
 
 

 

  
Abstract—String matching and dynamic dictionary matching 

are significant principles in computer science. These principles 
require an efficient data structure for accommodating the 
pattern or patterns to be searched for in a large given text. 
Moreover, in the dynamic dictionary matching, the structure is 
able to insert or delete the individual patterns over time. This 
research article introduces a new dynamic data structure 
named inverted lists for both principles. The inverted lists data 
structure, which is derived from the inverted index, is 
implemented by the perfect hashing idea. This structure focuses 
on the position of characters and provides a hashing table to 
store the string patterns. The new data structure is more time 
efficient than traditional structures. Also, this structure is faster 
to construct and consumes less memory than others.  
 

Index Terms—Data Structure, String Matching, Multiple 
String Matching, Suffix Tree, Trie, Bit-parallel, Hashing Table, 
Dictionary matching, inverted index, inverted list.  
 

I. INTRODUCTION 
There are many principles emerging from string processing 

such as string pattern matching, multiple string pattern 
matching called static dictionary, dynamic multiple patterns 
string pattern matching called dynamic dictionary matching. 
All of them deal with the pattern or patterns of string to be 
searched for in a large given text. Basically, pattern or 
patterns are generated to suitable data structures which are 
then provided for searching.  

For solving the problem, string pattern matching deals 
with single string pattern p=c1c2c3…cm, while dynamic 
dictionary matching deals with multiple pattern strings 
P={p1, p2,..,pr}. And the patterns in P enable the ability to 
update individual patterns over time. Traditionally, Trie, 
Bit-parallel, Hashing table, and Suffix tree are the data 
structures used for accommodating p or P.  

Trie, known as classic data structure for static dictionary, 
has been used for accommodating patterns for a long time. 
This structure employs an automaton to contain the set of 
states labeled by characters of patterns. Many algorithms are 
based on Trie such as the first linear time (Aho-Corasick 
[1]—extended from [15]), the sub-linear time 
(Commentz-Walter[11]—extended from [12]) and 
SetHorspool (mentioned in [17]). However, when 
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implementing the Trie to applications a large amount of 
memory is consumed. And when the pattern is updated Trie 
needs to regenerate the structure with O(|P|) time where |P| is 
the sum of all pattern lengths. 

Bit-parallel data structure employs the sequence of bit to 
store the patterns. Navarro and Raffinot [17] showed how to 
apply the single string Shift-Or and Shift-And to Multiple 
Shift-And[8], Multiple-BNDM[9], and [10]. Nevertheless, 
this structure is restricted by the word length of computer 
architecture; furthermore, it requires special methods which 
are more complex in converting the patterns to the bit form.  

The first hashing idea was presented by Karp and Rabin 
[14] in single string matching. This algorithm takes the worst 
case scenario in O(mn) time where m is the pattern length. 
Unfortunately, the dictionary matching algorithms which 
directly extend from [14] take O(n|P|) time (exhaustive 
solution) where n is the length of the given text. A more 
efficient algorithm presented by Wu and Manber [24] creates 
the reverted Trie, the shift table, and implements the hashing 
table for storing the block of patterns to solve the problem. 
The last solution [25] improves Wu and Manber [24], but it 
does not support updating the patterns. 

Suffix tree is implemented for accommodating the 
dynamic patterns. Generally, this structure does not directly 
support the dynamic patterns because it needs to employ the 
dynamic mechanism of McCreight [16], DS-List [14], or 
Weiner [23]. Thus, implementing suffix tree to algorithms 
must attach O(log|P|) time because the tree structure is 
embedded by log|P| for data accessing. The first suffix tree 
algorithm presented by Amir and Farach [2] is the first 
adaptive algorithm that displayed exhaustive time 
consumption. Subsequently, [3], [4], [5], [6], [7], [8], [9] and 
[22] showed the logarithmic algorithms of suffix tree 
generalization. Therefore, this structure is immediately 
challenged by how to escape from the factor of logarithmic 
time (nlog|P|). Moreover, the applications which are 
implemented by suffix tree take more memory than Trie as 
well. 

