
Efficient Algorithm for the Paired-Domination Problem in

Convex Bipartite Graphs

Ruo-Wei Hung∗†, Chi-Hyi Laio, and Chun-Kai Wang

Abstract—Let G = (V, E) be a graph without iso-
lated vertices. A matching in G is a set of indepen-
dent edges in G. A perfect matching M in G is a
matching such that every vertex of G is incident to
an edge of M . A set S ⊆ V is a paired-dominating set
of G if every vertex not in S is adjacent to a vertex
in S, and if the subgraph induced by S contains a
perfect matching. The paired-domination problem is
to find a paired-dominating set of G with minimum
cardinality. The paired-domination problem on bi-
partite graphs has been shown to be NP-complete. A
bipartite graph G = (U, W, E) is convex if there exists
an ordering of the vertices of W such that, for each
u ∈ U , the neighbors of u are consecutive in W . In
this paper, we present an O(|U | log |U |)-time algorithm
to solve the paired-domination problem in convex bi-
partite graphs.

Keywords: graph algorithms, paired-domination, con-
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1 Introduction

The problem of placing monitoring devices in a system
such that every site in the system (including the moni-
toring devices themselves) is adjacent to a monitor and
every monitor is paired with a backup monitor, can be
modeled by paired-domination in graphs. In this paper,
we consider the paired-domination problem in convex bi-
partite graphs.

A set S of vertices of a graph G = (V,E) is a dominating
set of G if every vertex not in S is adjacent to a vertex in
S. The domination problem is to find a dominating set
of G with minimum cardinality. Variations of the dom-
ination problem seek to find a minimum dominating set
with some additional properties, e.g., to be independent
or to induce a connected graph. These problems arise
in a number of distributed network applications, where
the problem is to locate the smallest number of centers in
networks such that every vertex is nearby at least one cen-
ter. Domination and its variations in graphs have been
thoroughly studied, and the literature on this subject has
been surveyed and detailed in two books [8, 9].
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Fig. 1: The tree-cube graph Q3.

A matching in a graph G is a set of independent edges in
G. A perfect matching M in G is a matching in G such
that every vertex of G is incident to an edge of M . A
paired-dominating set of a graph G is a dominating set S
of G such that the subgraph G[S] induced by S contains
a perfect matching M . Two vertices joined by an edge
of M are said to be paired. Every graph without isolated
vertices has a paired-dominating set, since the vertices
incident to edges of any maximal matching form such
a set [10]. The paired-domination number of a graph G,
denoted by γp(G), is the minimum cardinality of a paired-
dominating set of G. The paired-domination problem is to
find a paired-dominating set of G with cardinality γp(G).
For example, for the three-cube graph Q3 shown in Fig.
1, S = {v1, v2, v3, v4} is a paired-dominating set of Q3

since S is a dominating set and the subgraph induced by
S contains a perfect matching M = {(v1, v4), (v2, v3)},
and γp(Q3) = 4.

Paired-domination was introduced by Haynes and Slater
[10] with the following application in mind. If, in a graph
G, we consider each vertex as the possible location for
a guard capable of protecting every vertex adjacent to
it, then “domination” requires every vertex to be pro-
tected. In paired-domination, each guard is assigned an-
other adjacent guard, and they are designed to provide a
backup for each other. The problem of determining the
paired-domination number γp(G) of an arbitrary graph
G has been known to be NP-complete [10]. The paired-
domination problem is still NP-complete in some spe-
cial classes of graphs such as bipartite graphs, chordal
graphs, and split graphs [3]. However, the problem ad-
mits polynomial-time algorithms when the input is re-
stricted to some special classes of graphs, including trees
[12], circular-arc graphs [4], permutation graphs [5], block
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Fig. 2: Compact representation of a convex bipartite
graph and a paired-domination set (filled circles incident
to bold edges).

graphs, and interval graphs [3].

