
 
 

 

 
Abstract— As the bandwidth of network links has increased 

at an exponential rate to accommodate the application 
requirements, efficient network interfaces has become decisive. 
Taking into account the trend towards multi-core 
microprocessors and programmable processors in the NIC, a 
plausible goal is to distribute the communication overhead 
amongst all the processing units available in the computer, not 
only to improve the communication throughput and latency, 
but also to leave more CPU cycles available for applications and 
operating system tasks. 

This paper deals with the evaluation by simulation of the 
HDL (Hardware Description Language) models that implement 
different network interface design alternatives (offloading and 
onloading approaches) to improve the network interface 
performance by taking advantage of the different processing 
cores available in the server node. 

By using an HDL model of the communication path we have 
developed, we provide a fair comparison of onloading and 
offloading alternatives, and analyzes the obtained results with 
the aid of the previously proposed LAWS model. This way, we 
contribute to understand the effect of the different elements in 
the nodes that take part in the communication path, 
particularly, we consider the technology of the processors in the 
node, the characteristics of the main and cache memories, the 
bandwidth of the I/O buses, and the profiles of the 
communication/computation rates of the applications. The 
experimental results show the accuracy and usefulness of our 
simulation model and provide an approximate validation of the 
LAWS model. 

 
Index Terms—Hardware Description Language, LAWS 

model, protocol offloading, protocol onloading. 
 

I. INTRODUCTION 

  The improvements in the computer applications 
increasingly depend on the communication technology. The 
bandwidth of the Ethernet links has increased at exponential 
rate to accommodate the requirements of the present 
applications. Today, 1 Gb/s Ethernet is usual for desktop 
systems, and 10 Gb/s Ethernet links are available for server 
systems. A full-duplex 10 Gb/s link can deliver maximum 
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sized 1,518 byte frames at the rate of 812,744 frames per 
second in each direction. Therefore, a full-duplex 10 Gigabit 
Ethernet controller must be able to sustain about 435 MIPS 
[1] and 4.8 Gb/s of data bandwidth for protocol processing. 
So, we should need processors between 100 and 200 GIPS to 
cope with these bandwidths [1]. The communication path 
processing includes the I/O bus control, memory latencies 
management, interrupts, and other overheads that do not 
scale with faster processors [20]. The implementation of a 
suitable network interface should take into account all those 
parameters and operations that do not scale properly.  

Over the last few years, the researching work on network 
interfaces has been focused on reducing the time overhead of 
the communication system architecture by using light-weight 
communication protocols like GAMMA [2] or CLIC [21], or 
through user-level network interface protocols [3]. 
Nevertheless, the bandwidth increases in the network links 
have made it necessary to consider new strategies to improve 
hardware elements, such as the increasing in the bandwidth 
of the I/O buses and in the processing capabilities of the 
network interface cards. On the other hand, there are 
important practical problems related to light-weights 
protocols. First of all, there is no compatibility with the 
existing applications that use sockets and, in some cases, with 
the infrastructure based on IP [4]. Among the solutions 
proposed to cope with these problems is the developing of 
high performance sockets at user level [4], the modification 
of the socket interface to maintain compatibility with IP [5]. 
In [7], it has been shown that it is possible to reach adequate 
performance levels in I/O intensive applications without 
accessing to the NIC at user level. 

All the NICs for 1 Gbps and 10 Gbps Ethernets are able to 
determine and check the TCP/IP checksum. Generally, there 
are another ways to reduce the interrupt frequency by 
generating one interrupt for a large number of packets [3]. 
Jumbo frames (frames up to 9000 bytes), used to reduce the 
pre-frame processing overhead, and header splitting, which is 
used to place protocol headers and data in separated buffers 
[22]. Beside all the features that mentioned above, many 
NICs include programmable processors.    

An alternative that has been also proposed is protocol 
offloading [6]. The idea behind this alternative is the 
distribution of the communication tasks among the different 
elements in the host, mainly among the host CPU and other 
processors in the NIC. It implies to release the 
communication load from the central processor to another 
processor. The tasks that imply interaction with the network 
is implemented in the NIC in order to leave more CPU cycles 
for the computation required by the applications. In this way, 
protocol offloading can be seen as a technique that enables 
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the parallelization of the network communication tasks and 
the direct data placement on the main memory, thus avoiding 
some communication overheads rather than only shifting 
them to the NIC [8].  

