

Abstract—String matching and dynamic dictionary matching

are significant principles in computer science. These principles
require an efficient data structure for accommodating the
pattern or patterns to be searched for in a large given text.
Moreover, in the dynamic dictionary matching, the structure is
able to insert or delete the individual patterns over time. This
research article introduces a new dynamic data structure
named inverted lists for both principles. The inverted lists data
structure, which is derived from the inverted index, is
implemented by the perfect hashing idea. This structure focuses
on the position of characters and provides a hashing table to
store the string patterns. The new data structure is more time
efficient than traditional structures. Also, this structure is faster
to construct and consumes less memory than others.

Index Terms—Data Structure, String Matching, Multiple
String Matching, Suffix Tree, Trie, Bit-parallel, Hashing Table,
Dictionary matching, inverted index, inverted list.

I. INTRODUCTION
There are many principles emerging from string processing

such as string pattern matching, multiple string pattern
matching called static dictionary, dynamic multiple patterns
string pattern matching called dynamic dictionary matching.
All of them deal with the pattern or patterns of string to be
searched for in a large given text. Basically, pattern or
patterns are generated to suitable data structures which are
then provided for searching.

For solving the problem, string pattern matching deals
with single string pattern p=c1c2c3…cm, while dynamic
dictionary matching deals with multiple pattern strings
P={p1, p2,..,pr}. And the patterns in P enable the ability to
update individual patterns over time. Traditionally, Trie,
Bit-parallel, Hashing table, and Suffix tree are the data
structures used for accommodating p or P.

Trie, known as classic data structure for static dictionary,
has been used for accommodating patterns for a long time.
This structure employs an automaton to contain the set of
states labeled by characters of patterns. Many algorithms are
based on Trie such as the first linear time (Aho-Corasick
[1]—extended from [15]), the sub-linear time
(Commentz-Walter[11]—extended from [12]) and
SetHorspool (mentioned in [17]). However, when

Manuscript received December 8, 2009.
Chouvalit Khancome is a PhD student in Computer Science at King

Mongkut’s Institute of Technology Ladkrabang, Thailand. He is a teacher in
the Department of Computer Science, Rajanakarindra Rajabhat University,
Thailand; (e-mail: chouvalit@ hotmail.com).

Veera Boonjing is an Associate Professor in Computer Science,
Department of Mathematics and Computer Science at King Mongkut’s
Institute of Technology Ladkrabang, Thailand. Also, he is working in
National Centre of Excellence in Mathematics, PERDO, Bangkok, Thailand
10400, (e-mail: kbveera@kmitl.ac.th).

implementing the Trie to applications a large amount of
memory is consumed. And when the pattern is updated Trie
needs to regenerate the structure with O(|P|) time where |P| is
the sum of all pattern lengths.

Bit-parallel data structure employs the sequence of bit to
store the patterns. Navarro and Raffinot [17] showed how to
apply the single string Shift-Or and Shift-And to Multiple
Shift-And[8], Multiple-BNDM[9], and [10]. Nevertheless,
this structure is restricted by the word length of computer
architecture; furthermore, it requires special methods which
are more complex in converting the patterns to the bit form.

The first hashing idea was presented by Karp and Rabin
[14] in single string matching. This algorithm takes the worst
case scenario in O(mn) time where m is the pattern length.
Unfortunately, the dictionary matching algorithms which
directly extend from [14] take O(n|P|) time (exhaustive
solution) where n is the length of the given text. A more
efficient algorithm presented by Wu and Manber [24] creates
the reverted Trie, the shift table, and implements the hashing
table for storing the block of patterns to solve the problem.
The last solution [25] improves Wu and Manber [24], but it
does not support updating the patterns.

