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Abstract— A material model to describe large de-
formation of pressure sensitive adhesive (PSA) is pre-
sented. A relationship between stress and strain
of PSA includes viscoelasticity and rubber-elasticity.
Therefore, we propose the material model for describ-
ing viscoelasticity and rubber-elasticity and formulate
rate form of the presented material model for three
dimensional finite element analysis. And we validate
the present formulation by using one axis tensile cal-
culation.
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1 Introduction

The elastic modulus of a pressure sensitive adhesive
(PSA) is about 105Pa at room temperature and indi-
cates extremely low compared with other solid materials.
Therefore, large deformation behavior can be observed in
conventional PSA deformation.

Fig.1 shows the tensile Stress-Strain curve of PSA. As
shown in Fig.1, the stress increases exponentially for large
strain zone. This behavior is called “rubber-elasticity”
in this paper. PSA is generally considered to be a vis-
coelastic material. However, only viscoelasticity can not
describe practical behavior including rubber-elasticity of
PSA consisitently.

The generalized Maxwell model is usually used for de-
scribing viscoelasticity. On the other hands, hyperelas-
ticity is popular to simulate increase in stress[1]. How-
ever, there is a difficulty in use of hyperelasticity, because
hyperelasticity independ on time. In order to evaluate
material constants, hyperelasticity needs time indepen-
dent parameters with experimental data without stress
relaxation. The aim of this study is the establishment
of material model describing visco and rubber elasticity
for PSA . The established material model can indicate
rubber-elasticity without hyperelastic model. We formu-
late the above material model and its rate formulation
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Figure 1: Stress-strain curve of PSA

for finite element analysis and then shows the validation
by using computational example.

2 Material Model

2.1 Concept of Proposed Material Model

PSA indicates remarkable viscoelasticity at room tem-
perature. The generalized Maxwell model for describing
viscoelasticity is used in the present study. Fig.2 shows
generalized Maxwell model. Where i denotes unit num-
ber of the generalized Maxwell model. And E and η are
elastic modulus of spring and viscous coefficient of dash-
pot, respectively.

Figure 2: Generalized Maxwell model

However, the generalized Maxwell model of Fig.2 can
not describe rubber-elastic behavior of PSA as shown in
Fig.1. The reason is that elastic modulus of the general-
ized Maxwell model is constant. Then, we propose eval-
uation of elastic modulus of the spring component. Fig.3



shows the modified generalized Maxwell model. This pro-
posed model is called “Advanced Generalized Maxwell
Model”. In the advanced generalized Maxwell model,
elastic modulus is function of total strain. In addition,
viscous coefficients of dashpot is function of strain to as-
sume that relaxation time is constant like the generalized
Maxwell model.

Figure 3: Advanced Generalized Maxwell model

2.2 Rubber-Elasticity

Elastic moduli for the advanced generalized Maxwell
model are determined as the function of total strain.
First, we measure stress relaxation behavior with various
initial strains in order to investigate the strain depen-
dency of an elastic modulus. For this experiment, com-
mon acrylic PSA is used. Cylindrical PSA sample, whose
cross-section is 2mm2, is attached to a tensile machine so
that the length of PSA is 10mm, and initial strain is given
100% by nominal strain. Then, the sample is extended
and keeps in the fixed strain. The stress relaxation curve
is obtained by measuring the stress change at the mea-
surement time. The relation of nominal stress - nominal
strain is changed into the relation of true stress - true
strain. Regression analysis is applied to the obtained
curve using the stress relaxation formula of the gener-
alized Maxwell model as shown in eq.(1), and we get the
5 sets of relaxation time, τ i, and elastic modulus of the
spring component, Ei.

σ =
n∑

i=1

Ei exp(− t

τ i
) (1)

where σ, E, τ , and i denote true stress, elastic modu-
lus of a spring component, relaxation time, and the unit
number respectively. Then, the stress relaxation mea-
surement with initial strain 200, 300, 400, 500, and 600%
is measured, and we get the sets of the relaxation time
and elastic modulus at each initial strain.

Table.1 shows relaxation times and elastic moduli of each
strain. The strains in Table.1 are converted into true
strain. Then, elastic modulus E is depends on the total
strain and is considered about each case of τ . The case
of τ = 100[sec] is considered for an example. Fig.4 shows
elastic modulus, which depends on strain.