The use of processors in the NIC to accelerate the 
processing of communication tasks (offloading) has been 
proposed in numerous works, that present diverse proposals 
to optimize and distribute the communication tasks between 
the CPU and the processor of the NIC [8], [9]. There are also 
many commercial proposals of TOE (TCP/IP Offloading 
Engines), the hardware that helps offloading to be 
implemented [10]. Besides releasing the CPU from part of 
the work related to communication, protocol offloading to 
the NIC can provide other advantages. The first one is to 
reduce the message latency because, as protocols are 
implemented in the NIC, short messages like the ACKs do 
not have to cross the I/O bus. This also supposes a reduction 
in the number of interruptions that the CPU has to process to 
attend the received messages. Other advantages are the 
improvement in the efficiency of DMA transfers from NIC 
corresponding to short messages and the possibility to 
dynamically manage the protocols in the NIC in order to 
select the most suitable one to build the messages according 
to the communication protocol information and the 
destination. Nevertheless, certain controversy exists about 
the efficiency of the offloading approach. More specifically, 
in [11]-[13], some objections are provided about the utility of 
this technique taking into account that the processor in the 
NIC usually presents worse processing performance than the 
CPU. Other reasons argued for the uncertainty on the 
offloading utility refer to the difficulties that arise for its 
implementation, test, and maintenance.  

Other alternative, called onloading, considers the use of 
some of the available cores in a multicore microprocessor or 
CPUs in an SMP [13]-[15]. This trend agrees with the 
mainstream tendency in the development of multi-core 
architectures. There are commercial proposals of onloading 
as the I/OAT (Intel I/O Acceleration Technology) [16] 
technique. With onloading, one of the cores executes the 
communication software, while the rest of the software 
(applications and the rest of the operating system) is executed 
in other cores. Thus, the processing of the network interface 
is done in a core with the same characteristics and privileges 
in the accesses to main memory as the cores where the 
application is executed. On the other hand, it is possible to 
send all the interruptions generated by the NIC towards the 
core in charge of the network interface processing. In the case 
of the offloading technique, the central processor must still 
attend to some interruptions generated by the NIC. 

It is difficult to analyze the efficiency of offloading and 
onloading to optimize the network interface due to the 
interaction among the different hardware elements, the 
operating system, and the application tasks. With the 
integration of multiple processor cores on the same chip, 
more and more sophisticated caches are appearing on the 
scene while the size are growing at the same time. We will 
show that the network protocol software is very sensitive to 
the cache behavior, thus being relevant to communication 
throughput performance under different conditions such as 
which is shown in [23]. In any case, it is difficult to find 

systems with similar hardware and software characteristics to 
make a fair comparison between the offloading and 
onloading alternatives. Thus, in this paper we have used a 
HDL (Hardware Description Language) simulation model of 
the communication path to compare the performance of both 
alternatives under the influence of the different elements that 
characterize the network interface. 
The rest of the paper is organized as follows. After this 
introduction, Section 2 gives an overview of the LAWS 
model. This model helps us to organize the parameters of the 
simulation model in order to make easier the search in the 
offloading and onloading design spaces and which has been 
proposed to predict oflloading/onloading effects. In section 
3, we present our HDL simulation model of the 
communication path, which is used to analyze the behavior of 
the different elements in the communication path. Finally, 
Section 4 and 5 provide the experimental results and the 
conclusions, respectively. 
  

II. PREDICTION PERFORMANCE OF          

OFFLOADING /ONLOADING BY USING LAWS 

MODEL    

Some performance models have been proposed to 
understand the fundamental principles that are on the basis of 
the experimental results obtained after applying some 
strategies to optimize the network interfaces. In [17], a 
theoretical model called LAWS is presented. It tries to 
characterize the improvement provided by protocol 
offloading in the NIC, for applications related to Internet 
services or streaming applications. Moreover, we have also 
used LAWS to predict the performance of the onloading 
alternative because this model can in fact be applied 
whenever the communication overhead are distributed 
between the different processors in the server node. Thus, it 
is possible to compare both alternatives.   