Suffix tree is implemented for accommodating the
dynamic patterns. Generally, this structure does not directly
support the dynamic patterns because it needs to employ the
dynamic mechanism of McCreight [16], DS-List [14], or
Weiner [23]. Thus, implementing suffix tree to algorithms
must attach O(log|P|) time because the tree structure is
embedded by log|P| for data accessing. The first suffix tree
algorithm presented by Amir and Farach [2] is the first
adaptive algorithm that displayed exhaustive time
consumption. Subsequently, [3], [4], [5], [6], [7], [8], [9] and
[22] showed the logarithmic algorithms of suffix tree
generalization. Therefore, this structure is immediately
challenged by how to escape from the factor of logarithmic
time (nlog|P|). Moreover, the applications which are
implemented by suffix tree take more memory than Trie as
well.

For solving the problem of information retrieval, the
inverted index has been applied; this structure can be adapted
to several data structures. The motivation of this research is
from the inverted index which focuses on the keywords. But
the new structure is based on characters.

This research article proposes to adapt the inverted index
[13], [18], and [19] to create a new data structure called
inverted lists for accommodating the pattern or patterns. This
structure uses O(m) time and O(m+| λ |) space for managing
the single pattern string where m is the length of pattern p.
For dynamic dictionary matching, the inverted lists structure
takes O(|P|) time and O(| λ |+|P|) space where λ are any
characters which are exactly used in a finite alphabet ∑

Data Structure for Dynamic Patterns
Chouvalit Khancome and Veera Boonjing, Member, IAENG

and ⊆λ ∑ . Importantly, this structure can handle the
inserting or deleting of the individual pattern in O(|p|) time
where p is the individual pattern to be inserted or deleted. In
experimental results, this structure is constructed faster and
uses less memory than the traditional data structures.

The remaining sections are organized as follows. Section
II shows how to derive the inverted index and the perfect
hashing principle for accommodating the new data structure.
Section III describes the inverted lists for string pattern
matching. Section IV shows the inverted lists for dictionary
matching. Section V illustrates the implementations and the
experimental results, and section VI is a conclusion.

II. DERIVING THE PRINCIPLES

A. Deriving the Inverted Index
The inverted index structure represents the words in the

target documents by the form of <documentID, word:pos>
where ‘documentID’ is the indicated number referring to the
number of documents, ‘word’ is the keywords in the
document, and ‘pos’ is the occurrence position of ‘word’ in
the documentID. The original inverted index [13], [18], and
[19] assign all documents as D={D1…Dn} where Di is any
document that contains the various keywords with different
positions and ni ≤≤1 .

Each document is analyzed for keeping keywords and their
positions. For instance, if the document D1 has the keywords
wa:1,wb:2,wc:3, it can be said that the keyword wa appears at
position 1, wb appears at position 2, and wc appears at position
3. Then, all keywords can be rewritten by the form of word:
(posting lists) where ‘posting list’ is (documentID: word
position in that document). Thus, all keywords in document
D1 can be rewritten as wa: (1:1), wb: (1:2), and wc: (1:3)
respectively.

Afterwards, the keywords and posting lists are converted
into the suitable data structures such as B+tree, suffix tee, and
suffix array. This research focuses on the position of
characters instead of the keywords. Initially, the document D
is replaced by the pattern P, and each Di is replaced by pi. For
instance, if there are the patterns P={aab, aabc, aade} then
the patterns are assigned as D1=aab, D2=aabc, and D3=aade.
Then, they are defined by the form of character :<the
occurrence position of character in pattern: the indicated
status of the last character of pattern: the number of pattern
in P>; e.g., a:<1:0:1>, <2:0:1>, <1:0:2>, <2:0:2>,… .
Each list in this form is called the “individual posting list”.
Using this method, all of the individual posting lists can be
applied for accommodating the dictionary.

B. Deriving the Perfect Hashing
The most powerful hashing principle is the perfect hashing
which takes O(1) time in worst-case performances (shown in
[26], [27] and [28]) where n is the size of data. This structure
is suitable for the set of static keys such as the reserved words
in the programming language. For this reason, the perfect
hashing is chosen for implementing the inverted lists.

