
Implementation of Multi-Protocol, Data Acquisition
With High Speed USB Interface, Using FPGA

S. Thanee S. Somkuarnpanit S. Khuntaweetep

Abstract—This paper describes the implementation
of the FPGA as a data acquisition system with high-
speed USB interface. This can simplify the data
interfacing to the PC by installing most data transfer
protocols into one system. The FPGA has the advantage
that it allows individual modules on a chip to work
independently from each other. Therefore, we can
utilize the FPGA as a performance solution for a system
which is multi-channeled, with connections to four ADC
signals, with the four different protocols of: Parallel, SPI,
I2C and One-Wire. In addition, the visual C++
programming for the user interface and data storage
application, on a PC, helps this design to respond better
to high rates of data acquisition.

Keywords: Data acquisition, FPGA, high-speed USB

I. Introduction
The data acquisition system has been broadly applied in

the automatic test and measurement systems for engineering
and science, as we are able to either adjust or define values
via controlling software [1]. The main function of the
software is to collect the data from any peripheral, input
devices, such as meters or sensors and to transfer it into the
main database and show the results, in real time, on the
screen, or to display them in a summary graph.

This paper proposed the design of the data acquisition
system using FPGA [3] interfaced to a PC [2]. The system
has the capability of receiving digital signals from multi-
channel sensors with four, different, ADC protocols.

II. Overall System

The overall system is shown in Figure 1. It represents
connections to four different ADC (analog to digital
converter) sensors with four different protocols: Parallel,
SPI, I2C and One-Wire. The FPGA would collect individual
data from all ADC sensors.
 The system would process, separately, in individual
protocols, and consequently produce a stream of data
through the output USB port [4], which sends the ADC data
to the PC.

Manuscript received December 7, 2009.
S. Thanee is a graduate student, with a Master’s Degree, in the Faculty

of Engineering at King Mongkut’s Institute of Technology, Ladkrabang,
Bangkok Thailand (e-mail: sirisak_max@yahoo.com).

S. Somkuarnpanit is now with the Department of Electronics, Faculty of
Engineering at King Mongkut’s Institute of Technology, Ladkrabang,
Bangkok Thailand (e-mail: kssuripo@kmitl.ac.th).

S. Khuntaweetep is with the Department of Electronics, Faculty of
Engineering at King Mongkut’s Institute of Technology, Ladkrabang,
Bangkok Thailand (e-mail: kksuchar@kmitl.ac.th).

There would be a specific application program to prepare
the PC to wait for the data from a USB port. It would then
interpret the data into separate data bytes for individual
channels. Consequently, the data can be shown to the user,
and saved to the main database at the same time.
Alternatively, the user could control the system by sending
instructions via the USB port.

Figure 1 The overall system diagram.

III. Processing Unit
The processing unit employed for this design is

EP1K10TC144-3 from the Altera Company. It has a
capacity of 2,880 logic elements, or about 50,000 gates,
consisting of 40,960 internal ram bits and 102 input/output
ports for connection to external hardware. It supports 3
level power supply of 5V, 3.3V and 2.5V. The maximum
working frequency is 180 MHz. This design has used
VHDL as the language [7][8] for program writing code.

The chip is the central point of acquisition for the all
sensors. Its responsibility is to bridge between the ADC
inputs and the USB connection i.e. sending/receiving data
to, and from, the PC. Figure 2 illustrates the internal
modules within the FPGA chip [6]. These modules are
described as below:

Parallel Protocol: This protocol is the traditional type for
most ADCs. It has the advantage of high speed data
throughput. This design uses ADC0820 as a template
example. Figure 3 represents a simulation for acquiring data
from this ADC. There are two main steps in the conversion
process:
• FPGA sends a ‘start’ signal to activate the ADC and

then waits for an ‘acknowledgement’ signal.
• After the ADC finishes converting the data, it will send

an acknowledgement signal to the FPGA, then the
FPGA will read all the data from the bus. After that it
will send another ‘start’ signal to activate the ADC
again for data acquisition on the next read cycle.

