

Abstract—The FPGA can be reconfigured both dynamically

and partially. Such reconfigurable FPGA allows several tasks to
be executed, placed and removed at the runtime. Therefore, the
hardware resources management in FPGA on the online
placement becomes very important. Most techniques for finding
empty space are based on rectangle. In this paper, we propose an
adaptive free space management for finding candidate space with
rectangular or nonrectangular to place newly arriving tasks. The
adaptive free space management uses two procedures to find all
feasible candidate space for arriving tasks, namely C-Look and
CSAF. Experiment results show that the proposed method
reduces 76.49% in rejection rate, 68.12% in total task execution
time, and 76.32% in total task waiting time.

Index Terms—FPGA, free space management, candidate
space.

I. INTRODUCTION
Dynamically partial reconfigurable (DPR) filed

programmable gate arrays (FPGAs) allow hardware tasks to
be placed and removed at the run time while other tasks in
DPR FPGA system are still working. In such a DPR FPGA
system, an important component of host CPU is the hardware
task placer. The hardware task placer must find feasible
candidate space to place a newly arriving task.

The placement management of DPR FPGA can be classified
into two types which are offline and online placement. Current
researches solving the free space management of DPR FPGAs
have focused on online placement [1][2]. Moreover, most
researches finding empty space for new task are based on
rectangular space [1]-[4].

Bazargan et al. [1] proposed a maximal empty rectangle
(MER) management method which is broadly referenced. The
MER will maintain the set of all maximal empty rectangles,
only one of them will is decided when a new task can be
placed.

Walder et al. [3] presented three partitioners based on

Manuscript received December 30, 2009. This work was supported in part

by National Science Council, ROC under Grant NSC-98-2221-E-027-071.
Trong-Yen Lee is with the Department of Electronic Engineering, National

Taipei University of Technology, Taipei, Taiwan ROC. (e-mail:
tylee@ntut.edu.tw).

Che-Cheng Hu registered Ph. D. at the Institute of Computer and
Communication, National Taipei University of Technology, Taipei, Taiwan
ROC. (e-mail: s4419010@ntut.edu.tw).

Chia-Chun Tsai is with the Department of Computer Science and
Information Engineering, Nanhua University, Chia-Yi, Taiwan, ROC. (e-mail:
chun@mail.nhu.edu.tw).

Bazargan et al. [1]: enhanced Bazargan, On-The-Fly (OTF)
and enhanced OTF. These enhanced methods improve the
placement quality. They also propose a hash matrix to
maintain all free rectangles.

Ahmadinia et al. [4] presented a free space management
based on contour of union of rectangles (CUR) algorithm. The
CUR algorithm is applied to find out the contour of
axis-parallel rectangles. A new task can be placed in any
location within the contour of axis-parallel rectangular. After
finding all feasible free spaces for an arriving task, they use
routing-conscious placement method to decide an optimal
placement such as minimum communication cost.

In this paper, we propose an adaptive free space
management of online placement to find all candidate space
with rectangular or nonrectangular for placing newly arriving
tasks. In all feasible candidate space, we use multi-strategy fit
(MSF) strategy [5] to determine the best candidate space from
all candidate space to place the newly arriving task.

The rest of this paper is organized as follows. Section II
shows how the free space is managed. The performance
comparison of the proposed method with related works will be
shown in Section III. Finally, Section IV draws conclusions.

II. FREE SPACE MANAGEMENT
First of all, we briefly describe the system model, FPGA

model and task model in online placement system. The online
placement system model has following several characteristics.
First, the system model knows the properties of tasks only at
runtime. Second, all tasks are no priority. Third, each task is
independent work.

In FPGA model, the FPGA surface is composed of
homogeneous configurable logic blocks (CLBs) and is
arranged in a two-dimensional array. The CLB cannot be
configured alone, because currently FPGA technology
configures reconfigurable logic resources by column-based.
We also assume that when configuration area is enough, then
sufficient routing resources are able to meet the requirements
of the arriving task.

In task model, the parameters of a single task comprise task
index, task height, task width and task area. Each task area is
equal to the number of CLBs. The shape of tasks can be rotated
or segmented. The communication cost and I/O routes are not
considered in the task while the task is placed. A more detailed
description of system model, FPGA model and task model are
described in [5]. In the following, proposed efficient free
space management for DPR FPGAs is described.

