

Abstract— As the bandwidth of network links has increased

at an exponential rate to accommodate the application
requirements, efficient network interfaces has become decisive.
Taking into account the trend towards multi-core
microprocessors and programmable processors in the NIC, a
plausible goal is to distribute the communication overhead
amongst all the processing units available in the computer, not
only to improve the communication throughput and latency,
but also to leave more CPU cycles available for applications and
operating system tasks.

This paper deals with the evaluation by simulation of the
HDL (Hardware Description Language) models that implement
different network interface design alternatives (offloading and
onloading approaches) to improve the network interface
performance by taking advantage of the different processing
cores available in the server node.

By using an HDL model of the communication path we have
developed, we provide a fair comparison of onloading and
offloading alternatives, and analyzes the obtained results with
the aid of the previously proposed LAWS model. This way, we
contribute to understand the effect of the different elements in
the nodes that take part in the communication path,
particularly, we consider the technology of the processors in the
node, the characteristics of the main and cache memories, the
bandwidth of the I/O buses, and the profiles of the
communication/computation rates of the applications. The
experimental results show the accuracy and usefulness of our
simulation model and provide an approximate validation of the
LAWS model.

Index Terms—Hardware Description Language, LAWS

model, protocol offloading, protocol onloading.

I. INTRODUCTION

 The improvements in the computer applications
increasingly depend on the communication technology. The
bandwidth of the Ethernet links has increased at exponential
rate to accommodate the requirements of the present
applications. Today, 1 Gb/s Ethernet is usual for desktop
systems, and 10 Gb/s Ethernet links are available for server
systems. A full-duplex 10 Gb/s link can deliver maximum

Manuscript received December 3, 2009. This work was supported in part

by the Department of Computers Architecture and Technology under
TIC-1359 project (Junta de Andalucía, Spain).

Waseem M. Haider. Author is with the Department of Computers
Architecture and Technology, University of Granada, Granada, CO 18071
Spain (phone: +34-695-856383; fax: +34-958-248993; e-mail:
mhaider@atc.ugr.es).

Julio Ortega. Author is with the Department of Computers Architecture
and Technology, University of Granada, Granada, CO 18071 Spain (phone:
+34-958-243228; e-mail: julio@atc.ugr.es).

Antonio Francisco Díaz. Author is with the Department of Computers
Architecture and Technology, University of Granada, Granada, CO 18071
Spain (phone: +34-958-246127; e-mail: afdiaz@atc.ugr.es).

sized 1,518 byte frames at the rate of 812,744 frames per
second in each direction. Therefore, a full-duplex 10 Gigabit
Ethernet controller must be able to sustain about 435 MIPS
[1] and 4.8 Gb/s of data bandwidth for protocol processing.
So, we should need processors between 100 and 200 GIPS to
cope with these bandwidths [1]. The communication path
processing includes the I/O bus control, memory latencies
management, interrupts, and other overheads that do not
scale with faster processors [20]. The implementation of a
suitable network interface should take into account all those
parameters and operations that do not scale properly.

Over the last few years, the researching work on network
interfaces has been focused on reducing the time overhead of
the communication system architecture by using light-weight
communication protocols like GAMMA [2] or CLIC [21], or
through user-level network interface protocols [3].
Nevertheless, the bandwidth increases in the network links
have made it necessary to consider new strategies to improve
hardware elements, such as the increasing in the bandwidth
of the I/O buses and in the processing capabilities of the
network interface cards. On the other hand, there are
important practical problems related to light-weights
protocols. First of all, there is no compatibility with the
existing applications that use sockets and, in some cases, with
the infrastructure based on IP [4]. Among the solutions
proposed to cope with these problems is the developing of
high performance sockets at user level [4], the modification
of the socket interface to maintain compatibility with IP [5].
In [7], it has been shown that it is possible to reach adequate
performance levels in I/O intensive applications without
accessing to the NIC at user level.

All the NICs for 1 Gbps and 10 Gbps Ethernets are able to
determine and check the TCP/IP checksum. Generally, there
are another ways to reduce the interrupt frequency by
generating one interrupt for a large number of packets [3].
Jumbo frames (frames up to 9000 bytes), used to reduce the
pre-frame processing overhead, and header splitting, which is
used to place protocol headers and data in separated buffers
[22]. Beside all the features that mentioned above, many
NICs include programmable processors.