It can be seen that, this data acquisition is very simple and
fast. Thus, this protocol should properly work within a high
speed system.

Figure 3 Simulated parallel communication protocol.

Serial Peripheral Interface (SPI) Protocol: This protocol
was developed by Motorola to accomplish easy
communication, and to reduce I/O ports. This design
utilizes MCP3201 for building connections to FPGA.
Figure 4 shows a simulation of how the FPGA obtains data
from an ADC. The steps of this ADC data acquisition look
like the previous protocol. The FPGA would send the
control signal to activate ADC and the ADC would send the
acknowledgement signal back, after it finishes converting
data, to tell the FPGA to read the data from its output. The
difference from the previous protocol is that the FPGA
would read the stream of data in a serial pattern instead,
from MSB to LSB.

Figure 4 Simulated SPI communication protocol.

Inter-Integrated Circuit Protocol (I2C): I2C
communication is a protocol which is designed to reduce the
I/O ports. It requires only two signal connection wires
called SCL and SDA. This design uses PCF8591 ADC as a
template example. The procedure for this ADC data
acquisition is quite complicated, as in the following steps:

• The FPGA sends a signal to start the bus and to
identify the address of the device.

• The FPGA defines the write mode and sends a
command to the ADC it wants to convert.

• The FPGA defines the ‘read’ mode and identifies
which channel it wants to read from.

• The FPGA reads the data from the I2C bus.
At this point, the data reading has completed 1 time cycle.
Figure 5 illustrates the example of data reading by this
protocol. We can see that one reading cycle of this protocol
takes more time than the previous protocols whereas it has
the good point of using only two wires in the data
communication.

One-Wire Protocol: This protocol employs only one signal
line in communications. The bus is not active unless all data
has been transferred. We used the temperature sensor
DS1820 as the input of this One-Wire acquisition data
protocol.

The protocol separates the data bit by a time slot. It has a
length of between 60-960 µs, depending on the user
definition and the status of communications between master
and slave devices. There are four status types:

• Reset: used to start the communication.
• Write data “1” to slave device.
• Write data “0” to slave device.
• Read data from slave.

The first step for this protocol is the ‘reset’ from the FPGA
(master device). The FPGA would send a reset signal to the
bus, and wait for an acknowledgement signal from sensor
(slave device). After receiving the acknowledgement signal,
the FPGA would send the address command to identify the
sensor and let it start data conversion.
 The FPGA would wait for a sensor processing the
command. Then it would send the reset signal and identify
the device address again, followed by the ‘read’ command
to the sensor, to read data from the sensor memory one by
one from LSB to MSB. Finally, it would send the reset
signal again to the bus and wait for an acknowledgement
signal.

Figure 6 Simulated Control Unit and USB Controller communication

After these procedures, the data read procedure has
completed one time cycle. To obtain more data, the FPGA
would process the same steps again. Figure 7 displays the
simulated communications for ‘reset’, ‘acknowledgement’,
and ‘write’ “1100 1100” data.

Figure 7 The One-wire communications protocol.

Control Unit and USB Controller: If there is any data
appearing on the FIFO buffer, the control unit would
determine which channel the data is from. Subsequently, it
would send a one-byte data code to the USB port. This first
data byte informs the application program on the PC which
channel the following data is from. Then it will send a
signal to the USB controller again to send the data, in the
FIFO, to the USB port byte by byte, until the FIFO is empty.
This will mean the end of the data sending procedure in that
individual channel. If there is data waiting to be sent out
from another FIFO channel, the FPGA will repeat the same
procedures. Figure 6 shows a simulation for interconnection
between the control unit and the USB controller.

IV. The PC Interfacing
The PC interfacing used in this design is the high-speed

USB which can transfer data at the rate of 480 Mbps. The
transfer operation is achieved via ‘frames’, with a period of
125 µs. Each frame consists of a number of ‘Transactions’,
each which consists of a number of Packets. These packets
include information about the type of transaction, the
address of the USB device, and the number of the end points
required, in addition to data, and CRC packets, and a
synchronization packet.