Adaptive Free Space Management of Online
Placement for Reconfigurable Systems

Trong-Yen Lee, Che-Cheng Hu, and Chia-Chun Tsai

A. Free Space Matrix
In [6], the free space matrix uses two forms of

one-dimensional array to maintain a two-dimensional array
with columns and rows. So, it must scans x axis (column) and y
axis (row) two times that is spending time. Moreover, the
method only records the free space length of each row and
column. Consequently, this method is not apt to find out the
continuous free space of rectangle or nonrectangle.

For improving the drawback, our proposed method can
solve the limit by recording row information only. Assume
that a placement situation of FPGA surface is shown in Fig. 1.
The proposed method only maintains free space information of
rows (called R) in the FPGA surface of two-dimensional
arrays, which is given by

R = {ri | i ∈ (1, 2, … , H)}, where i is ith row
with

{() (1 2)}, if 0
 2

(0 0), if 0

j j i
i

i

Wcs , sp | j , , ... , FS
r

, FS

⎧ ∈ >⎪= ⎨
⎪ =⎩

, where
j = segmentation quantity of free space in ith row (FSi)
csj = continuous space quantity of jth segmentation
spj = starting point of jth segmentation

For example, Fig. 1 shows an FPGA dimension with 10

rows and 10 columns. In this figure, r3 = (6, 1) represents 6
units continuous space (cs) and the starting point (sp) form
column 1 respectively in third row. The other example, r8 =
{(2, 1), (1, 6), (1, 10)}, represents three segmentations of free
space (j) in the eighth row.

B. Resolve Candidate Space
The proposed method includes two procedures to search

candidate space for online placement. The first procedure
(C-Look) searches rectangular candidate space that has to
meet the form of incoming task. The second procedure (CSAF)
searches nonrectangular candidate that has to equal or exceed
the area of incoming task. These two procedures are detailed
described in Subsection II.B.1 and II.B.2, respectively.

B.1 Circular Look
When a new task requires to load into an FPGA, there might

be a lot of candidate spaces for devoting the newly incoming
task. Therefore, we propose a procedure called circular look
(C-Look) [7] to select all feasible rectangular candidate space
for incoming task. In this procedure, all of x axis (columns)
and y axis (rows) in the FPGA surface must be scanned. But, if
there are spaces already used in the scanning range, these
spaces will be left out. For example, when a configuration of
new task is required, then the scanning range of FPGA surface
is illustrated as Fig. 2. Because the scanning range of FPGA
surface is according to the column (tCol) and row (tRow) of
incoming task (see Fig. 2(a)), the scanning range (sCol and
sRow) of FPGA surface can be reduced, as shown in Fig. 2(b).
The scanning range of FPGA surface are given by

T1
T2

T3

T4

T7

T6

T9

T8

1 2 3 4 5 76 8 9 10
10

9
8

7
6

4

5

3
2
1

(4, 7)
(6, 1)

(2, 1), (1, 6), (1, 10)
(2, 6)

(6, 5)
(6, 5)
(2, 5)

(6, 1)

(1, 6)
(2, 6)

T5

R
Column (W)

R
ow

 (H
)

Fig. 1: Free space matrices

tCol = 4

tR
ow

=
3

Column

R
ow

sCol
sR

ow
1

10

1 10Incoming task
(a) (b)

2 3 4 5 6 7 8 9

2
3
4
5
6
7
8
9

Fig. 2: (a) Incoming task (b) Scanning range of FPGA surface

s

{1, 2, ... , (1)}

s {1, 2, ... , (1)}
si

j

sRow si Row - tRow +

sCol j Column - tCol +

∈

∈

and
∀(sRowsi, sColsj) ∈ Free space

, where
si ⊂ i of ri, (sith row in the FPGA surface)
sj ⊆ (sj ∩ rsi), (sjth column in the FPGA surface)

In addition, if the C-Look has found candidate space (cas)

in sjth column (represented cassj = True), then C-Look could
leave sjth column out in the future scanning. Therefore, the
new scanning range of sCol is given by

| { : (rue)}nsj sjsCol nsj sj cas∈ ∃ ≠ Τ

, where
nsj = the new scanning rang for column in FPGA

Consequently, the C-Look procedure can reduce a lot of
scanning ranges.