The perfect hashing uses the universal key U to
accommodate all keys for accessing all data in the table and
two-level schemes for implementation. The first level is the n
keys for hashing with chaining to the second level by

function f(n), and the second level is the data items associated
with the corresponding key of n. This research assigns ∑
as the universal key U and f(λ) as f(n) for the first level of
the perfect hashing table and the groups of posting lists as the
data items in the second level where ⊆λ ∑ .

III. INVERTED LISTS FOR SINGLE PATTERN
Definition 1 Let p=c1c2c3…cm be the pattern input, and ck is
any alphabet that occurs in p at position k where
k=1,2,3,…,m. The inverted list of ck can be written by ck:
<k:0> if only if k<m, or ck:<k:1> if only if k=m.
Symbolically, ck: <k:0> is represented by c:

0kI , and

ck:<k:1> is represented by c:
1kI .

Example 1. The inverted lists of p=aabcz. We have c1=a,
c2=a, c3=b, c4=c, and c5=z. The whole inverted list of p are
a:<1:0>, a:<2:0>, b:<3:0>, c:<4:0>, and z:<5:1>.
Definition 2 The perfect hashing table which is provided for
storing the inverted lists of the single pattern p is called the
inverted lists table for single patterns and is denoted by sτ .

Example 2. The table sτ of pattern p=aabcz.

Table 1. The inverted list table sτ of p=aabcz.

∑
0kI /

1kI (i.e., the inverted list)

a
01I ,

02I <1:0>,<2:0>

b
03I <3:0>

c
04I <4:0>

z
15I <5:1>

Lemma 1 Let

0kI and
1kI be the inverted list of

p=c1c2c3…cm. If
0kI and

1kI are stored in the hash table

sτ then accessing
0kI or

1kI takes O(1) time where

k=1,2,3,…,m..
Proof Each inverted list

0kI or
1kI can be retrieved from

the table sτ in O(1) time. Given f(x) be a hashing function
which

0kc is a key to access
0kI , and

1kc is the key to

access
1kI where c is the character in λ . The table sτ is

implemented by the perfect hashing table. Thus, to retrieve
the inverted list

0kI by f(
0kc) or to retrieve the inverted list

1kI by f(
1kc) takes O(1) times by the hashing properties.

This phase creates the inverted list table sτ for all
alphabets in λ . The next method reads the characters one by
one and generates to inverted lists, and each inverted list is
added into the table sτ . Algorithm 1 shows this method.

Algorithm 1.
Input : p=c1,c2,c3,…cm
Output: Table sτ of p
1. Create table sτ
2. j=1
3. while (j<=m) do
4. Create the inverted list of cj sτ at char(jc)

5. j j+1
6. end while

Algorithm 1 takes O(m) time and O(m+| λ |) space shown

as the proof in Theorem 1.

Theorem 1 Let p=c1c2c3…cm be the pattern input, and given
sτ be the inverted list table of single pattern. Generating all

characters of p to the inverted lists and adding all inverted
lists into sτ takes O(m) time, and the table sτ uses
O(m+| λ |) space.
Proof For time complexity, the hypothesis is that the whole
characters of p are generated into the table sτ . Line 1 creates
the table, and line 2 initializes variables, which take O(1).
Line 3 needs to repeat m rounds, and it also takes O(m) time.
Line 4 is O(1) by Lemma 1 while line 5 takes O(1) as line 2.
Therefore, the preprocessing time take O(m) time.

For space complexity, the table sτ is created with the size
| λ | for all alphabet of ⊆λ ∑ . Each inverted list of ck of
p=c1c2c3…cm uses one space per one inverted list then for
k=1 to k=m take m space as well. Hence, all required spaces
of sτ is O(m+| λ |).