The LAWS model is based on the estimation of the peak 
throughput of the pipelined communication path according to 
the throughput provided by the correspondent bottleneck (the 
network link, the NIC, or the host CPU). A LAWS only 
considers applications that are throughput limited and fully 
pipelined. The analysis provided in [17] considers that the 
performance of CPU is limited before applying the protocol 
offload technique. In the following, we provide a brief 
description of the LAWS model for completeness.  

 Figure 1, explains how the LAWS model views the 
system with and without offloading. We have used the same 
notation than in [17] to derive the peak throughput functions. 
Before offloading, the system is considered a pipeline with 
two stages, the host and the network. In the host, to transfer m 
bits, the application causes a CPU work equal to aXm and the 
communication produces a CPU work equal to oXm. Where a 
and o are the amount of the CPU work per data unit, and X is 
a scaling parameter used to take into account variations in the 
processing power with respect to a reference host. Moreover, 
the network link latency to provide m bits when the 
bandwidth of the link equals B, is m/B. Therefore, the peak 
throughput provided before offloading is determined by the 
bottleneck stage Bbefore=min (B, 1/(aX+oX)). After 
offloading, we have a pipeline with three stages, and a 



 
 

 

portion p of the communication overhead has been 
transferred to the NIC. In this way, the latency stages for 
transferring m bits are m/B for the network link, 
aXm+(1-p)oXm for the CPU stage, and poYβm for the NIC 
stage. In the expression of the NIC latency, Y is a scaling 
parameter to take into account the difference in processing 
power with respect to a reference, and β is a parameter that 
quantifies the improvement in the communication overhead 
that could be reached with offloading. This way, βo is the 
portion of the normalized overhead that remains in the system 
after offloading with p=1 (complete offloading). Thus, after 
offloading, the peak throughput is Bafter=min (B, 
1/(aX+(1-p)oX,1/poYβm) and the total improvement in peak 
throughput is defined as (Bafter- Bbefore)/Bbefore. 

 

 
Fig.1 Behavior of the peak throughput improvement 
according to LAWS model. 

 
The LAWS acronym comes from the parameters used to 

characterize the offloading benefits. Thus, along with the 
parameter β (Structural ratio), we have the parameter α=Y/X 
(Lag ratio) which considers the ratio between the CPU speed 
and the NIC computing speed. The parameter γ=a/o 
(Application ratio) measures the 
computation/communication ratio of an application and the 
parameter σ=1/oXB (Wire ratio) corresponds to the portion of 
the network bandwidth that the host can provide before 
offloading. According to the parameters of the LAWS model 
(α, β, γ, and σ), the relative improvement of the maximum 
throughput comes from the following expression:   
 

BWbefore=min (B, 1/ (aX+oX))                                                         

             = min [1/σ, 1/ (γ +1)]                              (1) 

 

BWafter=min (B, 1/ (aX+ (1-p) oX), 1/poYβ) 

           =min [1/σ, 1/ (γ + (1-p)), 1/pβα]                      (2) 

  

δb= [min (1/σ, 1/ (γ + (1-p)), 1/pβα) – min (1/σ, 1/ (γ +1))] 

   / [min (1/σ, 1/ (γ +1))]                          (3) 

From the expression (3) and Figure 1, some conclusions 
can be obtained:  

1. Protocol offloading is useful in applications with 
computation/communication rate, γ, very low. This profile 
corresponds to stream data processing application and 
network storage serves with a large number of disks, etc. For 
CPU intensive applications, the throughput improvement 
reached by offloading is bounded by 1/γ and tends to zero as 
the computation cost increases (i.e. γ grows). The maximum 
improvement that can be reached is obtained by γ =max (αβ, 
σ). Also, the improvement slope (γ+1)/c-1 is 1/c being   
c=max (αβ, σ), the bandwidth improvement grows more 
while the αβ and σ decreases. 

2. When (α<1), the NIC speed is lower than the CPU 
speed, offloading may reduce the network interface 
performance. If the NIC gets saturated before the network 
link (αβ<σ), the improvement is bounded by 1/α. 
Nevertheless, if an efficient offload implementation (for 
example Direct Data Placement [11]) allows structural 
improvements (a reduction in β), it is possible to maintain the 
offloading usefulness for α>1. 