For solving the problem of information retrieval, the 
inverted index has been applied; this structure can be adapted 
to several data structures. The motivation of this research is 
from the inverted index which focuses on the keywords. But 
the new structure is based on characters. 

This research article proposes to adapt the inverted index 
[13], [18], and [19] to create a new data structure called 
inverted lists for accommodating the pattern or patterns. This 
structure uses O(m) time and O(m+| λ |) space for managing 
the single pattern string where m is the length of pattern p. 
For dynamic dictionary matching, the inverted lists structure 
takes O(|P|) time and O(| λ |+|P|) space where  λ  are any 
characters which are exactly used in a finite alphabet  ∑  
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and ⊆λ ∑ . Importantly, this structure can handle the 
inserting or deleting of the individual pattern in O(|p|) time 
where p is the individual pattern to be inserted or deleted. In 
experimental results, this structure is constructed faster and 
uses less memory than the traditional data structures.  

The remaining sections are organized as follows. Section 
II shows how to derive the inverted index and the perfect 
hashing principle for accommodating the new data structure. 
Section III describes the inverted lists for string pattern 
matching. Section IV shows the inverted lists for dictionary 
matching. Section V illustrates the implementations and the 
experimental results, and section VI is a conclusion. 

II. DERIVING THE PRINCIPLES 

A. Deriving the Inverted Index 
The inverted index structure represents the words in the 

target documents by the form of <documentID, word:pos> 
where ‘documentID’ is the indicated number referring to the 
number of documents, ‘word’ is the keywords in the 
document, and ‘pos’ is the occurrence position of ‘word’ in 
the documentID. The original inverted index [13], [18], and 
[19] assign all documents as D={D1…Dn} where Di is any 
document that contains the various keywords with different 
positions and ni ≤≤1 . 

Each document is analyzed for keeping keywords and their 
positions. For instance, if the document D1 has the keywords 
wa:1,wb:2,wc:3, it can be said that the keyword wa appears at 
position 1, wb appears at position 2, and wc appears at position 
3. Then, all keywords can be rewritten by the form of word: 
(posting lists) where ‘posting list’ is (documentID: word 
position in that document). Thus, all keywords in document 
D1 can be rewritten as wa: (1:1), wb: (1:2), and wc: (1:3) 
respectively.  

Afterwards, the keywords and posting lists are converted 
into the suitable data structures such as B+tree, suffix tee, and 
suffix array. This research focuses on the position of 
characters instead of the keywords. Initially, the document D 
is replaced by the pattern P, and each Di is replaced by pi. For 
instance, if there are the patterns P={aab, aabc, aade} then 
the patterns are assigned as D1=aab, D2=aabc, and D3=aade. 
Then, they are defined by the form of character :<the 
occurrence position of character in pattern: the indicated 
status of the last character of pattern: the number of pattern 
in P>; e.g., a:<1:0:1>, <2:0:1>, <1:0:2>, <2:0:2>,… . 
Each list in this form is called the “individual posting list”. 
Using this method, all of the individual posting lists can be 
applied for accommodating the dictionary. 

B. Deriving the Perfect Hashing 
The most powerful hashing principle is the perfect hashing 
which takes O(1) time in worst-case performances (shown in 
[26], [27] and [28]) where n is the size of data. This structure 
is suitable for the set of static keys such as the reserved words 
in the programming language. For this reason, the perfect 
hashing is chosen for implementing the inverted lists. 

The perfect hashing uses the universal key U to 
accommodate all keys for accessing all data in the table and 
two-level schemes for implementation. The first level is the n 
keys for hashing with chaining to the second level by 

function f(n), and the second level is the data items associated 
with the corresponding key of n. This research assigns ∑  
as the universal key U and f( λ )  as f(n) for the first level of 
the perfect hashing table and the groups of posting lists as the 
data items in the second level where ⊆λ ∑ . 