While searching for candidate spaces, each free space will
check resources which are delimited to rectangular have been
used or not. If there is a totally free space, this space has
candidacy. The candidate space is given by Ck = (sRowsi,
sColnsj, tRow, tCol), where k is the number of candidate space.
Moreover, the upper bound of k is (Column – tCol + 1).

An example for searching the candidate space by C-Look is
shown in Fig. 3. In this example, the scanning ranges of
C-Look are sRowsi = {1, 2, … , 8} and sColsj = {1, 2, … , 9}.
Moreover, the C-Look only scans free space in the FPGA
surface such as (sRow1, sCol6) and (sRow1, sCol7) and so on.
When the candidate C1 = (3, 5, 3, 2) is found, the scanning of
sRow4 to sRow8 will leave out the sCol5 (cas5 = True).
Similarly, when the candidate C2 = (5, 6, 3, 2) is found, the
scanning of sRow6 to sRow8 will leave out the sCol6 (cas6 =
True).

B.2 Continuous Space of Arbitrary Form
If the C-Look failed to get the candidate space, then the

second proposed procedure called continuous space of
arbitrary form (CSAF) is used to search candidate space. The
CSAF improved from a widely known algorithm contour of
union of rectangles (CUR) [4][8]-[11] for finding the feasible
continuous space of arbitrary form. The CSAF is based on the
observation that the free space consists of serial continuous
rectangle spaces, as shown in the Fig. 4. The Fig. 4(a) has four
rectangles which can be integrated into a single nonrectangle
shown as Fig. 4(b).

Given a continuous space structure which is shown in the
Fig. 5(a). The data structure of arbitrary continuous space (acs)
is associated with free space matrix ri. The symbols of acs data
structure are defined as following: spcr and epcr are represented
as start point and terminal point, where cr represents scan line
in the ith row at present (scan by row). seg and ta are
represented as the number of segmentation in acs and total
area of continuous space.

The spcr and epcr are used for checking whether it has
connection with free space of the next row (represented cr+1).
If FSi has connection with acs, the spcr, epcr and ta are given by

1

1

(of)

cr j

cr j j

cr

j i
i

sp sp

ep cs sp

ta cs r
=

=

= + −

= ∑

, where spj and csj ∈ rcr, moreover, cr ∈ i of ri (rcr ∈ ri)

Firstly, when the scan line is in r1 (cr = 1), the CSAF can get

two independent continuous spaces (acs1 and acs2), as shown
in Fig. 5(b). Next, when the scan line is in r2 (cr = 2), then the
acs1 and acs2 are changed, as shown Fig. 5(c). Thirdly, when
the scan line is in r3 (cr = 3), the continuous space and form of
acs1 are determined because free space in r3 has no connection
with acs1, as shown in Fig. 5(d). Moreover, the acs2 is
redefined again. Finally, when the scan line is in r4 (cr = 4), the
continuous space and form of acs2 are determined because free
space in r4 has not connection with acs2, as shown in Fig. 5(e).
Moreover, the CSAF can get a new independent continuous
space (acs3).

The CSAF may encounter three kinds of situations, while
CSAF searches for continuous space of the arbitrary form. The
three kinds of situation are branch to merge (BM), merge to

1 2 3 4 5 76 8 9 10
10

9
8

7
6

4

5

3
2
1

Column

R
ow

Incoming Task

1 2

1

2
3

C1

C2

Fig. 3: An example for of searching the candidate space by

C-Look

Rect. 1

Rect. 2

Rect. 3 Re
ct

. 4
(a) (b)

Non-Rectangle

Fig. 4: Free space of arbitrary form consists of simple

geometry

Typedef struct Area {
(spcr, epcr)seg;
Total area (ta);

} Arbitrary Continuous Space (acs);

r1

r3

ri

....
....