Let G = (U,W,E) represent an undirected, bipartite
graph, where U and W is a partition of the vertices and
E is the edge set in which each edge (u,w) is such that
u ∈ U and w ∈ W . The paired-domination problem
on bipartite graphs has been shown to be NP-complete
[3]. In this paper, we will investigate the time complex-
ity of the paired-domination problem on convex bipartite
graphs which form a subclass of bipartite graphs.

Convex bipartite graphs were introduced by Glover [7],
motivated by some industrial applications. Since then
several algorithms have been developed for problems in
this kind of graph [2, 6, 11, 13, 14]. Let G = (U,W,E)
be a bipartite graph. The graph G is called convex if
the vertices in W can be ordered in such a way that, for
each u ∈ U , the neighbors of u are consecutive in W .
For convenience, we consider that U = {1, 2, · · · , |U |}
and W = {1, 2, · · · , |W |}, and that the vertices in W are
given according to the ordering mentioned above. This
ordering can be obtained in a preprocessing step by a
linear time algorithm [1]. That is, the vertices of W are
represented by integers from 1 to |W |, and they are given
according to their representing integers in an increasing
manner. We say that a vertex u ∈ W is smaller (larger)
than a vertex v ∈ W if the integer number of u is smaller
(larger) than that of v. A convex bipartite graph has a
compact representation by a set of |U | triples of the form
(i, begin(i), end(i)), where i is a vertex in U , begin(i) and
end(i) are the smallest and largest vertices, respectively,
in the consecutive vertices of W connected to i. Fig. 2
shows a convex bipartite graph in its compact representa-
tion and a paired-dominating set on it. In this paper, we
will present an O(|U | log |U |)-time algorithm to solve the
paired-domination problem in convex bipartite graphs.

2 Terminologies

We begin with an elementary observation about paired-
dominating sets of a graph. Let G be a graph without
isolated vertices. Haynes and Slater [10] observed that
a paired-dominating set of G does exist and its paired-
domination number γp(G) is even.

Lemma 2.1. [10] Let G be a graph without isolated ver-

tices. Then, there exists a paired-dominating set in G
and γp(G) is even.

Hereafter, let G = (U,W,E) be a convex bipartite
graph. We denote by [i, j] the set of consecutive integers
{i, i+1, · · · , j}. Thus, U = [1, |U |] and W = [1, |W |]. We
call [i, j] an integer interval starting from i and ending at
j. For simplicity, an integer interval is also called an in-
terval. Further, we also let U denote an array represent-
ing G in a compact representation. Each element of the
array U [1..|U |] has the fields begin and end. The triple
(i, begin(i), end(i)) of the compact representation of G is
represented here by (i, U [i].begin, U [i].end). For simplic-
ity, we will use i.begin and i.end to represent U [i].begin
and U [i].end, respectively. We may assume that the in-
put convex bipartite graph has no isolated vertices since
isolated vertices can be easily detected. By definition of
a convex bipartite graph, the neighbor of a vertex u in U
can be represented as an interval Iu = [u.begin, u.end].
Then, the neighbors of vertices of U can be represented
by a set of intervals which is called the interval represen-
tation I(U) of U . For an interval Iu ∈ I(U), the smallest
integer and largest integer in Iu are called the leftmost in-
teger and rightmost integer of Iu, respectively. Further,
interval Iu = [u.begin, u.end] is said to be dominated by
integer � if u.begin � � � u.end.

We first partition U into k disjoint clusters U1, U2, · · · , Uk

such that u.begin = v.begin if u and v are in the same
cluster, and a.begin < b.begin if a ∈ Ui and b ∈ Uj

for i < j. We then sort the vertices of Ui, 1 � i � k,
such that a precedes b for a, b ∈ Ui and a.end � b.end,
i.e., the rightmost integer of interval Ia is not larger than
the rightmost integer of interval Ib in the interval rep-
resentation. For example, Fig. 3 shows the clusters
and the interval representation I(U) of U for the con-
vex bipartite graph shown in Fig. 2. In addition, in-
tervals I1, I3, I5, I4, I2 in I(U) are dominated by integer
3. The above clustering process can be easily done in
O(|U | log |U |) time. In the following, it is assumed that
the clustering process has been done, i.e., the sorted clus-
ters of U are given. The following lemma gives the upper
bound of γp(G).