III. INVERTED LISTS FOR SINGLE PATTERN 
Definition 1 Let p=c1c2c3…cm be the pattern input, and ck is 
any alphabet that occurs in p at position k where 
k=1,2,3,…,m. The inverted list of ck can be written by ck: 
<k:0> if only if k<m, or ck:<k:1> if only if k=m. 
Symbolically, ck: <k:0> is represented by c:

0kI , and 

ck:<k:1> is represented by c:
1kI . 

Example 1. The inverted lists of p=aabcz. We have c1=a, 
c2=a, c3=b, c4=c, and c5=z. The whole inverted list of  p are 
a:<1:0>, a:<2:0>, b:<3:0>,  c:<4:0>,  and z:<5:1>. 
Definition 2 The perfect hashing table which is provided for 
storing the inverted lists of the single pattern p is called the 
inverted lists table for single patterns and is denoted by sτ .        

         
Example 2. The table  sτ   of pattern p=aabcz.  
 

Table 1.  The inverted list table  sτ of p=aabcz. 

∑  
0kI /

1kI  (i.e., the inverted list) 

a 
01I ,

02I  <1:0>,<2:0>  

b 
03I  <3:0> 

c 
04I  <4:0> 

z 
15I  <5:1> 

 
 
Lemma 1 Let 

0kI  and  
1kI  be the inverted list of 

p=c1c2c3…cm. If 
0kI  and  

1kI  are stored in the hash table   

sτ  then accessing 
0kI  or  

1kI   takes O(1) time where 

k=1,2,3,…,m.. 
Proof Each inverted list  

0kI  or  
1kI  can be retrieved from 

the table sτ  in O(1) time. Given f(x) be a hashing function 
which 

0kc  is a key to access
0kI , and   

1kc  is the key to 

access
1kI  where c  is the character in λ . The table  sτ  is 

implemented by the perfect hashing table. Thus, to retrieve 
the inverted list 

0kI  by f(
0kc ) or to retrieve the inverted list 

1kI  by f(
1kc )  takes O(1) times by the hashing properties.  

This phase creates the inverted list table sτ  for all 
alphabets in λ . The next method reads the characters one by 
one and generates to inverted lists, and each inverted list is 
added into the table sτ . Algorithm 1 shows this method.    

 



 
 

 

Algorithm 1. 
Input : p=c1,c2,c3,…cm 
Output: Table sτ  of p 
1.   Create table sτ    
2.   j=1 
3.   while (j<=m)   do 
4.     Create the inverted list of cj  sτ  at char( jc  )  

5.      j j+1 
6.   end while 

 
Algorithm 1 takes O(m) time and O(m+| λ |) space shown 

as the proof in Theorem 1.  
 

Theorem 1 Let p=c1c2c3…cm be the pattern input, and given  
sτ  be the inverted list table of single pattern. Generating all 

characters of p to the inverted lists and adding all inverted 
lists into  sτ  takes O(m) time, and the table sτ  uses 
O(m+| λ |) space. 
Proof For time complexity, the hypothesis is that the whole 
characters of p are generated into the table sτ . Line 1 creates 
the table, and line 2 initializes variables, which take O(1). 
Line 3 needs to repeat m rounds, and it also takes O(m) time. 
Line 4 is O(1) by Lemma 1 while line 5 takes O(1) as line 2. 
Therefore, the preprocessing time take O(m) time.       

For space complexity, the table  sτ  is created with the size 
| λ | for all alphabet of ⊆λ ∑ . Each inverted list of ck of 
p=c1c2c3…cm uses one space per one inverted list then for 
k=1 to k=m take m space as well. Hence, all required spaces 
of   sτ  is O(m+| λ |).   