IV. INVERTED LISTS FOR DYNAMIC PATTERNS
Definition 3 Let P={p1, p2, p3,…, pr} be the set of patterns
where pi is the pattern ith of m character {c1c2c3…cm}, and

ri ≤≤1 . An individual posting list of a character ck from the
pattern pi is defined as ck:<k:0:i> if k<m, or ck:<k:1:i> if
k=m. Symbolically, ck:<k:0:i> is ik

0ϕ , and ck:<k:1:i> is
ik

1ϕ where mk ≤≤1 .

As in Definition 3, if P={p1=aab, p2=aabc, p3=aade}
then the documents are p1=a1a2b3, p2=a1a2b3c4 and
p3=a1a2d3e4. The individual posting lists of P are defined as
below:

 p1= a:<1:0:1>, a:<2:0:1>, b:<3:1:1>,
 p2=a:<1:0:2>, a:<2:0:2>, b:<3:0:2>
 c:<4:1:2>, and
 p3= a:<1:0:3>, a:<2:0:3>, d:<3:0:3>,
 e:<4:1:3>.

Notice that all individual posting lists above can be
grouped to a new form such as a:<1:0:{1,2,3}>,
<2:0:{1,2,3}>, b:<3:1:{1}>, <3:0:{2}>, and so on.
Definition 2 shows how to group the posting lists to a new
form.

Definition 4 Let lmax be the maximum length of patterns in
P={p1,p2,p3,…,pr}, and let ε be the position of the same
character λ which appears in the various patterns of P where

max1 l≤≤ ε and ⊆λ ∑ . The posting lists of λ are

{ iεϕ0 , lεϕ0 ,…, pεϕ0 , qεϕ0 } or { iεϕ1 , lεϕ1 ,…, pεϕ1 , qεϕ1 } where
rqpli ≤≤ },,...,,{1 . A group of posting lists of λ can be

defined as follows.

1. If the posting lists are { iεϕ0 , lεϕ0 ,…, pεϕ0 , qεϕ0 } then a
group of posting lists of λ is 0,ελ .

2. If the posting lists are { iεϕ1 , lεϕ1 ,…, pεϕ1 , qεϕ1 } then a
group of posting lists of λ is 1,ελ .

Definition 5 The inverted list of alphabet λ is defined as

0,ελI if only if the group of posting lists is 0,ελ . Similarly,

the inverted list of alphabet λ is denoted as
1,ελI if only if

the group of posting lists is 1,ελ .

With Definitions 4 and 5, if the posting lists are
a:<1:0:{1,2,3}>, a:<2:0:{1,2,3}> then the groups of
posting lists must be written as

0,1aI and
0,2aI respectively

(shown in table 2).

Definition 6 The perfect hashing table which provides for all
alphabets over ∑ and their corresponding inverted lists of
P is called the inverted lists table for the dynamic dictionary;
this table is denoted as dτ .

From Definition 6, it can be said that all characters λ are
stored in the first column of dτ , and

0,ελI and/or
1,ελI are

stored in the second column of dτ . For instance, if there is
P={aab, aabc, aade} then P can be implemented to the
perfect hashing table as the table 2.

Example 3. Table 2 shows the table dτ of P={aab, aabc,
aade}.

Table 2. The inverted list table dτ of P={aab, aabc, aade}.

f(λ) Inverted
lists

i.e., the granular inverted lists

 a
0,1aI ,

0,2aI <1:0:{1,2,3}>, <2:0:{1,2,3}>

b
1,3bI ,

0,3bI <3:1:{1}>, <3:0:{2}>

c
1,4cI <4:1:{2}>

d
0,3dI <3:0:{3}>

e
1,4eI <4:1:{3}>

A. Inverted lists table construction
First of all, the empty table dτ is built for λ , and the entire
patterns are then generated to the inverted lists and are added
into the table dτ after the table is constructed. If the inverted
lists of target character are already stored in the table, only
the number of pattern is added to the corresponding inverted
lists; otherwise, a new inverted list is created and added into
the table. Algorithm 2 shows this method.