Sc
an

ni
ng

: Task

: Free spaces r1

acs1={(1, 3)1, 3}

acs2={(5, 5)1, 1}

(a)

r2

acs1={(1, 2)1, 5}

acs2={(4, 5)1, 3}

(b)

(c)

r3

acs2={(3, 5)1, 6}

(d)

acs1 is determined

r4

acs3={(1, 2)1, 2}

(e)

acs2 is determined

R

Fig. 5: (a) Continuous space structure (b) Scan line in r1 (c)

Scan line in r2 (d) Scan line in r3 (e) Scan line in r4

branch (MB) and BM mix with MB which are shown in Fig. 6.
In Fig. 6(a), first, there are two independent acs (acs1 and acs2)
at the beginning. Second, a rectangle of x to x' joins acs1 with
acs2. Finally, two independent acs merge into one acs.
Moreover, ta is sum of the area of three rectangles. In Fig. 6(b),
one acs is divided into two rectangles (l1 and l2). However,
these branches are still the same acs. Therefore, the acs has
two groups of spcr and epcr (represented seg = 2). In Fig. 6(c),
firstly, the preceding part is the same as Fig. 6(b). Next, a
rectangle of x to x' combined this branch. Therefore, the seg
reduces form two groups to one group. The ta is sum of the
area of four rectangles.

For example, the Fig. 7 shows a result of searching
candidate space of arbitrary form. In this example, we use
CSAF procedure to search the continuous space (see Fig. 7(a))
that can get acs1 and acs2, as shown in Fig. 7(b). However,

(a)
acs1 acs2

acs1={(xl1, xl1`)1, (xl2, xl2`)2, ta}acs1={(x, x`)1, ta}

acs1 (the same as (b))

x x`

(b)
acs1

acs1={(x, x`)1, ta}

x x`

(c)

l1 l2

Fig. 6: The three kinds of situations in CSAF that may meet: (a)
BM, two independent acs merge into one acs (b) MB, a acs
has branches (seg = 2) (c) BM mix with MB, a acs has the

branch and mergence

Column

R
ow acs2

: Task : Free spaces
(a) (b)

acs1

Fig. 7: A set of existing arbitrary continuous spaces (white) on

a partially reconfigurable FPGA

these acs(ta) have to equal or exceed the area of incoming task.
If the acs(ta) is smaller than the area of incoming task, this acs
will not has candidacy. Therefore, the acs must accord with
the following condition that is given by

⎩
⎨
⎧

×<
×≥

candidacy no,
candidacy has,

)(
tColtRow
tColtRow

taacs

In the CSAF procedure, the candidate space Ck is redefined

as following. The Ck area can be a continuous space of
arbitrary (acs) form. The Ck area has to equal or be greater than
the area of incoming task. Note that the acs area may be
greater than the area of incoming task. Therefore, each acs
may has a lot of candidate spaces.

The candidate spaces for newly arriving task are selected by
C-Look procedure or CSAF procedure in free space
management. A fitter is used to find the best candidate space
from all feasible candidate space to allocate for newly arriving
task. The fitter has been developed in [5]. The fitter considers
time factor, fragmentation factor and modifiability factor, in
order to improve time overhead and placement quality, such as
rejection rate and fragmentation. A more detailed description
of fitting strategy is described in [5].

C. Adaptive Free Space Management Algorithm
The detailed flow of proposed adaptive free space

management (AFSM) will be described in this subsection. The
algorithm proposed adaptive free space management is shown
in Fig. 8. The AFSM algorithm consists of two procedures
which describe in the following.

Adaptive Free Space Management (AFSM)
Input: FPGA resources status, incoming task information (tRow and tCol)
Output: All feasible candidate space for newly arriving task
begin
1 If (ASFM has newly arriving task requirement)
2 { If (the number of free space greater than incoming task area)
3 { cs C-Look(tRow, tCol); /*Find all candidate spaces (cs).*/
4 If (cs > 0)
5 Return all candidate spaces;
6 Else
7 { cs CSAF(tRow, tCol); /*Find all candidate spaces (cs).*/
8 If (cs > 0)
9 Return all candidate spaces;
10 Else
11 Return the incoming task is rejected;
12 }
13 }
14 Else
15 Return the incoming task is rejected;
16 }
end