IV. INVERTED LISTS FOR DYNAMIC PATTERNS 
Definition 3 Let P={p1, p2, p3,…, pr} be the set of patterns 
where pi is the pattern ith of m character {c1c2c3…cm}, and 

ri ≤≤1 . An individual posting list of a character ck from the 
pattern pi is defined as ck:<k:0:i> if k<m, or ck:<k:1:i> if 
k=m. Symbolically, ck:<k:0:i> is ik

0ϕ , and ck:<k:1:i> is 
ik

1ϕ  where mk ≤≤1 . 

As in Definition 3, if P={p1=aab, p2=aabc, p3=aade} 
then the documents are p1=a1a2b3, p2=a1a2b3c4 and 
p3=a1a2d3e4. The individual posting lists of P are defined as 
below: 

 p1= a:<1:0:1>, a:<2:0:1>, b:<3:1:1>, 
 p2=a:<1:0:2>, a:<2:0:2>, b:<3:0:2> 
    c:<4:1:2>, and 
 p3= a:<1:0:3>, a:<2:0:3>, d:<3:0:3>,  
           e:<4:1:3>. 

Notice that all individual posting lists above can be 
grouped to a new form such as a:<1:0:{1,2,3}>, 
<2:0:{1,2,3}>, b:<3:1:{1}>, <3:0:{2}>, and so on. 
Definition 2 shows how to group the posting lists to a new 
form. 

Definition 4 Let lmax be the maximum length of patterns in 
P={p1,p2,p3,…,pr}, and let ε  be the position of the same 
character λ  which appears in the various patterns of P where 

max1 l≤≤ ε  and ⊆λ ∑ . The posting lists of λ  are 

{ iεϕ0 , lεϕ0 ,…, pεϕ0 , qεϕ0 } or { iεϕ1 , lεϕ1 ,…, pεϕ1 , qεϕ1 } where 
rqpli ≤≤ },,...,,{1 . A group of posting lists of λ  can be 

defined as follows. 

1. If the posting lists are { iεϕ0 , lεϕ0 ,…, pεϕ0 , qεϕ0 } then a 
group of posting lists of λ  is 0,ελ .  

2. If the posting lists are { iεϕ1 , lεϕ1 ,…, pεϕ1 , qεϕ1 } then a 
group of posting lists of λ  is 1,ελ . 

 
Definition 5 The inverted list of alphabet λ  is defined as 

0,ελI  if only if the group of posting lists is 0,ελ . Similarly, 

the inverted list of alphabet λ  is denoted as  
1,ελI  if only if 

the group of posting lists is 1,ελ . 

With Definitions 4 and 5, if the posting lists are 
a:<1:0:{1,2,3}>, a:<2:0:{1,2,3}> then the groups of  
posting lists must be written as 

0,1aI  and 
0,2aI  respectively 

(shown in table 2).  

 

Definition 6 The perfect hashing table which provides for all 
alphabets over ∑  and their corresponding inverted lists of 
P is called the inverted lists table for the dynamic dictionary; 
this table is denoted as dτ . 

From Definition 6, it can be said that all characters λ  are 
stored in the first column of dτ , and 

0,ελI  and/or 
1,ελI  are 

stored in the second column of dτ . For instance, if there is 
P={aab, aabc, aade} then P can be implemented to the 
perfect hashing table as the table 2. 

Example 3. Table 2 shows the table dτ  of P={aab, aabc, 
aade}.  

Table 2.  The inverted list table dτ  of P={aab, aabc, aade}. 

f( λ ) Inverted 
lists 

i.e., the granular inverted lists 

 a 
0,1aI , 

0,2aI  <1:0:{1,2,3}>, <2:0:{1,2,3}> 

b 
1,3bI , 

0,3bI  <3:1:{1}>, <3:0:{2}> 

c 
1,4cI  <4:1:{2}> 

d 
0,3dI  <3:0:{3}> 

e 
1,4eI  <4:1:{3}> 

 

A. Inverted lists table construction 
First of all, the empty table dτ  is built for λ , and the entire 
patterns are then generated to the inverted lists and are added 
into the table dτ  after the table is constructed. If the inverted 
lists of target character are already stored in the table, only 
the number of pattern is added to the corresponding inverted 
lists; otherwise, a new inverted list is created and added into 
the table. Algorithm 2 shows this method. 
 