An alternative that has been also proposed is protocol
offloading [6]. The idea behind this alternative is the
distribution of the communication tasks among the different
elements in the host, mainly among the host CPU and other
processors in the NIC. It implies to release the
communication load from the central processor to another
processor. The tasks that imply interaction with the network
is implemented in the NIC in order to leave more CPU cycles
for the computation required by the applications. In this way,
protocol offloading can be seen as a technique that enables

Performance Analysis by HDL Simulation of
Network Interface Design Alternatives

Waseem M. Haider, Julio Ortega, Antonio Francisco Díaz

the parallelization of the network communication tasks and
the direct data placement on the main memory, thus avoiding
some communication overheads rather than only shifting
them to the NIC [8].

The use of processors in the NIC to accelerate the
processing of communication tasks (offloading) has been
proposed in numerous works, that present diverse proposals
to optimize and distribute the communication tasks between
the CPU and the processor of the NIC [8], [9]. There are also
many commercial proposals of TOE (TCP/IP Offloading
Engines), the hardware that helps offloading to be
implemented [10]. Besides releasing the CPU from part of
the work related to communication, protocol offloading to
the NIC can provide other advantages. The first one is to
reduce the message latency because, as protocols are
implemented in the NIC, short messages like the ACKs do
not have to cross the I/O bus. This also supposes a reduction
in the number of interruptions that the CPU has to process to
attend the received messages. Other advantages are the
improvement in the efficiency of DMA transfers from NIC
corresponding to short messages and the possibility to
dynamically manage the protocols in the NIC in order to
select the most suitable one to build the messages according
to the communication protocol information and the
destination. Nevertheless, certain controversy exists about
the efficiency of the offloading approach. More specifically,
in [11]-[13], some objections are provided about the utility of
this technique taking into account that the processor in the
NIC usually presents worse processing performance than the
CPU. Other reasons argued for the uncertainty on the
offloading utility refer to the difficulties that arise for its
implementation, test, and maintenance.

Other alternative, called onloading, considers the use of
some of the available cores in a multicore microprocessor or
CPUs in an SMP [13]-[15]. This trend agrees with the
mainstream tendency in the development of multi-core
architectures. There are commercial proposals of onloading
as the I/OAT (Intel I/O Acceleration Technology) [16]
technique. With onloading, one of the cores executes the
communication software, while the rest of the software
(applications and the rest of the operating system) is executed
in other cores. Thus, the processing of the network interface
is done in a core with the same characteristics and privileges
in the accesses to main memory as the cores where the
application is executed. On the other hand, it is possible to
send all the interruptions generated by the NIC towards the
core in charge of the network interface processing. In the case
of the offloading technique, the central processor must still
attend to some interruptions generated by the NIC.

It is difficult to analyze the efficiency of offloading and
onloading to optimize the network interface due to the
interaction among the different hardware elements, the
operating system, and the application tasks. With the
integration of multiple processor cores on the same chip,
more and more sophisticated caches are appearing on the
scene while the size are growing at the same time. We will
show that the network protocol software is very sensitive to
the cache behavior, thus being relevant to communication
throughput performance under different conditions such as
which is shown in [23]. In any case, it is difficult to find

systems with similar hardware and software characteristics to
make a fair comparison between the offloading and
onloading alternatives. Thus, in this paper we have used a
HDL (Hardware Description Language) simulation model of
the communication path to compare the performance of both
alternatives under the influence of the different elements that
characterize the network interface.
The rest of the paper is organized as follows. After this
introduction, Section 2 gives an overview of the LAWS
model. This model helps us to organize the parameters of the
simulation model in order to make easier the search in the
offloading and onloading design spaces and which has been
proposed to predict oflloading/onloading effects. In section
3, we present our HDL simulation model of the
communication path, which is used to analyze the behavior of
the different elements in the communication path. Finally,
Section 4 and 5 provide the experimental results and the
conclusions, respectively.

II. PREDICTION PERFORMANCE OF

OFFLOADING /ONLOADING BY USING LAWS

MODEL

Some performance models have been proposed to
understand the fundamental principles that are on the basis of
the experimental results obtained after applying some
strategies to optimize the network interfaces. In [17], a
theoretical model called LAWS is presented. It tries to
characterize the improvement provided by protocol
offloading in the NIC, for applications related to Internet
services or streaming applications. Moreover, we have also
used LAWS to predict the performance of the onloading
alternative because this model can in fact be applied
whenever the communication overhead are distributed
between the different processors in the server node. Thus, it
is possible to compare both alternatives.