3. When (σ>>1), the host is able to assume the 
communication overhead without aid, and there is not any 
improvement with offloading/onloading in slow networks. 
The offloading usefulness can be high when the host is not 
able to communicate at link speed (σ<<1), but in these 
circumstances, γ has to be low, as it has been previously 
mentioned. Thus, the offloading can be seen as a very useful 
technique as there is a trend to a faster network (σ decreases).  

4. When σ is near one, the best improvement corresponds 
to those cases that present some balance between 
computation and communication before offloading (γ=σ=1). 

However, it is clear that the system communication 
performance depends on many parameters; from the 
application (computation/communication) profile to the 
interaction between operating system, application, and 
hardware. As it has been said before, although the LAWS 
model in [17] is applied to offloading, it is also possible to 
use this model when the execution of the communication 
tasks is done in a processor located in other parts of the 
system like SMP or CMP. Therefore, we will use the LAWS 
model as a base to get insight to the simulation results for 
offloading and onloading. 

 

III. AN HDL SIMULATION MODEL FOR THE 

COMMUNICATION PATH    

Simulation is a suitable approach to evaluate different 
alternatives in computer architecture design. An useful 
simulator needs to model the machine with the details 
required by the problems to be solved. There are many 
simulators with characteristics required by the network 
interface analysis like M5 [24], SIMICS [26] and SimOS 
[25].   

In this paper we have used an HDL simulator through an 
HDL model we have developed. HDL models allow us to 
have an idea of the implementation of the new proposals, to 
complement the results obtained by functional simulators, 
and to generate estimations of the clock speed that can be 
reached by the hardware. They also make possible to identify 
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the critical paths and to improve their design aspects at a level 
nearest to the hardware details [18].  

Firstly, in this section we describe our HDL simulation 
model in detail. It has been developed to study the conditions 
in which the offloading and onloading alternatives may 
contribute to the bandwidth improvement results. As it has 
been mentioned, this model allows us the simulation of the 
hardware characteristics at an adequate level to understand 
the influence of the different implementation alternatives.  
Our HDL simulation model also makes it possible the 
simulation of codes and their interaction with hardware and 
operating system. This interaction has been modeled by 
means of delay magnitudes that produce different overhead 
sizes associated with the processing of protocol and drivers, 
etc. It is difficult to generate the LAWS curves of the 
throughput improvement against the application ratio, when 
one of the other parameters changes while the others are held 
constant (Figure 1). However, our HDL simulation model 
makes this goal easier to reach. 

The different modules of our HDL simulation model for 
the communication path (including the different alternates: 
i.e. base system, offloading and onloading) are shown in 
Figure 2. 

Besides the NIC, the CPU the cache, the chipset, and the 
main memory, we have also included the delays in the I/O 
and memory buses. It is possible to inject packets of different 
sizes, from the memory of the sender by using two 
alternatives: a packet generator or a trace file.   

The communication path in our simulation model contains 
the memory module Memory in the sender part. Packets with 
different sizes and speeds are generated from this module. 
These packets reach to the NIC module, where they are stored 
in a queue of buffers. Then, the Network module reads 
packets from this queue. The simulation model also includes 
various modules of CPUn that correspond to different CPU 
present in the host, and the chipset module used to implement 
the interface between the different processors and the I/O bus 
module.  

Fig. 2 Modules of the HDL simulation model with alternatives (Base system, Onloading and Offloading). 
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Figure 3 shows all the elements in the NIC module, 
including buffers to store the data coming from the network 
link module and from the I/O bus. 

To read or write from the NIC, there are two modules to 
control the data path. The main point in the NIC module is to 
implement the communication protocol offloaded by using 
the driver (module Driver). The other tasks implemented in 
the NIC are: the DMA initialization by using DMA signal 
and the interrupt request to the CPU by using Interrupt 
generation. Other control signals (prodReady, consReady, 
cReady_interface, and pReady_interface) are handshaking 
signals used to control the read/write transfer. The CPU and 
the processor in the NIC interact by reading from or writing 
to some shared registers. 

