
A Compact Computing Environment
For A Windows PC Cluster

Towards Seamless Molecular Dynamics
Simulations

Yuichi Tsujita ∗

Abstract —A Windows PC cluster is focused for its
high availabilities and fruitful functions such as a well-
tuned MPI library and a fully-equipped job scheduler.
However, the software tools are complicated for users
who are not familiar with the Windows system. They
don’t want to pay much time to learn about the sys-
tem because what they want is getting calculated re-
sults. Furthermore, there is not any tool to support
visualization of calculated results. To support seam-
less molecular dynamics simulations from computa-
tions to visualization on a Windows cluster, a com-
pact computing environment has been built by using
Java. It provides hints for parallel computing and as-
sists seamless job execution and its visualization. As
a result, application users can proceed their compu-
tations without deep understandings of the Windows
cluster.

Keywords: Windows PC cluster, MS-MPI, job sched-

uler, Java RMI, molecular dynamics simulation

1 Introduction

It is now familiar to build and utilize a PC cluster by
using a Windows server system [1]. The Windows system
provides many useful software tools such as a well-tuned
MPI [2] library named MS-MPI [1] and a powerful job
scheduler.

Those software tools are available with a Windows GUI.
However, most of the application users do not expect to
encompass the expertise for the Windows cluster. As a re-
sult, they have difficulties in operation of their programs
because of complexity in selection and utilization of ap-
propriate functions of the system. Furthermore, there
is not any support to check standard output/error of a
running job in a GUI menu named Compute Cluster Job
Manager of the job scheduler. Instead, a command line
interface is available to check them, however, it is too
complicated for non-expert users. It is also noticed that

∗Department of Electronic Engineering and Computer Science,
Faculty of Engineering, Kinki University, 1 Umenobe, Takaya,
Higashi-Hiroshima, Hiroshima 739-2116, Japan,
E-mail: tsujita@hiro.kindai.ac.jp

there is not any support for a visualization of calculated
results.

To remove such difficulties, a compact and user-friendly
computing environment which is available on a client PC
is built to manipulate the Windows cluster. A comput-
ing environment has been built by using Java because
Java is useful for building GUI applications and platform
independent. It collects essential functions for a target
molecular dynamics simulation to control a remote Win-
dows cluster from a client PC. This environment consists
of client and server programs and hides complexity of
job execution on the Windows cluster from application
users. The client program runs on a client PC, while the
server program runs on a head node of a Windows cluster.
A platform dependent part is encapsulated in the server
program. This computing environment provides hints for
parallel computing in a simple manner. Furthermore, it
assists program job submission into the job manager of
the Windows cluster.

In this paper, section 2 briefly explains the Windows clus-
ter. Section 3 describes about motivations, details of its
system architecture, and a user interface of the environ-
ment. Related work is also remarked in section 4, followed
by summary of this work in section 5.

2 Brief Overview of a Windows PC Clus-
ter

Typical configuration of a Windows PC cluster is illus-
trated in Figure 1. An Active Directory server is de-
ployed for authentication of users and host name query-
ing service (Fig. 1(1)). A user issues a job execution
request from a client PC to a head node of a cluster by
using a GUI-based job scheduler system named Compute
Cluster Job Manager or a command line interface (CLI)
(Fig. 1(2)). A logical job unit named a job container is
created on the job scheduler. In general, users can add
multiple tasks in the job container. Hereafter, I describe a
job container as a job. Later, the job is submitted to the
job scheduler. The scheduler authenticates information



Figure 1: Typical configuration of a Windows PC cluster

such as a user ID about the submitted job (Fig. 1(3)).
The job scheduler analyzes its request and tasks in the
job are queued for computation.

Once enough CPUs can be assigned for a waiting job, the
scheduler allocates vacant computation nodes for each
task (Fig. 1(4)). For parallel computing, a well-tuned
MPI library named MS-MPI [1] is provided. The library
is based on an MPICH2 [3] implementation. After par-
allel computation by the computation nodes (Fig. 1(5)),
status of a task is returned through the Compute Cluster
Job Manager or the CLI (Fig. 1(6)).

3 Client Computing Environment For a
Windows PC Cluster

3.1 Architecture

This system is developed to provide the following func-
tions:

• Support of parameter settings such as a user ID, a
program name, the number of CPUs, a work direc-
tory, and standard input/output/error

• Support of seamless job execution and visualization
by encapsulating complicated Windows cluster op-
erations

• Job and task monitoring

To provide a user-friendly interface for non-expert users,
a GUI interface is essential. It is also remarked that

portability is important issue. Therefore, Java SE Devel-
opment Kit 6 [4] was selected to develop the computing
environment.

An organization of developed Java classes is illustrated in
Figure 2. This system has two parts; one is a server side
part which runs on a head node of a PC cluster and the
another is a client side part which runs on a client PC.
The reason for such configuration is to provide a platform
independent system in the client side. All the platform
dependent properties are deployed in the server side.