Figure 4: Relationship between elastic modulus and
strain

When the exponential function of strain is used as an
approximated curve to this curve, the correlation coeffi-
cient is very high. This is the same for the cases of other
relaxation times. So, we decide to use the exponential
function of strain as a function of an elastic modulus as
follows.

Ei = Ai exp(Biε) (2)

where A and B denotes material parameter, and ε does
strain.

3 Constitutive Formulation

Although the elastic modulus of the spring component of
the advanced model is defined by eq.(2), it is necessary to
distinguish scalar, vector, and tensor strictly in the case
of dealing with three dimensions. So, the elastic modulus
of a spring component is replaced with eq.(3). Here, an
elastic modulus uses shear elastic modulus G.

Gi = Ai exp(Biε̂) (3)

where ε̂ denotes scalar of strain. And ε̂ is defined by
eq.(4) using the small strain tensor, ε.

ε̂ =

√
2
3
ε : ε (4)

It is assumed that viscoelasticity is in a deviatoric com-
ponent in the model. So, a constitutive equation of de-
viatoric and volumetric component is respectively formu-
lated, and then the constitutive equation of whole com-
ponent is formulated.

3.1 Daviatoric Component

The spring of the ith unit is assumed to be an incom-
pressible linear elastic material. Here shear elastic mod-
ulus and small strain tensor of the spring of ith unit is
expressed as Gi and εsp,i respectively, and the deviatoric
stress tensor of ith spring unit is

σ′i = 2Giεsp,i (5)

The prime of a right shoulder shows a deviatoric compo-
nent. The material time derivative of both sides of eq.(5)



Table 1: Relaxation times and elastic moduli of each strain

Relaxation time [s] True strain
0.6931 1.0986 1.3863 1.6094 1.7918 1.9459

1.00 × 100 0.1541 0.3637 0.5694 1.2057 2.0546 3.8663
1.00 × 101 0.0326 0.0832 0.1368 0.3548 0.5107 0.7711
1.00 × 102 0.0363 0.0665 0.1237 0.1808 0.2078 0.3701
1.00 × 103 0.0250 0.0519 0.0761 0.1040 0.1549 0.1522
1.00 × 1010 0.0639 0.1326 0.2150 0.3279 0.4608 0.5936

gives
Dσ′i

Dt
= 2GDsp,i +

DGi

Dt

σ′i

Gi
(6)

where D denotes rate of strain tensor. The left side of
eq.(6) does not have objectivity. So the constitutive equa-
tion is not objective. Therefore object stress rate is as-
sumed (

Dσ′i

Dt

)
(∗)

= 2GDsp,i +
DGi

Dt

σ′i

Gi
(7)

where (∗) with the lower right means arbitrary objective
stress rate. Eq.(7) is used as a constitutive equation of a
spring.

Next, the dashpot of ith unit is considered. The shear
viscous coefficient and the strain rate tensor of ith dash-
pot unit is expressed as ηi and Ddp,i respectively. And
dashpot is assumed to be incompressible Newtonian fluid.
The constitutive equation of ith dashpot unit is given as

σ′i = 2ηiDdp,i (8)

The model property insists that the small strain tensor
of ith unit can be assumed to be equal to the strain of
the whole model. That is, ε = εi = εsp,i + εdp,i. The
material time derivative of this equation gives

D = Dsp,i + Ddp,i (9)

From eqs.(7)(8)(9), the constitutive equation of the ith
unit’s deviatoric component is derived to(

Dσ′i

Dt

)
(∗)

= 2GDsp,i +
DGi

Dt

σ′i

Gi
− σ′i

τ i
(10)

The material time derivative of eq.(3) gives

DGi

Dt
= BiGi Dε̂

Dt
(11)

And eq.(10) is given as, with eq.(11)(
Dσ′i

Dt

)
(∗)

= 2GDsp,i + Bi Dε̂

Dt
σ′i − σ′i

τ i
(12)

Since the stress of the whole model is derived from sum-
mation of the stress of each unit, the constitutive equa-
tion of the whole model is described to(

Dσ′i

Dt

)
(∗)

=
∑

i

(
2GDsp,i + Bi Dε̂

Dt
σ′i − σ′i

τ i

)
(13)

3.2 Volumetric Component

Here it is assumed that the volumeric component is a
compressible linear elastic material. Pressure, p, is given
as

p = −Kvtrε (14)

where Kv denotes the coefficient of volumetric elasticity
derived from eq.(15).