 
 

 

Algorithm 2.  
Input: P={p1,p2,…,pr} 
Output : the table  dτ  of P 
1.   initiate  dτ  
2.   for i 1 to r do 
3.       for j to m do 
4.          if Exist( i

jp )=null   then 

5.              dτ  ij
0ϕ or ij

1ϕ   
6.          else  
7.               

0,)( jjcharI  or 
1,)( jjcharI  i 

8.          end if 
9.       end for 
10.    end for 
 

For analyzing time and space, Algorithm 2 is referred as 
proof. Theorem 2 shows the time complexity and Theorem 3 
illustrates the space complexity. 

 
Lemma 2 If there are the inverted lists 

0,ελI  or 
1,ελI  of  λ   

in  dτ  then to access all inverted lists of  λ  uses O(1) time. 
Proof Each alphabet λ  is a unique character in ∑ , and  λ  
is implemented as the first level of the perfect hashing table 
taking O(1) time. The inverted lists 

0,ελI  or 
1,ελI  are 

implemented as the second level of the perfect hashing table; 
therefore, each data item takes O(1) time, and all items in the 
second level of the table can be applied to O(1) as all 
individual items.  
 
Theorem 2 Let P={p1,p2,p3,…pr} be the given patterns. All 
patterns in P are generated into the table dτ  in O(|P|) time 
where |P| is the sum of all pattern lengths in P. 
Proof The proof is that all characters of P are generated to 
inverted lists and are added into dτ  in O(|P|) time. All of the 
pattern lengths are denoted as |p1|, |p2|, |p3|,…, |pr|. For the 
initial step, the table dτ  is built in O(1) time. As soon as the 
table dτ  is built completely, each pattern is scanned by 
individual character from the first character to the last 
character. Thus the time to scan equals the number of pattern 
length; therefore, all patterns are scanned from the pattern 1 
to pattern r. This step takes the processing time as |p1|+ |p2|+ 
|p3|+… +|pr|=|P|, and it reaches to the hypothesis step by the 
last character of pr. Therefore the inverted lists construction 
takes O(|P|) time. Meanwhile, to access the table dτ  for 
storing the inverted list takes O(1) time by Lemma 2. Hence, 
the preprocessing time is proved in O(|P|) time.   
 
Theorem 3 The table dτ  requires O(| λ |+|P|) space for 
accommodating the whole inverted lists of P; where |P| is the 
sum of pattern lengths of P, and dτ  is the inverted lists table. 
Proof All patterns in P contain the various characters over λ  
by the size | λ | where ⊆λ ∑ , and the table  dτ  is 
implemented as the perfect hashing table. The algorithm is 
proved as all characters of P are generated to inverted lists 
and are added into the table dτ  with |P| space. The lengths of 
P are |p1|, |p2|, |p3|, …, |pr|, and each pi contains the string 
{c1c2c3…cm} where ri ≤≤1 . The length of this string is 

denoted by |pi|. For the initial step, the first column of table 
dτ  is created by | λ | size. Each inverted list is created by the 

preprocessing phase for all patterns of P; therefore, each 
inverted list of string {c1c2c3…cm} in each pi only takes one 
space per one list. Thus, the space is equal to 
|p1|+|p2|+|p3|+…+|pr|=|P| for the second level of perfect 
hashing table. Hence, the space of  dτ  is O(| λ |+|P|).  