Lemma 2.2. Let G = (U,W,E) be a convex bipartite
graph without isolated vertices, and let U be partitioned
into k sorted clusters U1, U2, · · · , Uk. Then, γp(G) � 2k.

Proof . Let ui be the vertex in Ui, 1 � i � k, such that
a.end � ui.end for a ∈ Ui, and let wi ∈ W such that
wi = ui.begin. By pairing ui with wi for 1 � i � k,
we obtain a paired-dominating set PD of G with size 2k,
where PD = ∪1�i�k{ui, wi}. Thus, γp(G) � 2k. �

Let Ui be a cluster of U . Define min(Ui) and
max(Ui) to be two vertices in Ui such that min(Ui).end
� a.end � max(Ui).end for a ∈ Ui. Further,
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Fig. 3: Clusters and interval representation I(U) of U for
the convex bipartite graph shown in Fig. 2.
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Fig. 4: (a) Imin(U) and (b) Imax(U) for the convex bi-
partite graph shown in Fig. 3, where the pairs in a mini-
mum paired-dominating set of the graph are highlighted
in bold.

let Imin(Ui) = [min(Ui).begin,min(Ui).end] and let
Imax(Ui) = [max(Ui).begin,max(Ui).end]. We can see
that for a ∈ Ui, Imin(Ui) ⊆ Ia ⊆ Imax(Ui), where
Ia = [a.begin, a.end]. In addition, every vertex of Ui

is adjacent to all vertices of Imin(Ui) in W . The ver-
tices of W in Imin(Ui) are called common neighbors of
vertices of Ui. For example, let U1 be a cluster of U
shown in Fig. 3. Then, min(U1) = 1, Imin(U1) = [1, 3],
max(U1) = 3, and Imax(U1) = [1, 4]. Let U1, U2, · · · , Uk

be the disjoint sorted clusters of U . We define Imin(U) =
∪1�i�kImin(Ui) and Imax(U) = ∪1�i�kImax(Ui). Note
that the number of intervals in Imin(U) or Imax(U) equals
the number of clusters of U . For example, Fig. 4
shows Imin(U) and Imax(U) for the convex bipartite graph
shown in Fig. 3.

3 The Algorithm

In this section, we will present an O(|U | log |U |)-time al-
gorithm to solve the paired-domination problem on a con-
vex bipartite graph G = (U,W,E). Let ŴD and ÛD be
the subsets of W and U , respectively. U (resp. W ) is said
to be dominated by ŴD (resp. ÛD) if every vertex of U

(resp. W ) is adjacent to at least one vertex of ŴD (resp.
ÛD). Let U1, U2, · · · , Uk be the disjoint sorted clusters
of U . By Lemma 2.2, γp(G) � 2k. In the following, we
will obtain the lower bound of γp(G). Our basic idea is
sketched as follows. We first find a minimum subset W̃D

of W such that W̃D dominates U , and find a minimum
subset ŨD of U such that ŨD dominates W . Note that
every vertex of W or U is represented by an integer. Since
each edge (u,w) in G is such that u ∈ U and w ∈ W ,
it is easy to see that γp(G) � 2 · max{|W̃D|, |ŨD|}. Fi-
nally, we construct a paired-dominating set of G with size
2 · max{|W̃D|, |ŨD|}. In the following, we will show how
to construct such two sets W̃D and ŨD.

