
 
 

 

  
Abstract—The FPGA can be reconfigured both dynamically 

and partially. Such reconfigurable FPGA allows several tasks to 
be executed, placed and removed at the runtime. Therefore, the 
hardware resources management in FPGA on the online 
placement becomes very important. Most techniques for finding 
empty space are based on rectangle. In this paper, we propose an 
adaptive free space management for finding candidate space with 
rectangular or nonrectangular to place newly arriving tasks. The 
adaptive free space management uses two procedures to find all 
feasible candidate space for arriving tasks, namely C-Look and 
CSAF. Experiment results show that the proposed method 
reduces 76.49% in rejection rate, 68.12% in total task execution 
time, and 76.32% in total task waiting time.  
 

Index Terms—FPGA, free space management, candidate 
space.  

I. INTRODUCTION 
Dynamically partial reconfigurable (DPR) filed 

programmable gate arrays (FPGAs) allow hardware tasks to 
be placed and removed at the run time while other tasks in 
DPR FPGA system are still working. In such a DPR FPGA 
system, an important component of host CPU is the hardware 
task placer. The hardware task placer must find feasible 
candidate space to place a newly arriving task. 

The placement management of DPR FPGA can be classified 
into two types which are offline and online placement. Current 
researches solving the free space management of DPR FPGAs 
have focused on online placement [1][2]. Moreover, most 
researches finding empty space for new task are based on 
rectangular space [1]-[4]. 

Bazargan et al. [1] proposed a maximal empty rectangle 
(MER) management method which is broadly referenced. The 
MER will maintain the set of all maximal empty rectangles, 
only one of them will is decided when a new task can be 
placed. 

Walder et al. [3] presented three partitioners based on 
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Bazargan et al. [1]: enhanced Bazargan, On-The-Fly (OTF) 
and enhanced OTF. These enhanced methods improve the 
placement quality. They also propose a hash matrix to 
maintain all free rectangles. 

Ahmadinia et al. [4] presented a free space management 
based on contour of union of rectangles (CUR) algorithm. The 
CUR algorithm is applied to find out the contour of 
axis-parallel rectangles. A new task can be placed in any 
location within the contour of axis-parallel rectangular. After 
finding all feasible free spaces for an arriving task, they use 
routing-conscious placement method to decide an optimal 
placement such as minimum communication cost. 

In this paper, we propose an adaptive free space 
management of online placement to find all candidate space 
with rectangular or nonrectangular for placing newly arriving 
tasks. In all feasible candidate space, we use multi-strategy fit 
(MSF) strategy [5] to determine the best candidate space from 
all candidate space to place the newly arriving task. 

The rest of this paper is organized as follows. Section II 
shows how the free space is managed. The performance 
comparison of the proposed method with related works will be 
shown in Section III. Finally, Section IV draws conclusions. 

II. FREE SPACE MANAGEMENT 
First of all, we briefly describe the system model, FPGA 

model and task model in online placement system. The online 
placement system model has following several characteristics. 
First, the system model knows the properties of tasks only at 
runtime. Second, all tasks are no priority. Third, each task is 
independent work. 

In FPGA model, the FPGA surface is composed of 
homogeneous configurable logic blocks (CLBs) and is 
arranged in a two-dimensional array. The CLB cannot be 
configured alone, because currently FPGA technology 
configures reconfigurable logic resources by column-based. 
We also assume that when configuration area is enough, then 
sufficient routing resources are able to meet the requirements 
of the arriving task.  

In task model, the parameters of a single task comprise task 
index, task height, task width and task area. Each task area is 
equal to the number of CLBs. The shape of tasks can be rotated 
or segmented. The communication cost and I/O routes are not 
considered in the task while the task is placed. A more detailed 
description of system model, FPGA model and task model are 
described in [5]. In the following, proposed efficient free 
space management for DPR FPGAs is described. 
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A. Free Space Matrix 
In [6], the free space matrix uses two forms of 

one-dimensional array to maintain a two-dimensional array 
with columns and rows. So, it must scans x axis (column) and y 
axis (row) two times that is spending time. Moreover, the 
method only records the free space length of each row and 
column. Consequently, this method is not apt to find out the 
continuous free space of rectangle or nonrectangle.  