The LAWS model is based on the estimation of the peak
throughput of the pipelined communication path according to
the throughput provided by the correspondent bottleneck (the
network link, the NIC, or the host CPU). A LAWS only
considers applications that are throughput limited and fully
pipelined. The analysis provided in [17] considers that the
performance of CPU is limited before applying the protocol
offload technique. In the following, we provide a brief
description of the LAWS model for completeness.

 Figure 1, explains how the LAWS model views the
system with and without offloading. We have used the same
notation than in [17] to derive the peak throughput functions.
Before offloading, the system is considered a pipeline with
two stages, the host and the network. In the host, to transfer m
bits, the application causes a CPU work equal to aXm and the
communication produces a CPU work equal to oXm. Where a
and o are the amount of the CPU work per data unit, and X is
a scaling parameter used to take into account variations in the
processing power with respect to a reference host. Moreover,
the network link latency to provide m bits when the
bandwidth of the link equals B, is m/B. Therefore, the peak
throughput provided before offloading is determined by the
bottleneck stage Bbefore=min (B, 1/(aX+oX)). After
offloading, we have a pipeline with three stages, and a

portion p of the communication overhead has been
transferred to the NIC. In this way, the latency stages for
transferring m bits are m/B for the network link,
aXm+(1-p)oXm for the CPU stage, and poYβm for the NIC
stage. In the expression of the NIC latency, Y is a scaling
parameter to take into account the difference in processing
power with respect to a reference, and β is a parameter that
quantifies the improvement in the communication overhead
that could be reached with offloading. This way, βo is the
portion of the normalized overhead that remains in the system
after offloading with p=1 (complete offloading). Thus, after
offloading, the peak throughput is Bafter=min (B,
1/(aX+(1-p)oX,1/poYβm) and the total improvement in peak
throughput is defined as (Bafter- Bbefore)/Bbefore.

Fig.1 Behavior of the peak throughput improvement
according to LAWS model.

The LAWS acronym comes from the parameters used to

characterize the offloading benefits. Thus, along with the
parameter β (Structural ratio), we have the parameter α=Y/X
(Lag ratio) which considers the ratio between the CPU speed
and the NIC computing speed. The parameter γ=a/o
(Application ratio) measures the
computation/communication ratio of an application and the
parameter σ=1/oXB (Wire ratio) corresponds to the portion of
the network bandwidth that the host can provide before
offloading. According to the parameters of the LAWS model
(α, β, γ, and σ), the relative improvement of the maximum
throughput comes from the following expression:

BWbefore=min (B, 1/ (aX+oX))

 = min [1/σ, 1/ (γ +1)] (1)

BWafter=min (B, 1/ (aX+ (1-p) oX), 1/poYβ)

 =min [1/σ, 1/ (γ + (1-p)), 1/pβα] (2)

δb= [min (1/σ, 1/ (γ + (1-p)), 1/pβα) – min (1/σ, 1/ (γ +1))]

 / [min (1/σ, 1/ (γ +1))] (3)

From the expression (3) and Figure 1, some conclusions
can be obtained:

1. Protocol offloading is useful in applications with
computation/communication rate, γ, very low. This profile
corresponds to stream data processing application and
network storage serves with a large number of disks, etc. For
CPU intensive applications, the throughput improvement
reached by offloading is bounded by 1/γ and tends to zero as
the computation cost increases (i.e. γ grows). The maximum
improvement that can be reached is obtained by γ =max (αβ,
σ). Also, the improvement slope (γ+1)/c-1 is 1/c being
c=max (αβ, σ), the bandwidth improvement grows more
while the αβ and σ decreases.

2. When (α<1), the NIC speed is lower than the CPU
speed, offloading may reduce the network interface
performance. If the NIC gets saturated before the network
link (αβ<σ), the improvement is bounded by 1/α.
Nevertheless, if an efficient offload implementation (for
example Direct Data Placement [11]) allows structural
improvements (a reduction in β), it is possible to maintain the
offloading usefulness for α>1.

3. When (σ>>1), the host is able to assume the
communication overhead without aid, and there is not any
improvement with offloading/onloading in slow networks.
The offloading usefulness can be high when the host is not
able to communicate at link speed (σ<<1), but in these
circumstances, γ has to be low, as it has been previously
mentioned. Thus, the offloading can be seen as a very useful
technique as there is a trend to a faster network (σ decreases).

4. When σ is near one, the best improvement corresponds
to those cases that present some balance between
computation and communication before offloading (γ=σ=1).