Kv =
∑

i Ei

3 (1 − 2ν)
(15)

where ν denotes Poisson ratio. The material time deriva-
tive of eq.(14) gives

Dp

Dt
=

DKv

Dt

p

Kv
− KvtrD (16)

where

Kv =
2 (1 + ν)
3 (1 − 2ν)

∑
i

Gi (17)

DKv

Dt
=

2 (1 + ν)
3 (1 − 2ν)

∑
i

DGi

Dt
(18)

Substituting eq.(11) into eq.(18) derives to

DKv

Dt
=

2 (1 + ν)
3 (1 − 2ν)

∑
i

BiGi Dε̂

Dt
(19)

Therefore, the constitutive equation of volumetric com-
ponent is

Dp

Dt
= p

Dε̂

Dt

∑
i BiGi∑

i Gi
− KvtrD (20)

3.3 Whole Component

Here the Jaumann rate is used as objective stress rate.
The material time derivative of Cauchy stress and its Jau-
mann rate are connected with eq.(21).(

Dσ

Dt

)
(J)

=
Dσ

Dt
+ W · σ − σ · W (21)

where W denotes spin tensor, and the lower right (J)
shows the Jaumann rate. Here the Cauchy stress is di-
vided into deviatoric and volumetric component,

σ = σ′ − pI (22)



where I denotes unit tensor. Substituting eq.(22) into
eq.(21) derives to(

Dσ

Dt

)
(J)

=
(

Dσ′

Dt

)
(J)

− Dp

Dt
I (23)

Therefore, substituting constitutive equation of devia-
toric and volumetric component into eq.(23), the con-
stitutive equation of the whole component is derived to(

Dσ

Dt

)
(J)

=
∑

i

(
2GiD + Bi Dε̂

Dt
σ′i − σ′i

τ i

)
−

(
p
Dε̂

Dt

∑
i BiGi∑

i Gi
− KvtrD

)
I

(24)

4 Explicit Finite Element Method

The present study employs an explicit finite element
method[2] to calculate the following computational ex-
ample. The explicit finite element method is computa-
tionally robust because of no iterations.

4.1 Discrete equilibrium equation

The equilibrium equation ignoring the body force is,

ρa =
∂σ

∂x
(25)

where ρ is the material density, a is the spatial accelera-
tion, and σ is the Cauchy stress.

We can derive the virtual work equation by multiplying
both sides of eq.(25) by the arbitrary virtual displacement
δu with the Gauss’ divergence theorem of volume V .∫

V

ρa · δudV +
∫

V

σ : (δε)dV =
∫

∂V

t̄ · δudS (26)

where t̄ is the external surface force on the boundary area
∂V , and ε is the linear strain as follows,

ε =
1
2

[(∂u

∂x

)
+

(∂u

∂x

)T ]
(27)

The discrete equilibrium equation can be derived using
the finite element as follows;

Ma + Fint = Fext (28)

where M is the mass matrix, Fint and Fext are the in-
ternal and external force vectors respectively. For the
numerical integration of the isoparametric element in
the plane strain state, the selective reduced integration
method is used to avoid volumetric locking [3].

4.2 Central difference method

To advance the time of the discrete equilibrium eq.(28),
we select the central difference method. Let ∆t is the

time increment from time tn to tn+1. The current time is
tn and any properties of the material at time tn+1 will be
explicitly calculated with the central difference method.
The material coordinates x at tn+1 is evaluated with the
material velocity v at the central incremental time tn+ 1

2 .

xn+1 = xn + vn+ 1
2 ∆t (29)

where the material velocity v at time tn+ 1
2 is

vn+ 1
2 = vn− 1

2 + an∆t (30)

and the spatial acceleration a at time tn is solved as fol-
lows with eq.(28).

an = M−1(F n
ext − F n

int) (31)

Eq.(31) requires no solution of the simultaneous equa-
tions by using the diagonal lumped mass matrix for M .

5 Computational Results

Here, in order to verify an above-mentioned technique,
one axis tensile measurement of PSA is analyzed.

5.1 Material Constants

The material constants which must be defined in the con-
stitutive equation are Ai, Bi and τ i. These values are
calculated from the experimental data of one axis elon-
gation measurement.