Algorithm 2.
Input: P={p1,p2,…,pr}
Output : the table dτ of P
1. initiate dτ
2. for i 1 to r do
3. for j to m do
4. if Exist(i

jp)=null then

5. dτ ij
0ϕ or ij

1ϕ
6. else
7.

0,)(jjcharI or
1,)(jjcharI i

8. end if
9. end for
10. end for

For analyzing time and space, Algorithm 2 is referred as
proof. Theorem 2 shows the time complexity and Theorem 3
illustrates the space complexity.

Lemma 2 If there are the inverted lists

0,ελI or
1,ελI of λ

in dτ then to access all inverted lists of λ uses O(1) time.
Proof Each alphabet λ is a unique character in ∑ , and λ
is implemented as the first level of the perfect hashing table
taking O(1) time. The inverted lists

0,ελI or
1,ελI are

implemented as the second level of the perfect hashing table;
therefore, each data item takes O(1) time, and all items in the
second level of the table can be applied to O(1) as all
individual items.

Theorem 2 Let P={p1,p2,p3,…pr} be the given patterns. All
patterns in P are generated into the table dτ in O(|P|) time
where |P| is the sum of all pattern lengths in P.
Proof The proof is that all characters of P are generated to
inverted lists and are added into dτ in O(|P|) time. All of the
pattern lengths are denoted as |p1|, |p2|, |p3|,…, |pr|. For the
initial step, the table dτ is built in O(1) time. As soon as the
table dτ is built completely, each pattern is scanned by
individual character from the first character to the last
character. Thus the time to scan equals the number of pattern
length; therefore, all patterns are scanned from the pattern 1
to pattern r. This step takes the processing time as |p1|+ |p2|+
|p3|+… +|pr|=|P|, and it reaches to the hypothesis step by the
last character of pr. Therefore the inverted lists construction
takes O(|P|) time. Meanwhile, to access the table dτ for
storing the inverted list takes O(1) time by Lemma 2. Hence,
the preprocessing time is proved in O(|P|) time.

Theorem 3 The table dτ requires O(| λ |+|P|) space for
accommodating the whole inverted lists of P; where |P| is the
sum of pattern lengths of P, and dτ is the inverted lists table.
Proof All patterns in P contain the various characters over λ
by the size | λ | where ⊆λ ∑ , and the table dτ is
implemented as the perfect hashing table. The algorithm is
proved as all characters of P are generated to inverted lists
and are added into the table dτ with |P| space. The lengths of
P are |p1|, |p2|, |p3|, …, |pr|, and each pi contains the string
{c1c2c3…cm} where ri ≤≤1 . The length of this string is

denoted by |pi|. For the initial step, the first column of table
dτ is created by | λ | size. Each inverted list is created by the

preprocessing phase for all patterns of P; therefore, each
inverted list of string {c1c2c3…cm} in each pi only takes one
space per one list. Thus, the space is equal to
|p1|+|p2|+|p3|+…+|pr|=|P| for the second level of perfect
hashing table. Hence, the space of dτ is O(| λ |+|P|).

B. Pattern Insertion
The pattern insertion deals with the problem of adding all
characters of the individual pattern into the inverted table dτ

and maintains the stable dictionary. Let φp be a new pattern

for insertion where φ is a unique number that does not
appear in the dictionary before inserting the pattern. We
begin to search for the existence of φp in the table dτ by

the function PExist(). The insertion method will be executed
if only if the result is null. Next, all inverted lists of φp are

generated and are added into the table as Algorithm 2. This
algorithm is illustrated by Algorithm 3 below.

Algorithm 3.
Input : φp ={c1c2,…,cm}

Output : φp is stored in dτ

 1. if PExist(pφ) =null then
 2. for j 1 to m do
 3. if Exist(φ

jp)=null then

 4. dτ φϕ j
0 or φϕ j

0
 5. else
 6.