Data communications between server and client are car-
ried out by using Java’s Remote Method Invocation
(RMI). This system is available for a user in a Windows
domain in which an Active Directory server runs.

The client side has two layers in implementation; one is
a user application layer and the another is a lower inter-
face layer. The application layer provides GUI menus for
job creation, job submission, and monitoring a PC clus-
ter and jobs in a seamless manner. The JobMenuFrame
class provides such GUI menus and a user can specify
several parameters here. A job list is created to store
information about submitted jobs and associated tasks.
The JobMenuFrame class creates the list at the start-up
of this system with the help of a Java’s JTree object.

On the other hand, the lower layer provides control meth-
ods for a Windows cluster. Some of the Java classes
(SubmitJob, MatchJob, and WatchCluster) provide in-
terfaces for an RMI server object (CCSManageServer) in
the server side. Besides, the MatchJob and WatchCluster
classes invoke threads which run in parallel with a main
thread. The former checks status of a selected task by
accessing a job list, while the latter checks the number of
available CPUs by issuing a command to the cluster.

Both the JobMenuFrame and MatchJob classes fetch the
job list. For job submission, several associated meth-
ods of the JobMenuFrame class are used. Once a job is
created, a user can add several tasks in the associated
job. A user can submit the job with the help of the
SubmitJob class. Job submission to a remote Windows
cluster is carried out by using Java RMI with the help of
the CCSManageServer and CCSManageImpl classes on a
remote Windows cluster. Later, the JobMenuFrame class
stores information about the job and associated tasks in
the job list. The MatchJob class fetches the list periodi-
cally to check status of a selected task.

The server side part has a role to receive RMI requests for
job submission and so on from a client side application.
The RMI server carries out operations for the Windows
cluster. A request from the client side is analyzed and an
associated Java method in the CCSManageImpl class is
called in the RMI server. The Java class provides native
interfaces to the Windows cluster with the help of the
CLI. Each method in the class carries out job control,



Figure 2: Organization of developed Java classes

Figure 3: Data structure of a job list to hold information
about submitted jobs and associated tasks

monitoring of job and a PC cluster system, and so forth.

Figure 3 depicts an example of a data structure of the
job list. A tree node associated with a job is created
under the root node, “Job”. In this figure, MXD1 and
MXD2 stand for names of jobs, where 650 and 651 stand
for job IDs. Associated parameters such as the maximum
number of CPUs, user ID, and so forth are registered with
those parameters.

A child node is created for a task under associated job
node so as to have a similar data structure in the Win-
dows job manipulations. Associated parameters such as
the number of CPUs to be used, a work directory, stan-
dard input/output/error are registered. With the help of
this data structure, we can easily check a target job or a
target task effectively.

3.2 Seamless job submission and visualiza-
tion

To start computation, users need to create a job to be
passed to a job scheduler. A menu window provided by
the JobMenuFrame class helps to create the job and asso-
ciated tasks as shown in Figure 4 (a). In this menu, job
creation, task creation, job submission, and status mon-
itor are available. In the job creation (Fig. 4 (a): (1)), a

user specifies a job name, name of a cluster’s head node,
and the maximum number of requested CPUs to be used.
Later, pressing a button, “create Job container,” creates
a new job by using a method of the SubmitJob class.
A corresponding icon for the job is indicated in the tree
structure style list of this menu.

In the second one (Fig. 4 (a): (2)), a task name, a program
name, a work directory, standard input/output/error,
and the number of CPUs are specified in the menu. There
are check boxes for an MPI program and visualization
program. Once a user presses a button, “add,” the task
is registered in the selected job with the help of the
SubmitJob class. Later, an icon which stands for the
task is indicated under the associated job’s icon in a tree
structure manner.

In the third one (Fig. 4 (a): (3)), the job including tasks
is passed to an RMI server program on a head node of
a PC cluster by using a Java RMI with the help of the
SubmitJob class when a user presses a button, “submit.”
In this operation, a user need to specify a user ID and a
pass phrase. The RMI server receives the job and sub-
mits it into a job scheduler by using the CLI. If a user
succeeds the submission, information of the job and asso-
ciated tasks are registered in a job list which is indicated
in a Job list menu as shown in Fig. 4 (b).

A user can check status of a selected task in the list
(Fig. 4 (a): (4)) with the help of the MatchJob class. The
total number of CPUs and available CPUs are also indi-
cated here with the help of the WatchCluster class.

Standard output and error are indicated in tab menus,
“stdout” and “stderr,” respectively by using the
OpenFile class. Users can see the outputs by selecting
the target task in the Job list in Fig. 4 (b). Fig. 4 (c)
shows an example of a standard output menu win-
dow with a running program. Pressing a button, “re-
fresh(output),” updates the current output. If errors or
warnings are reported from the Windows cluster in a
standard error, those are indicated in the “stderr” menu



(a) Job submission menu (b) List of submitted jobs and tasks

(c) GUI to check standard output (d) Visualization of calculated results by using an exist-
ing visualization program, VESTA [5]

Figure 4: Examples of GUI menus in a client computing environment



window which has the same GUI.