B. Pattern Insertion 
The pattern insertion deals with the problem of adding all 
characters of the individual pattern into the inverted table dτ  

and maintains the stable dictionary. Let φp  be a new pattern 

for insertion where φ  is a unique number that does not 
appear in the dictionary before inserting the pattern. We 
begin to search for the existence of φp  in the table  dτ  by 

the function PExist(). The insertion method will be executed 
if only if the result is null. Next, all inverted lists of φp are 

generated and are added into the table as Algorithm 2. This 
algorithm is illustrated by Algorithm 3 below. 
 
Algorithm 3. 
Input : φp ={c1c2,…,cm} 

Output : φp  is stored in dτ  

 1.  if PExist(pφ ) =null then  
 2.     for j 1 to m  do 
 3.         if Exist( φ

jp )=null  then 

 4.              dτ   φϕ j
0 or φϕ j

0   
 5.            else 
 6.            

0,)( jjcharI /
1,)( jjcharI  φ  

7.          end if 
8.       end for 
9.   end if   

 
 

Theorem 4 Let p={c1c2c3…cm} be the new individual pattern 
to be inserted into the existing dictionary P={p1,p2,p3,…pr}. 
The insertion time is O(|p|) where |p| is the length of p. 
Proof Algorithm 3 is referred for the proof. Given pφ  be a 
new pattern which contains a string {c1c2c3…cm} where φ  is 
an non-existing number of the pattern in P. The length of pφ  
is m and represented by |p|. In the initial step, line 1 repeats 
the search for each character from c1 to cm, and it takes m 
operation which is O(|p|) time. The accessing of the inverted 
list takes O(1) time by Lemma 2. For the inner loop, if a new 
pattern does not exist in P, line 2 will insert the inverted lists 
from c1 to cm. All operations use |p| time, and the hypothesis 
is proved as well. Meanwhile, line 2, line 4, or line 6 also 
access the table, and they take O(1) by Lemma 2. It can be 
said that all operations of line 2 take O(|p|) time; therefore, all 
characters of pφ  are converted and added into the existing 
table in O(|p|) time.   



 
 

 

C. Pattern Deletion 
Pattern deletion consists of two methods: (1) looks for the 
required pattern to delete, and (2) repeats and removes the 
inverted lists of the target pattern one by one. For deletion 
mechanism, if the corresponding inverted lists have only one 
posting list, it will be deleted immediately. Otherwise we will 
delete only an inverted list in the inverted lists group when 
the pattern number equals σ . The deletion algorithm is 
described by Algorithm 4 below. 

   
Algorithm 4. 
Input: p={c1c2c3…cm} 
Output : p is removed from dτ  
1.  if(ExistDel(p) =σ ) then 
2.     for j  1 to m  do 
3.      if posting lists in 

0,)( jjcharI /
1,)( jjcharI > 1 then  

4.            Delete posting lists number equal to σ   
5.       else 
6.          Delete 

0,)( jjcharI /
1,)( jjcharI  of char( σ

jp ) 

7.       end if 
8.     end for 
9.   end if 

 
Example 4. Take p=aab off from P={aab,aabc,aade}.    
As the example before, the table 2 is referred, and the 

deletion is begun in line 1. This inspects and returns the 
number σ  for deletion. The characters in the pattern ‘aab’ 
are converted to a:<1:0:{1}>, <2:0:{1}>, and b:<3:1:{1}>. 
Then the deleting mechanism is started for deleting the 
inverted lists one by one. By line 4, the inverted list of 
a:<1:0:{1}> and <2:0:{1}> are updated as <1:0:{2,3}> and 
<2:0:{2,3}> (by taking the number ‘1’ off). Otherwise, the 
inverted list b:<3:1:{1}> is deleted by line 6. 