Fig. 8: Adaptive free space management algorithm

In step 1, the AFSM receives a newly arriving task
requirement from DPR FPGA system. Next, if the number of
free space in DPR FPGA is greater than newly incoming task
area, then steps 3 to 13 are executed. Otherwise, AFSM will
return a message that newly arriving task is rejected (step 15).
In step 3, C-Look procedure will find all feasible candidate
space for arriving task according to task information, tRow and
tCol. If candidate space for arriving task is found by C-Look
(cs > 0, step 4), the AFSM will return all feasible candidate
space to fitter (step 5). Moreover, the flow of AFSM will be
end. If the C-Look procedure failed to get the candidate space,
then the second procedure CSAF is used to search candidate
space (Step 7). If candidate space for arriving task is found by
CSAF (cs > 0, step 8), the AFSM will return all feasible
candidate space to fitter (step 9). Moreover, the flow of AFSM
will be end. If the CSAF procedure failed to get the candidate
space, then AFSM will return a message that newly arriving
task is rejected (step 11).

III. EXPERIMENT RESULTS
The proposed adaptive free space management of online

placement has been evaluated and compared in this section.
The experiment environment uses Dev-C++ compiler to
evaluate the performance of proposed method. Moreover,
measurement environment have been implemented on a
Pentium D 3GHz PC running under the Windows XP
operating system. We assume an FPGA with size of 96x40
CLBs, corresponding to the Xilinx Virtex device.

In the experimentation framework, we have randomly
generated three different kinds of task sets. All of task sets are
composed of 1000 tasks which have to be placed on the FPGA.
In other words, all of tasks must be executed. Moreover, we
assumption those tasks are independence and there are no
priority. The size of task dimensions is between 5 to 100 CLBs.
In addition, the execution time and the arrival time of tasks are
distributed form 20 to 200 time units and 1 to 3 time units,
respectively.

TABLE I. Performance comparison with related works

BL[1] LIF[16] BFIT[17] Our BL[1] LIF[16] BFIT[17] Our BL[1] LIF[16] BFIT[17] Our
Task Set 1 37.3% 16.7% 35.1% 5.8% 16391 10590 15988 4652 421798 181036 442579 73717
Task Set 2 36.0% 16.6% 29.9% 7.0% 16105 9947 18230 4777 398985 155512 375425 67032
Task Set 3 32.9% 13.5% 32.9% 4.4% 19557 9645 18345 3971 396168 143729 428418 50893
Average 35.4% 15.6% 32.6% 5.7% 17351 10060.7 17521 4466.7 405650.3 160092.3 415474 63880.7
Reduced – – – 76.49% – – – 68.12% – – – 76.32%

Rejection Rate TT Execution Time TT Waiting Time

TT: Total task. Reduced: the new method compared to [1], [16] and [17], for example (Rejection Rate), {[(35.4-5.7)/35.4] + [(15.6-5.7)/15.6] +
[(32.6-5.7)/32.6]}/3 = 76.49%

We also consider an important factor which is to interfere in
other tasks of the same columns while the configuration of
new task is required. Then, the influenced tasks will be
suspended during the configuration of new task [2][12]-[14]
that causes extra time overhead to save and restore them [15].
Therefore, we assume the interfered time is 3 time units.

Table I compare the rejection rate, execution time and
waiting time of the method of Bazargan et al. [1], S. P. Fekete
et al. [16] and M. Esmaeildoust et al. [17], with that of the
proposed method. The column “Rejection Rate” in Table I,
clearly, the proposed method on the average has the less
rejection rate in all task sets. Therefore, the proposed method
reduces 76.49% compared with the [1], [16] and [17]. The
columns “TT Execution Time” and “TT Waiting Time” in
Table I, we have considered the three factors [5] in this work.
Clearly, the proposed method requires less execution time and
waiting time in all task sets. Therefore, the proposed method
reduces 68.12% and 76.32% compared with the [1], [16] and
[17].

IV. CONCLUSION
In this paper, an adaptive free space management of online

placement to find all candidate space for placing newly
arriving tasks in DPR FPGA systems is presented. Moreover,
the proposed method uses C-Look and CSAF procedures to
find the candidate spaces with rectangular and nonrectangular.
The experimental results show that our proposed method
reduces 76.49% in rejection rate, reduces 68.12% in total task
execution time and reduces 76.32% in total task waiting time.