However, it is clear that the system communication
performance depends on many parameters; from the
application (computation/communication) profile to the
interaction between operating system, application, and
hardware. As it has been said before, although the LAWS
model in [17] is applied to offloading, it is also possible to
use this model when the execution of the communication
tasks is done in a processor located in other parts of the
system like SMP or CMP. Therefore, we will use the LAWS
model as a base to get insight to the simulation results for
offloading and onloading.

III. AN HDL SIMULATION MODEL FOR THE

COMMUNICATION PATH

Simulation is a suitable approach to evaluate different
alternatives in computer architecture design. An useful
simulator needs to model the machine with the details
required by the problems to be solved. There are many
simulators with characteristics required by the network
interface analysis like M5 [24], SIMICS [26] and SimOS
[25].

In this paper we have used an HDL simulator through an
HDL model we have developed. HDL models allow us to
have an idea of the implementation of the new proposals, to
complement the results obtained by functional simulators,
and to generate estimations of the clock speed that can be
reached by the hardware. They also make possible to identify

Better improvement

(C, 1/C)

Improvement on peak
throughput

 γ (compute intensity)

1/γ

αβ<<1

αβ>>1
C

1/C

the critical paths and to improve their design aspects at a level
nearest to the hardware details [18].

Firstly, in this section we describe our HDL simulation
model in detail. It has been developed to study the conditions
in which the offloading and onloading alternatives may
contribute to the bandwidth improvement results. As it has
been mentioned, this model allows us the simulation of the
hardware characteristics at an adequate level to understand
the influence of the different implementation alternatives.
Our HDL simulation model also makes it possible the
simulation of codes and their interaction with hardware and
operating system. This interaction has been modeled by
means of delay magnitudes that produce different overhead
sizes associated with the processing of protocol and drivers,
etc. It is difficult to generate the LAWS curves of the
throughput improvement against the application ratio, when
one of the other parameters changes while the others are held
constant (Figure 1). However, our HDL simulation model
makes this goal easier to reach.

The different modules of our HDL simulation model for
the communication path (including the different alternates:
i.e. base system, offloading and onloading) are shown in
Figure 2.

Besides the NIC, the CPU the cache, the chipset, and the
main memory, we have also included the delays in the I/O
and memory buses. It is possible to inject packets of different
sizes, from the memory of the sender by using two
alternatives: a packet generator or a trace file.

The communication path in our simulation model contains
the memory module Memory in the sender part. Packets with
different sizes and speeds are generated from this module.
These packets reach to the NIC module, where they are stored
in a queue of buffers. Then, the Network module reads
packets from this queue. The simulation model also includes
various modules of CPUn that correspond to different CPU
present in the host, and the chipset module used to implement
the interface between the different processors and the I/O bus
module.

Fig. 2 Modules of the HDL simulation model with alternatives (Base system, Onloading and Offloading).

Base System

Onloading

O
ff

lo
ad

in
g

Sender

Memory

Memory delay

I/O Bus

CPU0+Cache

Speed delay

NIC

CPU1+Cache

Speed delay

Driver

Driver

D
ri

ve
r

Chipset

Bus
delay

Network Link delay

Base System

Receiver

Memory

Memory delay

NIC

CPU0+Cache

Speed delay

CPU1+Cache

Speed delay

Driver

Driver

D
ri

ve
r

Onloading

O
ff

lo
ad

in
g

I/O Bus

Bus
dela

Chipset

Figure 3 shows all the elements in the NIC module,
including buffers to store the data coming from the network
link module and from the I/O bus.

To read or write from the NIC, there are two modules to
control the data path. The main point in the NIC module is to
implement the communication protocol offloaded by using
the driver (module Driver). The other tasks implemented in
the NIC are: the DMA initialization by using DMA signal
and the interrupt request to the CPU by using Interrupt
generation. Other control signals (prodReady, consReady,
cReady_interface, and pReady_interface) are handshaking
signals used to control the read/write transfer. The CPU and
the processor in the NIC interact by reading from or writing
to some shared registers.

Figure 4 illustrates the main elements of the CPU module.
It shows the two main parts for processing (Applications and
Communication boxes in Figure 4), the cache memory, and
the interrupt controller (that use Interruptack and Interrupt
signals to manage the data processing with network interface
card). In the base case (implementing neither offloading nor
onloading), all the application and communication tasks are
executed in the CPU module, while in the case of offloading
and onloading, the communication tasks will be moved to the
NIC or to the CPU1 modules, respectively.

The NIC and CPU modules can be simulated according to
different alternatives depending on the technique used to
optimize the network interface. The NIC module behavior is
controlled by a program stored in the memory of the NIC.