Figure 4 illustrates the main elements of the CPU module. 
It shows the two main parts for processing (Applications and 
Communication boxes in Figure 4), the cache memory, and 
the interrupt controller (that use Interruptack and Interrupt 
signals to manage the data processing with network interface 
card). In the base case (implementing neither offloading nor 
onloading), all the application and communication tasks are 
executed in the CPU module, while in the case of offloading 
and onloading, the communication tasks will be moved to the 
NIC or to the CPU1 modules, respectively.  

The NIC and CPU modules can be simulated according to 
different alternatives depending on the technique used to 
optimize the network interface. The NIC module behavior is 
controlled by a program stored in the memory of the NIC.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

It executes the protocol when offloading is implemented. 
In this case, the CPU avoids almost all the communication 
overhead, as the NIC is able to process the communication 
protocol. 

In the base case, when the information from both 
directions (send or receive) reaches to the NIC, it interrupts 
directly the CPU. The CPU executes the driver to initialize 
the DMA operation between the NIC and the main memory. 
The NIC stores the received data in the main memory through 
the DMA operation and informs the CPU at the end of the 
operation. Then, the CPU starts the process of the packet 
stored in the main memory. In the offloading case, the NIC 
processes all the packets, and then it interrupts the CPU that 
executes the driver to initialize the DMA operation as in the 
base case. After that, the NIC starts the DMA operation to 
transfer packets to the main memory and informs the CPU 
that the data is available in the main memory. We have also 
implemented another way to release the CPU from the 
communication overhead when the NIC is able to process the 
protocol and to initialize the DMA. When these packets are 
stored in the corresponding addresses, the NIC informs the 
CPU that the application can use them. In the offloading case, 
only one CPU module is simulated and in the onloading case, 
two CPU modules are used as shown in figure 2. In the first 
alternative, all the applications and the rest of the tasks of the 
operating system are executed in the CPU0, and in the second 
one, all the tasks related to the communication processing are 
executed in the CPU1. 
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Fig.3 Elements of the Network Interface Card module NIC in the ((a) Receiver and (b) Sender) parts. 



 
 

 

Figure 5 shows the experimental signals among the 
different modules in the HDL simulation corresponding to 
the different alternatives. The interrupt signals are exchanged 
between the CPU and NIC modules. In Figure 5 the signal 
Interrupt is used for interrupt requesting and the signal 
Interruptack is used for the acknowledgment. The DMA 
signal indicates a direct memory access transfer from the NIC 
to the CPU.  

 

The protocol signal indicates that the protocol is processed 
by CPU module (in the base system), while Driver signal 
indicates that the protocol processed in the NIC (offloading), 
in the last case (onloading). The CPU1 module is used to 
process the protocol of the communication. 

In the receiver side, the packets enter to the NIC module 
and stored in the NIC buffers. In the base system as shown in 
figure (5. a), (1) the CPU is interrupted by the signal 
Interrupt, and it initializes the DMA operation and transfers 
the incoming data to the Memory module by using the DMA 
signal while the operation ends by using DMAend signal. 
After that, (2) the CPU module processes the packet by using 
the protocol signal. In the case of offloading, as shown in 
figure (5. b), (1) the packets are firstly processed in the NIC 
module implemented through Driver, and (2) the CPU 
module is interrupted to start the transfer of the data. In the 
case of onloading, as shown in figure (5. c), the CPU1 
modules are used as processor of the NIC to process the 
communication protocols while protocol signal is active (2).    
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IV. EXPERIMENTAL RESULTS 

In all our experiments, we have compared the behavior of 
the offloading and onloading strategies with respect to the 
LAWS theoretical model, as this model helped us to organize 
the space of the offloading and onloading strategies. The 
LAWS model provides a way to understand the performance 
under different application. In our HDL simulations, we have 
supposed that the offloading and onloading of all the tasks 
related to the processing of the communication protocols. 
Therefore, it can be considered that p=1 in the LAWS model. 
As it has been shown, our HDL model allows the simulation 
of the CPU, the NIC, the network link, and all the effects of 
buses, bridges, caches, and main memory. Our experiments 
have been carried out with packets of 64 bytes generated by a 
synthetic packet generator and with different packet lengths 
in trace file provided by different benchmarks.  