For improving the drawback, our proposed method can 
solve the limit by recording row information only. Assume 
that a placement situation of FPGA surface is shown in Fig. 1. 
The proposed method only maintains free space information of 
rows (called R) in the FPGA surface of two-dimensional 
arrays, which is given by 
 

R = {ri | i ∈ (1, 2, … , H)}, where i is ith row 
with 
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, where 
j = segmentation quantity of free space in ith row (FSi) 
csj = continuous space quantity of jth segmentation 
spj = starting point of jth segmentation 
 
For example, Fig. 1 shows an FPGA dimension with 10 

rows and 10 columns. In this figure, r3 = (6, 1) represents 6 
units continuous space (cs) and the starting point (sp) form 
column 1 respectively in third row. The other example, r8 = 
{(2, 1), (1, 6), (1, 10)}, represents three segmentations of free 
space (j) in the eighth row. 

B.  Resolve Candidate Space 
The proposed method includes two procedures to search 

candidate space for online placement. The first procedure 
(C-Look) searches rectangular candidate space that has to 
meet the form of incoming task. The second procedure (CSAF) 
searches nonrectangular candidate that has to equal or exceed 
the area of incoming task. These two procedures are detailed 
described in Subsection II.B.1 and II.B.2, respectively. 

B.1 Circular Look 
When a new task requires to load into an FPGA, there might 

be a lot of candidate spaces for devoting the newly incoming 
task. Therefore, we propose a procedure called circular look 
(C-Look) [7] to select all feasible rectangular candidate space 
for incoming task. In this procedure, all of x axis (columns) 
and y axis (rows) in the FPGA surface must be scanned. But, if 
there are spaces already used in the scanning range, these 
spaces will be left out. For example, when a configuration of 
new task is required, then the scanning range of FPGA surface 
is illustrated as Fig. 2. Because the scanning range of FPGA 
surface is according to the column (tCol) and row (tRow) of 
incoming task (see Fig. 2(a)), the scanning range (sCol and 
sRow) of FPGA surface can be reduced, as shown in Fig. 2(b). 
The scanning range of FPGA surface are given by 
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Fig. 1: Free space matrices 
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Fig. 2: (a) Incoming task (b) Scanning range of FPGA surface 
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, where 
si ⊂ i of ri, (sith row in the FPGA surface) 
sj ⊆ (sj ∩ rsi), (sjth column in the FPGA surface) 
 
In addition, if the C-Look has found candidate space (cas) 

in sjth column (represented cassj = True), then C-Look could 
leave sjth column out in the future scanning. Therefore, the 
new scanning range of sCol is given by 
 

|  { : (   rue)}nsj sjsCol nsj sj cas∈ ∃ ≠ Τ  

, where  
nsj = the new scanning rang for column in FPGA 

 
Consequently, the C-Look procedure can reduce a lot of 
scanning ranges. 

While searching for candidate spaces, each free space will 
check resources which are delimited to rectangular have been 
used or not. If there is a totally free space, this space has 
candidacy. The candidate space is given by Ck = (sRowsi, 
sColnsj, tRow, tCol), where k is the number of candidate space. 
Moreover, the upper bound of k is (Column – tCol + 1). 



 
 

 

An example for searching the candidate space by C-Look is 
shown in Fig. 3. In this example, the scanning ranges of 
C-Look are sRowsi = {1, 2, … , 8} and sColsj = {1, 2, … , 9}. 
Moreover, the C-Look only scans free space in the FPGA 
surface such as (sRow1, sCol6) and (sRow1, sCol7) and so on. 
When the candidate C1 = (3, 5, 3, 2) is found, the scanning of 
sRow4 to sRow8 will leave out the sCol5 (cas5 = True). 
Similarly, when the candidate C2 = (5, 6, 3, 2) is found, the 
scanning of sRow6 to sRow8 will leave out the sCol6 (cas6 = 
True). 

B.2 Continuous Space of Arbitrary Form 
If the C-Look failed to get the candidate space, then the 

second proposed procedure called continuous space of 
arbitrary form (CSAF) is used to search candidate space. The 
CSAF improved from a widely known algorithm contour of 
union of rectangles (CUR) [4][8]-[11] for finding the feasible 
continuous space of arbitrary form. The CSAF is based on the 
observation that the free space consists of serial continuous 
rectangle spaces, as shown in the Fig. 4. The Fig. 4(a) has four 
rectangles which can be integrated into a single nonrectangle 
shown as Fig. 4(b). 

Given a continuous space structure which is shown in the 
Fig. 5(a). The data structure of arbitrary continuous space (acs) 
is associated with free space matrix ri. The symbols of acs data 
structure are defined as following: spcr and epcr are represented 
as start point and terminal point, where cr represents scan line 
in the ith row at present (scan by row). seg and ta are 
represented as the number of segmentation in acs and total 
area of continuous space. 