0,)(jjcharI /
1,)(jjcharI φ

7. end if
8. end for
9. end if

Theorem 4 Let p={c1c2c3…cm} be the new individual pattern
to be inserted into the existing dictionary P={p1,p2,p3,…pr}.
The insertion time is O(|p|) where |p| is the length of p.
Proof Algorithm 3 is referred for the proof. Given pφ be a
new pattern which contains a string {c1c2c3…cm} where φ is
an non-existing number of the pattern in P. The length of pφ
is m and represented by |p|. In the initial step, line 1 repeats
the search for each character from c1 to cm, and it takes m
operation which is O(|p|) time. The accessing of the inverted
list takes O(1) time by Lemma 2. For the inner loop, if a new
pattern does not exist in P, line 2 will insert the inverted lists
from c1 to cm. All operations use |p| time, and the hypothesis
is proved as well. Meanwhile, line 2, line 4, or line 6 also
access the table, and they take O(1) by Lemma 2. It can be
said that all operations of line 2 take O(|p|) time; therefore, all
characters of pφ are converted and added into the existing
table in O(|p|) time.

C. Pattern Deletion
Pattern deletion consists of two methods: (1) looks for the
required pattern to delete, and (2) repeats and removes the
inverted lists of the target pattern one by one. For deletion
mechanism, if the corresponding inverted lists have only one
posting list, it will be deleted immediately. Otherwise we will
delete only an inverted list in the inverted lists group when
the pattern number equals σ . The deletion algorithm is
described by Algorithm 4 below.

Algorithm 4.
Input: p={c1c2c3…cm}
Output : p is removed from dτ
1. if(ExistDel(p) =σ) then
2. for j 1 to m do
3. if posting lists in

0,)(jjcharI /
1,)(jjcharI > 1 then

4. Delete posting lists number equal to σ
5. else
6. Delete

0,)(jjcharI /
1,)(jjcharI of char(σ

jp)

7. end if
8. end for
9. end if

Example 4. Take p=aab off from P={aab,aabc,aade}.
As the example before, the table 2 is referred, and the

deletion is begun in line 1. This inspects and returns the
number σ for deletion. The characters in the pattern ‘aab’
are converted to a:<1:0:{1}>, <2:0:{1}>, and b:<3:1:{1}>.
Then the deleting mechanism is started for deleting the
inverted lists one by one. By line 4, the inverted list of
a:<1:0:{1}> and <2:0:{1}> are updated as <1:0:{2,3}> and
<2:0:{2,3}> (by taking the number ‘1’ off). Otherwise, the
inverted list b:<3:1:{1}> is deleted by line 6.

Theorem 5 The deletion pattern p from the existing table of
P takes O(|p|) time where p is the target pattern to be deleted,
and |p| is the length of pattern p.
Proof Referring to Algorithm 3, let pi be a pattern to be
deleted, which pi contains a string {c1c2c3…cm} with the
length m. The length m is denoted by |p|, and ‘i’ is the number
of the existing pattern ith in P. The hypothesis is that all
characters of pi are removed from the inverted list table of P.
Line 2 loops to remove c1 to cm. Each operation for accessing
the inverted list uses O(1) by Lemma 2. Thus the main step is
initiated by line 2. This step repeats to read one by one from
c1 to cm and removes the matched inverted lists from dτ . All
operations take |p| time while line 4 or line 6 uses the
constant time by Lemma 2. Therefore, to delete all characters
of pattern pi from dτ takes O(|p|) time.

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A. Implementations
We used the Dell Latitude D500 notebook with Intel Pentium
M 1.3 GHz, 512 MB of RAM, and running on Windows XP
Home as a running application machine. We implemented
Aho-Corasick Trie [1] (named AC Trie), Reverted Tire of
SetHorspool in [9], dynamic Suffix tree of [16], and our
inverted lists. And the abstract data type (ADT) of

java.util.Vector in Java language was employed for
accommodating all structures.