REFERENCES
[1] K. Bazargan, R. Kastner, and M. Sarrafzadeh, “Fast template placement

for reconfigurable computing systems,” IEEE Design and Test of
Computers, Vol. 17, pp. 68-83, 2000.

[2] A. Ahmadinia and J. Teich, “Speeding up online placement for XILINX
FPGAs by reducing configuration overhead,” in Proceedings of the IFIP
International Conference on VLSISOC, Dec. 2003, pp. 118-122.

[3] H. Walder, C. Steiger, and M. Platzner, “Fast online task placement on
FPGAs: Free space partitioning and 2D-hashing,” in Proceedings of the
International Parallel and Distributed Processing Symposium, April
22-26, 2003, p. 178.

[4] A. Ahmadinia, C. Bobda, S. P. Fekete, J. Teich, and J. v.d. Veen,
“Optimal free-space management and routing-conscious dynamic
placement for reconfigurable devices,” IEEE Transactions on
Computers, Vol. 56, pp. 673-680, May 2007.

[5] Trong-Yen Lee, Che-Cheng Hu, and Chia-Chun Tsai, “Multi-Strategy
Online Placement for Dynamically Partial Reconfigurable Device,” in
Proceedings of the International Conference on High-Speed Circuits
Design, October 26-27, 2009, pp. H-20-H-26.

[6] A. A. ElFarag, H. M. El-Boghdadi, and S. I. Shaheen, “Fragmentation
aware placement in reconfigurable devices,” in Proceedings of the 6th
International Workshop on System on Chip for Real Time Applications,
Dec. 2006, pp. 37-44.

[7] M. Javad and I. Khan, “Simulation and performance comparison of four
disk scheduling algorithms,” in Proceedings of the IEEE TENCON 2000,
September 24-27, 2000, pp. 10-15.

[8] A. Ahmadinia, C. Bobda, S. P. Fekete, J. Teich, and J. v.d. Veen,
“Optimal routing-conscious dynamic placement for reconfigurable
devices,” in Proceeding of the Field Programmable Logic and
Applications, August 2004, pp. 847-851.

[9] R.H. Gu¨ ting, “An Optimal Contour Algorithm for ISO-Oriented
Rectangles,” J. Algorithms, vol. 5, pp. 303-326, 1984.

[10] W. Lipski Jr. and F.P. Preparata, “Finding the Contour of a Union of
ISO-Oriented Rectangles,” J. Algorithms, Vol. 1, pp. 235-246, 1980,
errata in 2 (1981), 105; corrigendum in 3 (1982), 301-302.

[11] F.P. Preparata and M.I. Shamos, Computational Geometry: An
Introduction. Springer, 1985.

[12] Xilinx, Inc. “Virtex series configuration architecture user guide,” Xilinx
XAPP151 v1.7, October 20, 2004.
http://www.xilinx.com/bvdocs/appnotes/xapp151.pdf

[13] D. Mesquita, F. Moraes, J. P. L. Möller, and N. Calazans, “Remote and
Partial Reconfiguration of FPGA: tools and trends,” in Proceedings of
the International Parallel and Distributed Processing Symposium /
Reconifgurable Architectures Workshop, April 2003, p. 8.

[14] H. Walder and M. Platzner, “Online Scheduling for Block-partitioned
Reconfigurable Devices,” in Proceedings of the Design Automation and
Test in Europe, 2003, pp. 290-295.

[15] L. Levinson, R. Männer, M. Sessler, and H. Simmler, “Preemptive
Multitasking on FPGAs,” in Proceedings of the Field-Programmable
Custom Computing Machines Symposium, 2000, pp. 301-302.

[16] S. P. Fekete, Jan C. van der Veen, A. Ahmadinia, D. Göhringer, M.
Majer, and J. Teich, “Offline and online aspects of defragmenting the
module layout of a partially reconfigurable device,” IEEE Transactions
on Very Large Scale Integration Systems, Vol. 16, pp. 1210-1219,
September 2008.

[17] M. Esmaeildoust, M. Fazlali, A. Zakerolhosseini, and M. Karimi,
“Fragmentation aware placement algorithm for a reconfigurable
system,” in Proceedings of the Second International Conference on
Electrical Engineering, March 25-26, 2008, pp. 1-5.