First, the method of one axis elongation measurement is
explained. It is measured at room temperature. Cylin-
drical PSA sample whose cross-section is 2mm2 is at-
tached to the tensile machine so that the length of PSA
is 10mm, the sample is elongated at the predetermined
rate. The rate is 10, 50, 300 mm/min. Since the data
from the measurement gives nominal stress and nominal
strain, the Stress-Strain curve changes into true stress -
true strain is made.

Constitutive equation of the advanced model calculated
by one dimension is

dσ

dt
=

∑
Ai exp

(
Biε

)dε

dt
−

∑ (
1
τ i

− Bi dε

dt

)
σi (32)

Eq.(32) is applied to the Stress-Strain curve with nonlin-
ear least squares method, and the material constants are
determined. Approximate curve is calculated so that all
Stress-Strain curve with different three elongation rate
are satisfied. The result is shown in Table.2.

5.2 Comparison with Experiment

Analysis model is shown in Fig.5. The analysis object is
cubic PSA whose length of one side is 1cm. The density
of PSA uses 1000kg/m3.



Table 2: Material constants

Relaxation times [s] 　 Ai [Pa]　 Bi

1.00 × 100 1.28 × 105 1.17
1.00 × 101 8.93 × 101 4.40
1.00 × 102 3.71 × 102 3.67
1.00 × 103 1.30 × 105 0.67
1.00 × 106 7.13 × 101 3.85

Figure 5: Boundary conditions

The analysis is calculated with one element model for the
efficiency of analysis time. PSA shows near incompress-
ibility. However, the analysis using 0.49 for the Poisson
ratio is stopped before completing calculation. The rea-
son is considered to be locking. Since the purpose was
verification of the model this time, 0.3 is used as Pois-
son ratio. The elongation rate used for analysis is 5, 50,
and 500 mm/min. The material constants use the values
shown in Table.2.

The result is shown in Fig.6. In Fig.6, the rate, for exam-
ple 5mm/min, shows elongating rate. Fig.6 shows that
the computational result can describe the experimental
data well. And it shows that the elongating rate depend-
ability originating in the viscoelasticity can be described
well. Therefore, it is thought that this model is appropri-
ate as a material model describing deformation of PSA.

However, some difference between computational result
and experimental data can be observed in the area of
large strain and at high elongating rate. It is thought
that the reason for this difference is using 0.3 for Poisson
ratio.

5.3 Investigation of Poisson Ratio

In order to study the reason for bad correlation at high
elongating rate, we analyze at various Poisson ratio. The
result is shown in Fig.7. Fig.7 is the result of the analysis
at 500mm/min of elongating rate and the area of nominal
strain 400-600% is magnified.

The correlation between computational result and exper-
imental data is so good that the Poisson ratio used for
calculation is close to 0.5. The curve of the Poisson ra-
tio 0.4 shows the strange behavior near 550% of nominal
strain. This is because the analysis does not progress
according to the locking phenomenon.

From above mentioned, it is thought that the reason why

the correlation worsens at the area of large strain is to
estimate the Poisson ratio to be low, and that good cor-
relation is acquired if the near incompressibility can be
described.

6 Conclusions and Future Work

This paper has treated the material model which can de-
scribe the deformation of PSA. Our results indicate the
following.

1. The present advanced generalized Maxwell model
can describe visco and rubber elasticity.

2. We have formulized the three-dimensional constitu-
tive equation of the advanced generalized Maxwell
model.

3. We have validated the proposed advanced general-
ized Maxwell model with the one axis tensile analy-
sis.

The remained subjects to simulate practical PSA behav-
ior with large deformation are as follows.

1. The present code uses dynamic explicit method.
Therefore, computational time step size is extremely
small because of the requirement of the Courant
condition. It is necessary to consider the solution
method, which can use large time step size, for suit-
able analysis of PSA deformation.

2. The highly distorted Lagrangian finite elements
cannot retain numerical accuracy. The present
formulation should be extended to an Eulerian
formulation[4], which is attractive for large deforma-
tion problem like PSA.
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Figure 6: Computational and experimental stress-strain curves
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Figure 7: Stress-strain curves with different Poisson ratios. Comp.1, 2 and 3 are computational solutions in case of
Poisson ratio 0.3, 0.35 and 0.4 respectively.