We first construct a minimum subset W̃D of W that dom-
inates U . Observe that if there exists a vertex j in W̃D

such that it is not in any Imin(Ui), 1 � i � k, then U

is clearly not dominated by W̃D. Thus, we only consider
the vertices of W in Imin(Ui), 1 � i � k. Then, we are
given by Imin(U). The problem of finding a minimum
subset of W dominating U is equivalent to seek a min-
imum set of integers in [1, |W |] such that they together
dominate intervals of Imin(U). We introduce Procedure
GD-W to compute such a minimum set of integers that
dominates all intervals of Imin(U). Given a set Imin(U)
of intervals, Procedure GD-W uses a greedy principle
to obtain a subset W̃D of W as follows. Initially, let
W̃D = ∅, let Imin = Imin(U), and let s(Imin) be the in-
terval in Imin with the least rightmost integer. Let z be
the rightmost integer of s(Imin) and let Iz be the set of
intervals in Imin dominated by z. Let W̃D = W̃D ∪ {z}
and let Imin = Imin − Iz. Repeat the above process until
Imin = ∅. Then it outputs W̃D and stops. For exam-
ple, given a set Imin(U) of intervals shown in Fig. 4(a),
Procedure GD-W outputs W̃D = {3, 8}.

By similar strategy in computing W̃D, we can find a min-
imum subset ŨD of U that dominates W . Observe that if
there exists a vertex j in ŨD such that Ij �∈ Imax(U), then
j can be replaced by one vertex i, where Ii ∈ Imax(U)
and Ij ⊆ Ii. That is, ŨD − {j} ∪ {i} is still a mini-
mum subset of U such that it dominates W . Thus, we
can only consider the vertices whose representing inter-
vals are in Imax(Ui), 1 � i � k. Then, we are given
by Imax(U). Our strategy for finding a subset ŨD of
U dominating W uses a greedy principle. Initially, let
ŨD = ∅, let Imax = Imax(U), and let s(Imax) be the in-
terval in Imax with the least rightmost integer s. Let
I ′ = {Ii ∈ Imax|s(Imax) ⊂ Ii}. If I ′ �= ∅, then let z



be a vertex of U such that its representing interval Iz

is the interval with the largest rightmost integer among
I ′; otherwise, let z = s. Let ŨD = ŨD ∪ {z}. Let
Î = {Ii ∈ Imax|Ii is dominated by integer z and the right-
most integer of Ii is larger than the rightmost integer of
Iz}. For Ii ∈ Î, let Ĩi = [z + 1, i.end], i.e., Ĩi is obtained
from Ii by removing [i.begin, z]. Let Ĩ = ∪Ii∈Î{Ĩi}.
Then, let Imax = Imax − {s(Imax)} − I ′ − Î ∪ Ĩ. Repeat
the above process until Imax = ∅. Then it outputs ŨD

and stops. We call the above process as Procedure GD-
U. For example, given a set Imax(U) of intervals shown
in Fig. 4(b), Procedure GD-U outputs ŨD = {3, 6, 8}.
The following two lemmas show the optimality of Proce-
dures GD-W and GD-U. Due to the space limitation,
we omit the proofs of these lemmas.

Lemma 3.1. Given a set Imin(U) of intervals, Procedure
GD-W finds a minimum subset W̃D of W such that W̃D

dominates U .

Lemma 3.2. Given a set Imax(U) of intervals, Procedure
GD-U finds a minimum subset ŨD of U such that ŨD

dominates W .

Let W̃D and ŨD be the minimum subsets of W and U
output by Procedure GD-W and Procedure GD-U, re-
spectively. By definition of a convex bipartite graph G,
no edge of G can join two vertices of W or U . Let PD
be any paired-dominating set of G, and let M be a per-
fect matching in the subgraph induced by PD. Then,
the number of edges of M is at least max{|W̃D|, |ŨD|}.
Thus, γp(G) � 2 ·max{|W̃D|, |ŨD|}, and, hence, we have
the following lemma.