The | ∑ | was 52 letters of English alphabet; ‘A’ to ‘Z’ and
‘a’ to ‘z’. We programmed to randomize each pattern with
the various lengths of 3 to 20 characters. The programs
randomized the pattern groups of 10, 50, 100, 500, 1000,
5000, 10000, and 50000. Each group contained 10 files, and
each file was performed to test 10 times and the average was
given.

B. Experimental Results
The tests measure the processing time in seconds, and the
memory usages in Kilo-Bytes. The processing time of
inverted lists construction was faster than the traditional data
structures shown in table 3.

Table 3. Comparing processing time (Seconds).

Pattern
Number

AC Trie Reverted
Trie

Suffix
Tree

Inverted
List

10 0.41 0.62 0.35 0.29
50 0.19 0.10 0.16 0.05
100 0.17 0.27 0.59 0.15
500 0.66 0.98 21.67 0.39
1000 1.34 2.08 - 0.86
5000 13.79 9.02 - 4.55
10000 49.43 26.28 - 7.91
50000 550.74 121.11 - 47.63

For using memory, the inverted lists structure used less
memory than the others. However, the suffix tree structure
was not able to generate in the case of pattern numbers over
500 patterns because Java language used excessive memory.
The results are shown by table 4.

Table 4. Comparing memory usage (KB).

Pattern
Number

AC Trie Reverted
Trie

Suffix
Tree

Inverted
List

10 4.74 4.95 24.86 4.87
50 4.83 4.98 48.34 4.89
100 4.92 5.02 896.12 4.90
500 5.60 5.66 2512.56 5.11
1000 6.29 6.30 - 5.32
5000 11.07 11.23 - 7.57
10000 15.86 16.15 - 9.83
50000 54.56 55.15 - 23.38

VI. CONCLUSION
This research has presented the new data structure called
inverted lists for dynamic patterns of string matching and
dynamic dictionary matching. The inverted lists structure
uses O(m) time and O(m+| λ |) space for accommodating the
single pattern string where m is the length of pattern. In the
dynamic patterns, this structure takes O(|P|) time and
O(| λ |+|P|) space for accommodating multi-patterns string
where P is the sum of pattern lengths, and λ represents any
characters which are exactly used in a set of a finite alphabet
∑ . Furthermore, this structure is able to insert or delete the
individual pattern in O(|p|) time where p is the individual
pattern to be inserted or deleted. In experimental results, this

structure is faster and uses less memory than the traditional
data structures.

REFERENCES
[1] A. V. Aho and M. J. Corasick. “Efficient string matching: an aid to

bibliographic search”. Comm. ACM, 1975, 333-340.
[2] A. Amir and M. Farach. “Adaptive dictionary matching”. Proc. of the

32nd IEEE Annual Symp. On Foundation of Computer Science, 1991,
760-766.

[3] A. Amir, M. Farach, R.M. Idury, J.A. La Poutr'e, and A.A. Schaffer.
“Improved Dynamic Dictionary-Matching”. In Proc. 4nd ACM-SIAM
Symp. on Discrete Algorithms. 1993, 392-401.

[4] A. Amir, M. Farach, R. M. Idury, J. A. La Poutré , and A. A. Schäffex.
“Improved dynamic dictionary matching”. Information and
Computation, 199(2). 1995, 258-282.

[5] A, Amir, M. Farach, and Y. Matias. “Efficient randomized dictionary
matching algorithms”. In CPM: 3rd Symposium on Combinatorial
Pattern Matching, 1992.

[6] A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park. “Dynamic
dictionary matching”. Manuscript. 1991.

[7] A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park. “Dynamic
dictionary matching”. Journal of Computer and System Sciences.
1993.

[8] A. Amir, M. Farach, Z. Galil, R. Giancarlo, and K. Park. “Dynamic
dictionary matching”. Journal of Computer and System Science,
49(2). 1994, 208-222.

