player skills) but not a high-level decision 
procedure. Instead, they have included a simple high-level 
action selection strategy. The fastest player to the ball 
intercepts the ball and shoots it to a random corner in the 
opponent’s goal regardless of his position on the field. The 
remaining players move to a strategic position determined by 
their home position in the formation and by the position of 
the ball. We modified the code slightly and implemented the 
learning function defined in Sections III and IV for UvA’s 
four midfielders. We call this team “UvA Trilearn Base 
2003,” or “UvA Base” for short, and use it in our learning 
experiments.  
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Fig. 2. Reward average over the last 50 episodes. 
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Fig. 3. Change in ωj of player MF_8. 

 
 

B. Learning Experiments 
UvA Base with four midfielders who learn pass selection 

plays 50 games against UvA Base with midfielders who 
randomly make passes to teammates. Initial values of ωλ

j in 
(3) are set to 0. T and ε in (6) are set to 10.0 and 0.1, 
respectively. 

The change in rewards r given to four midfielders is shown 
in Fig.2, where 50r  is an average over the last 50 episodes. 

Midfielders have their own set of ωλ
j and learn their values by 

playing 50 games. The results of ωλ
j are nearly identical to 

each other. Therefore, only the results of a midfielder called 
MF_8 are shown in Fig. 3. 

Reward averages 50r  for all midfielders do not increase in 
Fig. 2, even as the learning proceeds. At a glance, the 
learning seems ineffective and a waste of time. However, the 
effectiveness of learning is shown by evaluation experiments 
in the next section. The phenomenon of reward averages not 
increasing is due to the following reason. A player in UvA 
Base is programmed to keep a close watch over the opponent 
goal when it possesses the ball. This increases confidence in 
the information of a teammate’s position in the forward 
direction of a passer, and it increases the importance of a 
forward pass in objective function E(aλ;s,{ωλ

j}) in (3). Thus, 
a large value of ω5 in Fig. 3 causes an agent to make a more 
offensive pass and to play in a deeper area of the opponent 
team’s territory as learning proceeds. Playing in a deep area 
of the opponent prevents the duration of keeping the ball 
from getting longer. 

The ratio among ωλ
j seems to converge in Fig.3. This 

means that there is a strong attractor point in the parameter 



 
 

 

space of ωλ
j and that our learning captures this attractor point. 

Increasing ωλ
j with a fixed ratio in magnitude is equivalent to 

annealing in a stochastic policy in (1). Accordingly, a 
deterministic pass selection algorithm based on ωλ

j at the 
attractor point was obtained as policy πλ(aλ;s,{ωλ

j}) by the 
learning experiments in this section. 

C. Evaluation Experiments 
In order to evaluate the effectiveness of the learning 

method described in Sections III and IV, we have the team of 
UvA Base with four midfielders trained in the learning 
experiments play 30 games against UvA Base with 
midfielders who did not obtain any learning. The four 
midfielders in the former team make a deterministic decision 
because parameter T in their policies is fixed at a very low 
value in the evaluation experiments. The midfielders in the 
latter team randomly make passes to teammates because all 
ωλ

j are fixed to 0.  
Table 1 shows that learning pass selection in only five 

games(N=5) increases the team’s goals and decreases the 
opponent’s goals. Therefore, passes by the four midfielders 
contribute to both offense and defense. Furthermore, it is 
occasionally observed in full games that a midfielder selects 
himself as a receiver and begins dribbling when there is no 
appropriate receiver to whom the ball can be safely passed. 
Consequently, they learned how to make a decision on 
whether they should select passing or dribbling the ball. 

 

Table 1.  Results of 30 games between UvA Base with four 
midfielders who learned pass selection in N games and UvA Base 
with midfielders who did not learn but only randomly made passes 
to teammates.  

N Games Wins -draws-losses Goals 
0 30 14-5-11 31-24 
5 30 22-2-6 59-23 

10 30 23-2-5 51-17 
30 30 23-1-6 46-15 
50 30 26-0-4 54-19 

 

VI. CONCLUSION 
This research develops a learning method for the pass 

selection problem of midfielders in RoboCup Soccer 
Simulation games. A policy gradient method is applied as a 
learning method to solve this problem because it can easily 
express the various heuristics of pass selection in a policy 
function. We implement the learning function in the 
midfielders’ programs of a well-known team, UvA Trilearn 
Base 2003. Experimental results show that our method 
effectively achieves clever pass selection by midfielders in 
full games. Moreover, in this method’s framework, dribbling 
is learned as a pass technique, in essence to and from the 
passer itself. It is also shown that the improvement in pass 
selection by our learning helps to make a team much 
stronger. 

In the future, we will apply our learning method to other 
tasks in a soccer game, such as a receiver’s selection of the 
destination point for receiving a pass. A receiver must move 
to receive a pass safely, to receive a through pass from a 

passer, and to deceive opponent players. Consequently, the 
receiver must learn some policies and change them 
depending on the situation. Moreover, an agent becomes a 
passer and a receiver depending on the time and situation. For 
example, a passer and a receiver must change their roles at 
the next moment to succeed with a wall-pass. Accordingly, 
an agent must change its role and policy at every moment. 
The next step of our work will focus on how agents learn the 
most desirable selection of roles and policies in their current 
situation. 

APPENDIX 
We define five heuristics from U1 to U5 for evaluating the 

current position of a teammate as a desirable pass receiver. 
All Ui are normalized between 0 and 10. 

 
(i) U1 (aλ;sλ) considers the existence of opponents on the 

pass course and is defined by 
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where diff is the angle between the pass direction and the 
direction to an opponent. AgentDist is the distance between a 
passer and a receiver. OppDist is the distance between a 
passer and the nearest opponent player to the passer (Fig.4a). 
If a passer cannot get enough information to calculate all 
three values, we set U1=2.0. If a passer perceives more than 
one opponent, values of U1 are calculated for all opponents 
and the smallest of these values is used. 

 
(ii) U2(aλ;sλ) evaluates distance min_dist between a 

receiver and the opponent nearest to the receiver (Fig.4b). It 
is defined by 
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(iii) U3(aλ;sλ) takes into account the number of opponent 

players around a receiver. OpponentsNum is the number of 
opponent players standing within a 10-meter radius of the 
receiver:  
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(iv) U4(aλ;sλ) expresses a heuristics that the nearer receiver 

to the opponent’s goal has a greater chance of scoring a goal. 
It is defined by 
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max 1 ,0
100
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diff

AgentDist
OppDist

 

 
where CurrentClcye is the current time and LastSeeCycle is 
the latest time when the passer saw a receiver. The later the 
information is, the higher its reliability is. 
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where confidence is the reliability of the receiver’s position. 
The value confidence is defined by 
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