To simulate the protocol offloading that removes the 
protocol processing from the CPU, we have used the model 
shown in figure 2, when the CPU0 is used for application 
processing and the NIC is used for protocol processing in 
order to take advantage of the parallelism between the 
communication and the application tasks.  

To simulate onloading, CPU1 is used to process the 
communication protocols instead of using either the NIC or 
CPU0. 
The behavior of the peak throughput improvement obtained 
in our experiments qualitatively coincides with the one 
predicted by the LAWS model when the parameter γ changes 
in the case of offloading and onloading. In our simulations, 
the value of σ verifies that σ<αβ, therefore; the maximum 
improvement happens when c=αβ and it would be equal to 
1/αβ. Moreover, peak throughput improvement growth 
should be observed as αβ decreases. Figure 6 and 7 show 
these effects for three different values of αβ. 
 

 
Fig.6 Peak throughput offloading with various values of αβ 
and 1 Gbps. 
 
 Due to the effects of offloading in the network interface 
card, we can see that the higher network bandwidth the 
higher the peak throughput with αβ<1, as shown in Figure 7 
compared with Figure 6. The LAWS model supposes that the 
communication path is pipelined throughout the processor, 
the NIC, and the network. Obviously, as these elements of the 
communication path share resources, the LAWS model only 

established an upper bound to the peak throughput 
improvement. 
 

 
Fig.7 Peak throughput offloading with various values of αβ 
and 10 Gbps. 
 
Figure 8 shows the effect of onloading when αβ=1.15. In the 
case of onloading we cannot change the values of αβ because: 
(1) the parameter α depends on the speed of processors (we 
have considered that all the processor cores have the same 
speed) and so α is always equal to 1; (2) the parameter β 
depends on the time delay on the NIC, but in this case, the 
driver is executed in the one of the processor cores and β will 
have a fixed value. 
 

 
Fig. 8 Comparison of the peak throughput between 
offloading (αβ=1.01) and onloading (αβ=1.15), with 1 Gbps 
of link bandwidth. 
 
 Figure 9 compares the peak throughput between the base 
system, onloading, and offloading, while αβ=1.15 and 1.01 
respectively. This test provides the network performance in 
terms of the available throughput. The same figure shows that 
the offloading and onloading alternatives provide 
improvements in the peak throughput, while these 
improvements depend on the value of the values of αβ. 
 Previous simulations have been done considering an 
average memory access time and no detailed cache 
simulation has been modeled.  Figure 10, 11, 12 and 13 show 
the effect in the peak throughput improvement of including a 
two level cache in the simulation model.  



 
 

 

 
Fig.9 Comparison of the peak throughput between base 
system, offloading and onloading. 
 
Also they show that caches improve the performance of the 
peak throughput provided by each network interface 
implementation alternative. Nevertheless the amount of the 
improvement is different between offloading and onloading. 
Thus, when the cache model is included, the improvements in 
base system and in the onloading model are bigger than the 
obtained with the offloaded network interface alternative. 
The behavior of offloading can be explained because, as the 
interface is mainly processed in the NIC, the use of a cache in 
the host does not affect in its performance improvement 
because the NIC uses its local memory for transferring data to 
the main memory. Figure 10 shows the improvement in the 
throughput in the case of offloading when L2 cache size 
increases with a specific size of L1, while Figure 11 shows 
the throughput improvement when L1 cache size increases 
with a specific value of L2. 
 

 
Fig.10 Comparison of the offloading peak throughput 
improvement with the effect of the L2 cache. 
 
 
The onloading strategy provides better peak throughput 
improvement whenever the cache is available in the cores of 
the host processor as shown in Figure 12 and 13 that provide 
the peak throughput for different values of L1 and L2 
respectively. 
 

 
Fig.11 Comparison of the offloading peak throughput 
improvement with the effect of the L1 cache. 
 

 
Fig.12 Comparison of the onloading peak throughput 
improvement with the effect of the different values of the L1 
cache. 
 

 
Fig.13 Comparison of the onloading peak throughput 
improvment with the effect of the different values of the L2 
cache. 
 