After computations, we may have a molecular image
by an existing visualization program named VESTA [5].
Here we can see several images obtained through 10,000
to 50,000 steps computations (10,000 steps each) to know
melting temperature regarding stable and unstable condi-
tions. In this example, solid and liquid parts are isolated
at first. By facing the both parts at some temperature,
we may know melting point of this material after a sort
of computation steps. The developed computing environ-
ment is very helpful for this kind of computations.

4 Related Work

There are many implementations to manage parallel com-
putations on PC clusters. Condor [6] provides a chance
to develop, implement, and deploy mechanisms to realize
high throughput computing on large collections of dis-
tributed computing resources. A job scheduler named
Condor Central Manager deploys a submitted job to un-
used computer. Each computer carries out an allocated
job and returns results to the job scheduler.

Sun Grid Engine [7] also enables resource management
and job scheduling as the Condor system does. How-
ever, Condor has much functions than Sun Grid Engine
because Condor aims at managing non-dedicated cluster
systems. Whereas the Sun Grid Engine is more limited to
the job resource management and monitoring in a closed
cluster computing system.

Recently, a Windows PC cluster was deployed as a com-
puting resource in the National Grid Service [8] by using
a modified Globus [9] infrastructure named CCS Globus
gateway [10]. Furthermore, its work-flow system provides
usability in application user’s computations.

Those systems described above are very powerful for a
large scale PC cluster or a grid computing environment,
however, users are required to be familiar with underly-
ing system architectures. Besides, an administrative user
should arrange configurations of both the hardware and
the software. The computing environment in this paper
aims to provide a compact and user-friendly computing
environment for a small Windows cluster. It does not re-
quire any special servers and software, except for prepar-
ing a Java software. This computing environment enables
non-expert users to utilize a Windows cluster without
higher skills.

5 Summary

A compact computing environment for a Windows PC
cluster has been developed to assist parallel computations
for molecular dynamics simulations. This system consists
of server and client programs to hide complex Windows
cluster dependent mechanisms from a user level appli-

cation. Inter-communications between server and client
parts are realized by using Java RMI. The server pro-
gram is deployed on a head node of a PC cluster, while
the client program runs on a client PC. Once a user sends
requests for their parallel computations from a client part
to a server part by using this computing environment, the
server part proceeds requested operations in cooperation
with the Windows cluster. In this computing environ-
ment, users can easily submit their jobs and identify job
status without deep understandings about the Windows
cluster. Standard output and error of running tasks are
seamlessly indicated on the computing environment. Af-
ter computations, we can visualize calculated results in
cooperation with an existing Windows native program in
a seamless manner.

As a future work, preparing a menu to choose parameters
for MD simulation runs is considered. Besides, extension
to other cluster systems such as a Linux-based PC cluster
is considered. Furthermore, secured connection in Java
RMI between client and server parts is also considered.

Acknowledgment

The author would like to thank Prof. Katsuyuki Kawa-
mura, Tokyo Institute of Technology, Japan for providing
a molecular dynamics simulation program named MX-
DORTOP [11]. The author also would like to thank
Dr. Tatsumi Arima, Kyushu University, Japan for his
kind advice about simulation works presented in this pa-
per.

References

[1] C. Russel, “Overview of Microsoft Windows Com-
pute Cluster Server 2003, white paper,” Technical
report, Microsoft Corporation, November 2005.

[2] MPI Forum, http://www.mpi-forum.org/

[3] MPICH2, http://www.mcs.anl.gov/research/
projects/mpich2/.

[4] Developer Resource for Java Technology,
http://java.sun.com/

[5] K. Momma and F. Izumi, “VESTA: a three-
dimensional visualization system for electronic and
structural analysis,” J. Appl. Crystallogr., vol. 41,
pp. 653–658, 2008.

[6] D. Thain, T. Tannenbaum, and M. Livny, “Dis-
tributed computing in practice: the Condor experi-
ence,” Concurrency and Computation: Practice and
Experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[7] Sun Grid Engine,
http://gridengine.sunsource.net/



[8] The National Grid Service,
http://www.ngs.ac.uk/

[9] I. Foster, C. Kesselman, and S. Tuecke, “The
anatomy of the grid: Enabling scalable virtual orga-
nizations,” The International Journal of High Per-
formance Computing Applications, vol. 15, pp. 200–
222, Fall 2001.

[10] Microsoft High Performance Comput-
ing Institute, School of Engineering
Sciences, University of Southampton,
http://www.soton.ac.uk/ses/research/mshpci/
index.html

[11] Kawamura Laboratory, Tokyo
Institute of Technology,
http://www.geo.titech.ac.jp/kawamuralab/
kawamuralab.e.html