Lemma 3.3. Let W̃D and ŨD be the minimum subsets
of W and U output by Procedure GD-W and Procedure
GD-U, respectively. Then, γp(G) � 2·max{|W̃D|, |ŨD|}.

Based upon the above three lemmas, our algorithm is
given by a convex bipartite graph G = (U, V,E) and con-
tains the following four stages.
Stage 1: Partition U into k disjoint sorted clusters U1,
U2, · · · , Uk;
Stage 2: Compute the interval representation I(U) of
U , and construct Imin(U) and Imax(U) from I(U);
Stage 3: Call Procedure GD-W on Imin(U) to find W̃D,
and call Procedure GD-U on Imax(U) to find ŨD;
Stage 4: Compute γp(G) = 2 · max{|W̃D|, |ŨD|}, con-
struct a minimum paired-dominating set MPD of G of
size γp(G), and output MPD.

In Stage 4, we construct a minimum paired-dominating
set MPD of G of size γp(G) as follows. Sup-
pose that |W̃D| = max{|W̃D|, |ŨD|}. Let W̃D =
{w1, w2, · · · , w|W̃D|}, and let wi, 1 � i � |W̃D|, be
the rightmost integer of interval Iui

in Imin(U), where

ui is a vertex of U . By the construction of Procedure
GD-W, all vertices of {u1, u2, · · · , u|W̃D|} are distinct.

By pairing wi with ui for 1 � i � |W̃D|, we obtain
a minimum paired-dominating set MPD of G of size
2·|W̃D|, where MPD = ∪

1�i�|W̃D|{wi, ui}. On the other

hand, suppose that |ŨD| = max{|W̃D|, |ŨD|}. Let ŨD =
{u1, u2, · · · , u|ŨD|}, and let wi = ui.begin for 1 � i �
|W̃D|, where wi is a vertex of W . By the construction of
Procedure GD-U, no two vertices of ŨD are in the same
cluster of U . Thus, all vertices of {w1, w2, · · · , w|ŨD|} are

distinct. By pairing ui with wi for 1 � i � |ŨD|, we ob-
tain a minimum paired-dominating set MPD of G of size
2 · |ŨD|, where MPD = ∪1�i�|ŨD|{ui, wi}. For example,
given Imin(U) and Imax(U) shown in Fig. 4, Procedure
GD-W outputs W̃D = {3, 8}, and Procedure GD-U out-
puts ŨD = {3, 6, 8}. Then, max{|W̃D|, |ŨD|} = |ŨD| = 3.
By the above construction, we obtain a set of pairs
(3, 1), (6, 4), (8, 7) and a minimum paired-dominating set
MPD of size 6. Let k be the number of disjoint clus-
ters of U . By Lemmas 2.2 and 3.3, 2k � γp(G) �
2 · max{|W̃D|, |ŨD|}. Then, |U | � k � max{|W̃D|, |ŨD|}.
Thus, the above process for constructing a minimum
paired-dominating set of G runs in O(|U |) time, and,
hence, Stage 4 can be done in O(|U |) time.

Further, Stages 2–3 of the algorithm can be done in
O(|U |) time. In addition, Stage 1 runs in O(|U | log |U |)
time. Thus, the algorithm runs in O(|U | log |U |) time and
we conclude with the following theorem.

Theorem 3.4. The paired-domination problem on a
convex bipartite graph G = (U,W,E) can be solved in
O(|U | log |U |) time.

4 Concluding Remarks

The pair-domination problem can be applied to allocate
guards on vertices such that these guards protect every
vertex, each guard is assigned another adjacent one, and
they are designed as backup for each other. The paired-
domination problem on bipartite graphs has been shown
to be NP-complete. In this paper, we investigate the com-
plexity of the problem on convex bipartite graphs, which
form a subclass of bipartite graphs. We show that the
paired-domination problem on a convex bipartite graph
G = (U,W,E) can be solved in O(|U | log |U |) time.
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