The spcr and epcr are used for checking whether it has 
connection with free space of the next row (represented cr+1). 
If FSi has connection with acs, the spcr, epcr and ta are given by 
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, where spj and csj ∈ rcr, moreover, cr ∈ i of ri (rcr ∈ ri) 
 
Firstly, when the scan line is in r1 (cr = 1), the CSAF can get 

two independent continuous spaces (acs1 and acs2), as shown 
in Fig. 5(b). Next, when the scan line is in r2 (cr = 2), then the 
acs1 and acs2 are changed, as shown Fig. 5(c). Thirdly, when 
the scan line is in r3 (cr = 3), the continuous space and form of 
acs1 are determined because free space in r3 has no connection 
with acs1, as shown in Fig. 5(d). Moreover, the acs2 is 
redefined again. Finally, when the scan line is in r4 (cr = 4), the 
continuous space and form of acs2 are determined because free 
space in r4 has not connection with acs2, as shown in Fig. 5(e). 
Moreover, the CSAF can get a new independent continuous 
space (acs3). 

The CSAF may encounter three kinds of situations, while 
CSAF searches for continuous space of the arbitrary form. The 
three kinds of situation are branch to merge (BM), merge to 
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Fig. 3: An example for of searching the candidate space by 
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Fig. 4: Free space of arbitrary form consists of simple 
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Typedef struct Area {
(spcr, epcr)seg;
Total area (ta);

} Arbitrary Continuous Space (acs);
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Fig. 5: (a) Continuous space structure (b) Scan line in r1 (c) 
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branch (MB) and BM mix with MB which are shown in Fig. 6. 
In Fig. 6(a), first, there are two independent acs (acs1 and acs2) 
at the beginning. Second, a rectangle of x to x' joins acs1 with 
acs2. Finally, two independent acs merge into one acs. 
Moreover, ta is sum of the area of three rectangles. In Fig. 6(b), 
one acs is divided into two rectangles (l1 and l2). However, 
these branches are still the same acs. Therefore, the acs has 
two groups of spcr and epcr (represented seg = 2). In Fig. 6(c), 
firstly, the preceding part is the same as Fig. 6(b). Next, a 
rectangle of x to x' combined this branch. Therefore, the seg 
reduces form two groups to one group. The ta is sum of the 
area of four rectangles. 

For example, the Fig. 7 shows a result of searching 
candidate space of arbitrary form. In this example, we use 
CSAF procedure to search the continuous space (see Fig. 7(a)) 
that can get acs1 and acs2, as shown in Fig. 7(b). However,  
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Fig. 7: A set of existing arbitrary continuous spaces (white) on 

a partially reconfigurable FPGA 
 
these acs(ta) have to equal or exceed the area of incoming task. 
If the acs(ta) is smaller than the area of incoming task, this acs 
will not has candidacy. Therefore, the acs must accord with 
the following condition that is given by 
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In the CSAF procedure, the candidate space Ck is redefined 

as following. The Ck area can be a continuous space of 
arbitrary (acs) form. The Ck area has to equal or be greater than 
the area of incoming task. Note that the acs area may be 
greater than the area of incoming task. Therefore, each acs 
may has a lot of candidate spaces. 

The candidate spaces for newly arriving task are selected by 
C-Look procedure or CSAF procedure in free space 
management. A fitter is used to find the best candidate space 
from all feasible candidate space to allocate for newly arriving 
task. The fitter has been developed in [5]. The fitter considers 
time factor, fragmentation factor and modifiability factor, in 
order to improve time overhead and placement quality, such as 
rejection rate and fragmentation. A more detailed description 
of fitting strategy is described in [5]. 

C. Adaptive Free Space Management Algorithm 
The detailed flow of proposed adaptive free space 

management (AFSM) will be described in this subsection. The 
algorithm proposed adaptive free space management is shown 
in Fig. 8. The AFSM algorithm consists of two procedures 
which describe in the following. 

Adaptive Free Space Management (AFSM)
Input: FPGA resources status, incoming task information (tRow and tCol)
Output: All feasible candidate space for newly arriving task
begin
1 If (ASFM has newly arriving task requirement) 
2 { If (the number of free space greater than incoming task area) 
3 { cs C-Look(tRow, tCol); /*Find all candidate spaces (cs).*/
4 If (cs > 0) 
5           Return all candidate spaces;
6 Else
7     { cs CSAF(tRow, tCol); /*Find all candidate spaces (cs).*/
8 If (cs > 0)
9              Return all candidate spaces;
10           Else
11 Return the incoming task is rejected;
12 }
13     }
14     Else
15       Return the incoming task is rejected;
16  } 
end  