Moreover, the increases in the cache size produce throughput 
improvements especially in the case of onloading.  The 
previous results have been obtained by using a generator that 
builds packets in the memory module of the sender. 
Nevertheless, we have also used traces corresponding to real 



 
 

 

applications executed either in LAN or WAN environments. 
The file of traces includes Ethernet packets of different 
lengths (between 64 and 1518 bytes) and the time intervals to 
send them [19]. Figure 14 shows the peak throughput 
performance of offloading when we use this file of traces and 
different values of αβ. 
 

 
Fig.14. Comparison of the offloading peak throughput 
improvement with various values of αβ and onloading (with a 
measured αβ=0.57). 
 
The maximum value for the peak throughput improvement is 
reached when αβ=0.3. While, the worst case in our 
simulations occurs when αβ=1.01, because the NIC cannot 
take advantage of the offloading technique. In the case of 
onloading, when αβ=0.56, our onloading simulation provides 
peak throughput performance improvement reached to 25%. 
The offloading and onloading strategies do not affect only in 
the throughput reached but also the latency of the 
communication system. Figure 15 compares the behavior of 
the improvements in the latency corresponding to different 
values of αβ in the case of offloading. It is also shown that for 
the maximum throughput improvement, when αβ=0.3, the 
minimum value of the latency is obtained. 
 
 

 
Fig. 15. Latency improvement with various values of αβ in 
the case of offloading and αβ =0.57 in the case of onloading 
with 1 Gbps of link bandwidth. 
 
 

The cache memory allows onloading to provide lower 
latencies than offloading. Figure 16 shows the effect of the 
cache in the latency improvement in the case of the 
offloading and onloading. 
 

 
Fig.16 Cache effect in the latency with 1Gbps of link 
bandwidth. 
 
Figure 17 shows the throughput improvement of the 
communication path with 1Gbps packet generator. The small 
improvement growth is observed as γ grows up to a specific 
value and after this value, the throughput improvement 
decreases.      
 

 
Fig.17 Throughput improvement of onloading and offloading 
with various values of αβ. 
 
Figure 17 shows that there are important differences between 
the throughput improvement corresponding to each curve, 
not only in the amount of the throughput improvement but 
also in the location of the maximum and in the rate of the 
change in the throughput improvement with the application 
ratio. The reason for these differences came from the effects 
of the I/O buses, memory buses, etc. 
 
 
 
 
 



 
 

 

V. CONCLUSION 

It is clear that the offloading and onloading strategies offer 
different advantages and drawbacks in the improvement of 
the communication path performance amongst different 
hardware/software configurations.  

The HDL model which we have developed has made 
possible to describe and simulate the hardware and software 
components of the communication path and their 
interactions. Thus, our HDL model has allowed us the study 
of the offloading and onloding performance by controlling 
the parameters that affect in the behavior of the system. This 
way, an HDL simulation of the offloading and onloading 
alternatives, and the comparison of the experimental results 
obtained with the conclusions of the LAWS model, have 
allowed us to analyze the different elements that determine 
the performance of the network interface architecture and to 
check the efficiency of the approaches to optimize it. Our 
simulation results show that the onloading provides higher 
improvements than offloading in the conditions of our 
experiments. Moreover, the behavior which we have 
observed in the experiment results qualitatively coincides 
with the analysis and optimizations reached from the LAWS 
model. Therefore, it is possible to use the LAWS model to 
determine bounds for the experimental results. 

The relative throughput improvement offered by 
offloading and onloading depends on the application rate 
workload to communication overhead of the implementation 
and on the packet size. Both strategies can be used to reduce 
the number of interrupt received by the host processor, while 
in the case of onloading the other processor is used to process 
all the communication tasks and NIC interrupts. 

The simulation results show that changes in the LAWS 
parameters αβ affect the improvement of the peak throughput 
in a similar way to that predicted by LAWS model. 
Nevertheless, the way in which the improvement peak 
throughput depends on the LAWS parameter γ in our 
experiments is different to what is predicted by the LAWS 
model. It is clear that the improvements predicted by LAWS 
are upper bounds of the improvements obtained by real 
systems, as it has been shown in our simulations. 
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