[9] A. Amir, M. Farach, R. M. Idury, J. A. La Poutre and A. A. Schäffex.
“Improved Dynamic Dictionary Matching”. Information and
computation. 119, 1995, 258-282.

[10] A. Moffat, and J. Zobel. “Self-Indexing Inverted Files for Fast Text
Retrieval”. ACM Transactions on Information Systems, Vol. 14, No. 4,
1996, 349-379.

[11] B. Commentz-Walter. “A string matching algorithm fast on the
average”. In Proceedings of the Sixth International Collogium on
Automata Languages and Programming. 1979, 118-132.

[12] R.S. Boyer. And J.S. Moore. “A fast string searching algorithm”.
Communications of the ACM. 20(10), 1977, pp. 762-772.

[13] C. Monz and M. de Rijke. (11, 02, 2002). Inverted Index Construction.
[Online]. Available: http://staff.science.uva.nl/
~christof/courses/ir/transparencies/clean-w-05.pdf.

[14] D. D. Sleator and R. E. Tarjan. “A data structure for dynamic trees”.
Journal of Computer and System Sciences 26(3). 1983, 362-391.

[15] D.E. Knuth, J.H. Morris, V.R. Pratt, “Fast pattern matching in strings”.
SIAM Journal on Computing 6(1), 1997, 323-350.

[16] E.M. McCreight. “A space-economical suffix tree construction
algorithm”. Journal of Algorithms, 1976, 23(2):262-272.

[17] G. Navarro and M. Raffinot. “Flexible Pattern Matching in Strings”.
The Press Syndicate of The University of Cambridge. 2002.

[18] O. R. Zaïane. “CMPUT 391: Inverted Index for Information
Retrieval”. University of Alberta. 2001.

[19] R. B. Yates and B. R. Neto. “Mordern Information Retrieval”. The
ACM press.A Division of the Association for Computing
Machinery,Inc. 1999, 191-227.

[20] S. Melnik, Sriram Raghavan, Beverly Yang and Hector Garcia-Molina.
“Building a Distributed Full-Text Index for the Web”. ACM
Transactions on Information Systems, Vol. 19, No. 3, 2001, 217-241.

[21] T.W. Lam, K.K. To. (03, 11, 2005). “The Dynamic Dictionary
Matching Problem Revisited” . [Online]. Available :
http://citeseer.ist.psu.edu/413873.html.

[22] H-L. Chan, W-K. Hon, T-W. Lam, and K. Sadakane. “Dynamic
dictionary matching and compressed suffix trees”. SODA '05:
Proceedings of the sixteenth annual ACM-SIAM symposium on
Discrete algorithms. 2005, 13-22.

[23] P. Weiner. “Linear Pattern Matching Algorithms”. In Proceedings of
Symposium on Switching and Automata Theory. 1973, 1-11.

[24] S.Wu and U. Manber. “A fast algorithm for multi-pattern searching”.
Report tr-94-17, Department of Computer Science, University of
Arizona, Tuscon, AZ, 1994.

[25] Y. D. hong, X. Ke and C. Yong. “An improved Wu-Manber multiple
patterns matching algorithm”. Performance, Computing, and
Communications Conference, 2006. IPCCC 2006. 25th IEEE
International 10-12, 2006, 675-680.

[26] F. C. Botelho. “Near-Optimal Space Perfect Hashing Algorithms”. The
thesis of PhD. in Computer Science of the Federal University of Minas
Gerais, 2008.

[27] R. Pagh. (11, 08, 2009). “Hash and Displace: Efficient Evaluation of
Minimal Perfect Hash Functions”. [Online]. Available:
www.it.-c.dk/people/pagh/papers/hash.pdf.

[28] Wikipedia (10,07,2009). “Hash function”. [Online]. Available:
en.wikipedia.org/wiki/Hash_fuction.