Fig. 8: Adaptive free space management algorithm 
 

In step 1, the AFSM receives a newly arriving task 
requirement from DPR FPGA system. Next, if the number of 
free space in DPR FPGA is greater than newly incoming task 
area, then steps 3 to 13 are executed. Otherwise, AFSM will 
return a message that newly arriving task is rejected (step 15). 
In step 3, C-Look procedure will find all feasible candidate 
space for arriving task according to task information, tRow and 
tCol. If candidate space for arriving task is found by C-Look 
(cs > 0, step 4), the AFSM will return all feasible candidate 
space to fitter (step 5). Moreover, the flow of AFSM will be 
end. If the C-Look procedure failed to get the candidate space, 
then the second procedure CSAF is used to search candidate 
space (Step 7). If candidate space for arriving task is found by 
CSAF (cs > 0, step 8), the AFSM will return all feasible 
candidate space to fitter (step 9). Moreover, the flow of AFSM 
will be end. If the CSAF procedure failed to get the candidate 
space, then AFSM will return a message that newly arriving 
task is rejected (step 11). 

III. EXPERIMENT RESULTS 
The proposed adaptive free space management of online 

placement has been evaluated and compared in this section. 
The experiment environment uses Dev-C++ compiler to 
evaluate the performance of proposed method. Moreover, 
measurement environment have been implemented on a 
Pentium D 3GHz PC running under the Windows XP 
operating system. We assume an FPGA with size of 96x40 
CLBs, corresponding to the Xilinx Virtex device. 

In the experimentation framework, we have randomly 
generated three different kinds of task sets. All of task sets are 
composed of 1000 tasks which have to be placed on the FPGA. 
In other words, all of tasks must be executed. Moreover, we 
assumption those tasks are independence and there are no 
priority. The size of task dimensions is between 5 to 100 CLBs. 
In addition, the execution time and the arrival time of tasks are 
distributed form 20 to 200 time units and 1 to 3 time units, 
respectively. 



 
 

 

TABLE I. Performance comparison with related works 

BL[1] LIF[16] BFIT[17] Our BL[1] LIF[16] BFIT[17] Our BL[1] LIF[16] BFIT[17] Our
Task Set 1 37.3% 16.7% 35.1% 5.8% 16391 10590 15988 4652 421798 181036 442579 73717
Task Set 2 36.0% 16.6% 29.9% 7.0% 16105 9947 18230 4777 398985 155512 375425 67032
Task Set 3 32.9% 13.5% 32.9% 4.4% 19557 9645 18345 3971 396168 143729 428418 50893
Average 35.4% 15.6% 32.6% 5.7% 17351 10060.7 17521 4466.7 405650.3 160092.3 415474 63880.7
Reduced – – – 76.49% – – – 68.12% – – – 76.32%

Rejection Rate TT Execution Time TT Waiting Time

 
TT: Total task. Reduced: the new method compared to [1], [16] and [17], for example (Rejection Rate), {[(35.4-5.7)/35.4] + [(15.6-5.7)/15.6] + 
[(32.6-5.7)/32.6]}/3 = 76.49% 
 

We also consider an important factor which is to interfere in 
other tasks of the same columns while the configuration of 
new task is required. Then, the influenced tasks will be 
suspended during the configuration of new task [2][12]-[14] 
that causes extra time overhead to save and restore them [15]. 
Therefore, we assume the interfered time is 3 time units. 

Table I compare the rejection rate, execution time and 
waiting time of the method of Bazargan et al. [1], S. P. Fekete 
et al. [16] and M. Esmaeildoust et al. [17], with that of the 
proposed method. The column “Rejection Rate” in Table I, 
clearly, the proposed method on the average has the less 
rejection rate in all task sets. Therefore, the proposed method 
reduces 76.49% compared with the [1], [16] and [17]. The 
columns “TT Execution Time” and “TT Waiting Time” in 
Table I, we have considered the three factors [5] in this work. 
Clearly, the proposed method requires less execution time and 
waiting time in all task sets. Therefore, the proposed method 
reduces 68.12% and 76.32% compared with the [1], [16] and 
[17]. 

IV. CONCLUSION 
In this paper, an adaptive free space management of online 

placement to find all candidate space for placing newly 
arriving tasks in DPR FPGA systems is presented. Moreover, 
the proposed method uses C-Look and CSAF procedures to 
find the candidate spaces with rectangular and nonrectangular. 
The experimental results show that our proposed method 
reduces 76.49% in rejection rate, reduces 68.12% in total task 
execution time and reduces 76.32% in total task waiting time. 
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