 
Theorem 5 The deletion pattern p from the existing table of 
P takes O(|p|) time where p is the target pattern to be deleted, 
and |p| is the length of pattern p.  
Proof Referring to Algorithm 3, let pi be a pattern to be 
deleted, which pi contains a string {c1c2c3…cm} with the 
length m. The length m is denoted by |p|, and ‘i’ is the number 
of the existing pattern ith in P. The hypothesis is that all 
characters of pi are removed from the inverted list table of P. 
Line 2 loops to remove c1 to cm. Each operation for accessing 
the inverted list uses O(1) by Lemma  2. Thus the main step is 
initiated by line 2. This step repeats to read one by one from 
c1 to cm and removes the matched inverted lists from dτ . All 
operations take |p| time while line 4 or line 6 uses the 
constant time by Lemma 2. Therefore, to delete all characters 
of pattern pi from dτ  takes O(|p|) time.            

V. IMPLEMENTATION AND EXPERIMENTAL RESULTS 

A. Implementations 
We used the Dell Latitude D500 notebook with Intel Pentium 
M 1.3 GHz, 512 MB of RAM, and running on Windows XP 
Home as a running application machine. We implemented 
Aho-Corasick Trie [1] (named AC Trie), Reverted Tire of 
SetHorspool in [9], dynamic Suffix tree of [16], and our 
inverted lists. And the abstract data type (ADT) of 

java.util.Vector in Java language was employed for 
accommodating all structures. 

The | ∑ | was 52 letters of English alphabet; ‘A’ to ‘Z’ and 
‘a’ to ‘z’. We programmed to randomize each pattern with 
the various lengths of 3 to 20 characters. The programs 
randomized the pattern groups of 10, 50, 100, 500, 1000, 
5000, 10000, and 50000. Each group contained 10 files, and 
each file was performed to test 10 times and the average was 
given. 

B. Experimental Results 
The tests measure the processing time in seconds, and the 
memory usages in Kilo-Bytes. The processing time of 
inverted lists construction was faster than the traditional data 
structures shown in table 3.  

Table 3.  Comparing processing time (Seconds).  

Pattern 
Number 

AC Trie Reverted 
Trie 

Suffix 
Tree 

Inverted 
List 

10 0.41 0.62 0.35 0.29 
50 0.19 0.10 0.16 0.05 
100 0.17 0.27 0.59 0.15 
500 0.66 0.98 21.67 0.39 
1000 1.34 2.08 - 0.86 
5000 13.79 9.02 - 4.55 
10000 49.43 26.28 - 7.91 
50000 550.74 121.11 - 47.63 
 
For using memory, the inverted lists structure used less 
memory than the others. However, the suffix tree structure 
was not able to generate in the case of pattern numbers over 
500 patterns because Java language used excessive memory. 
The results are shown by table 4. 

Table 4.  Comparing memory usage (KB).  

Pattern 
Number 

AC Trie  Reverted 
Trie 

Suffix 
Tree 

Inverted 
List 

10 4.74 4.95 24.86 4.87 
50 4.83 4.98 48.34 4.89 
100 4.92 5.02 896.12 4.90 
500 5.60 5.66 2512.56 5.11 
1000 6.29 6.30 - 5.32 
5000 11.07 11.23 - 7.57 
10000 15.86 16.15 - 9.83 
50000 54.56 55.15 - 23.38 
 

VI. CONCLUSION 
This research has presented the new data structure called 
inverted lists for dynamic patterns of string matching and 
dynamic dictionary matching. The inverted lists structure 
uses O(m) time and O(m+| λ |) space for accommodating the 
single pattern string where m is the length of pattern. In the  
dynamic patterns, this structure takes O(|P|) time and 
O(| λ |+|P|) space for accommodating multi-patterns string 
where P is the sum of pattern lengths, and λ  represents any 
characters which are exactly used in a set of a finite alphabet 
∑ . Furthermore, this structure is able to insert or delete the 
individual pattern in O(|p|) time where p is the individual 
pattern to be inserted or deleted. In experimental results, this 



 
 

 

structure is faster and uses less memory than the traditional 
data structures. 
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