The FT2232H chip from FTDI Corp. [5] has been used to
implement this protocol in the design. It is a dual USB to
parallel FIFO, bi-directional, data transfer chip with 4
kilobytes FIFO Tx and Rx buffers, which handles the entire
USB protocol on the silicon level. The manufacturer
provides the D2XX.DLL driver, which allows full
accessibility to all the chip features through a DLL function.

Figure 5 Simulated I2C communication protocol

Figure 8 FT2232H/FPGA interfacing

Figure 9 The sample displays in the application program

This chip provides an interface between the FPGA and the
USB port with an 8 bit, bi-directional data bus, plus five
control signals and one clock signal. Figure 8 illustrates the
FT2232H/FPGA interfacing.

V. The Application
The application program of this design was written in the

visual C++ language [9] in the following 3 layer structure :
Presentation layer: for plotting all the data graphs to be
monitored by the user.
Hardware layer: continuously issuing ‘read/request’ in a
"reading worker thread" that will return one or more data
items and put the data in a queue which the data acquisition
layer can read from.
Data acquisition layer: When the data requires some kind of
interpretation, each sensor will have a thread that collects
the data, and saves it in the PC. When this thread runs, it
moves the data from the queue, shared with the hardware
layer, into its own container, and updates the current value
shared with the presentation layer.

This application is responsible for reading data from
each protocol and presenting it to the user in a graphic
oscilloscope-like form. Since the one-wire protocol is used
for temperature sensors, it will show the temperature level
number instead. Figure 9 displays an example of the
application program in operation.

VI. Conclusions
From our simulation results, we can see that the parallel
protocol is the fastest, whereas, it uses the most connective
wires. On the other hand, the I2C or one-wire protocol
requires only two wires and one wire, respectively, for the
connection, but the bit transfer rate is much slower than
general the ADC. We can use this knowledge when
considering the use of a protocol in most applications.

Finally, we may now claim that our data acquisition
system with channels for multiple protocols is a useful
solution. Consisting of input channels with individual ADC

protocols, our system allows the channels to work
independently from each other. In addition, with a large
number of I/O ports in the FPGA, it is feasible to add more
channels in the future. Eventually, we may be able to utilize
the maximum of 102 I/O ports, being the maximum number,
for this FPGA.

References

 [1] Ziad Salem, Ismail Al Kamal, Alaa Al Bashar “A Novel
Design of an Industrial Data Acquisition System”, Proceeding
of International Conference on Information and
Communication Technologies: From Theory to Applications,
ICTTA 2006. pp. 2589-2594.

[2] Jorge Yáñez, David Quintana, Camilo Quintáns, José Fariña,
Juan J. Rodríguez-Andina,” FPGA-based system for the
education in data acquisition and signal generation”,
Proceeding of Industrial Electronics Society Conference,
IECON 2005. pp. 2168-2173.

[3] A. Sagahyroon ,T. Al-khudairi, ”FPGA Based Acquisition of
Sensor Data” Proceeding of International Conference on
Industrial Technology, ICIT 2004. pp. 1398 – 1401.

[4] M. Popa, M. Marcu, A. S. Popa,” A Microcontroller Based Data
Acquisition System with USB Interface”, Proceeding of
International Conference on Electrical, Electronic and Computer
Engineering, ICEEC 2004 pp. 206-209

[5] FTDI Corporation., www.ftdichip.com, Glasgow City,
Scotland,

[6] Hamblen J., Furman M., “Rapid Prototyping of Digital
Systems”, Quartus II Edition, Springer Science+Business
Media Inc., New York, USA, 2006

[7] Dluglas L. Perry “VHDL Programming By Example”, Forth
Edition, McGraw-Hill Company, USA, 2002.

[8] Pong P. Chu “RTL Hardware Design Using VHDL”, First
Edition, John Wiley & Sons, Inc., Hoboken, Canada, 2006.

[9] George Shepherd, David Kruglinski “Programming with
Microsoft Visual C++ .NET”, Sixth Edition, Microsoft Press,
Washington, USA, 2003.