It executes the protocol when offloading is implemented.
In this case, the CPU avoids almost all the communication
overhead, as the NIC is able to process the communication
protocol.

In the base case, when the information from both
directions (send or receive) reaches to the NIC, it interrupts
directly the CPU. The CPU executes the driver to initialize
the DMA operation between the NIC and the main memory.
The NIC stores the received data in the main memory through
the DMA operation and informs the CPU at the end of the
operation. Then, the CPU starts the process of the packet
stored in the main memory. In the offloading case, the NIC
processes all the packets, and then it interrupts the CPU that
executes the driver to initialize the DMA operation as in the
base case. After that, the NIC starts the DMA operation to
transfer packets to the main memory and informs the CPU
that the data is available in the main memory. We have also
implemented another way to release the CPU from the
communication overhead when the NIC is able to process the
protocol and to initialize the DMA. When these packets are
stored in the corresponding addresses, the NIC informs the
CPU that the application can use them. In the offloading case,
only one CPU module is simulated and in the onloading case,
two CPU modules are used as shown in figure 2. In the first
alternative, all the applications and the rest of the tasks of the
operating system are executed in the CPU0, and in the second
one, all the tasks related to the communication processing are
executed in the CPU1.

(a)

NIC prodReady cReady_interface

pReady_interface
consReady

Interrupt
interruptack

DMA

DMAend

B
uf

fe
rs

State

O
ut

pu
t S

ta
ge

In
pu

t S
ta

ge

Data in
Data out

Driver
(b)

DMAend

NIC

cReady_interface

Interrupt
Interruptack

consReady

prodReady

DMA

pReady_interface

B
uf

fe
rs

State

In
pu

t S
ta

ge

O
ut

pu
t S

ta
ge

Data out
Data in

Driver

Network
 Link

Network
 Link

Fig.3 Elements of the Network Interface Card module NIC in the ((a) Receiver and (b) Sender) parts.

Figure 5 shows the experimental signals among the
different modules in the HDL simulation corresponding to
the different alternatives. The interrupt signals are exchanged
between the CPU and NIC modules. In Figure 5 the signal
Interrupt is used for interrupt requesting and the signal
Interruptack is used for the acknowledgment. The DMA
signal indicates a direct memory access transfer from the NIC
to the CPU.

The protocol signal indicates that the protocol is processed
by CPU module (in the base system), while Driver signal
indicates that the protocol processed in the NIC (offloading),
in the last case (onloading). The CPU1 module is used to
process the protocol of the communication.

In the receiver side, the packets enter to the NIC module
and stored in the NIC buffers. In the base system as shown in
figure (5. a), (1) the CPU is interrupted by the signal
Interrupt, and it initializes the DMA operation and transfers
the incoming data to the Memory module by using the DMA
signal while the operation ends by using DMAend signal.
After that, (2) the CPU module processes the packet by using
the protocol signal. In the case of offloading, as shown in
figure (5. b), (1) the packets are firstly processed in the NIC
module implemented through Driver, and (2) the CPU
module is interrupted to start the transfer of the data. In the
case of onloading, as shown in figure (5. c), the CPU1
modules are used as processor of the NIC to process the
communication protocols while protocol signal is active (2).

DMA

DMAend

ProdRead
y

ConsReady

CPU
Module

Communication
(Protocols)

Applications
(Operating

System)

Delay of

the CPU

Speed

Memory Access Memory Access

Interrupt
Controller

Cache

Driver

Interruptack

Interrupt

Fig.4 Elements of the CPU module in HDL simulation.

(c)

(b)

(a)

Protocol

Interrupt
Interruptack

DMA
DMAend

Dout_Proc

Protocol

Interrupt

Interruptack

DMA

DMAend

Dout_Proc

Driver

Protocol

Interrupt

Interruptack

DMA

Dout_Proc

1

2

1 2

1
2

Fig.5 Timing diagrams for three alternatives (a. base system, b. offloading, c. onloading).

IV. EXPERIMENTAL RESULTS

In all our experiments, we have compared the behavior of
the offloading and onloading strategies with respect to the
LAWS theoretical model, as this model helped us to organize
the space of the offloading and onloading strategies. The
LAWS model provides a way to understand the performance
under different application. In our HDL simulations, we have
supposed that the offloading and onloading of all the tasks
related to the processing of the communication protocols.
Therefore, it can be considered that p=1 in the LAWS model.
As it has been shown, our HDL model allows the simulation
of the CPU, the NIC, the network link, and all the effects of
buses, bridges, caches, and main memory. Our experiments
have been carried out with packets of 64 bytes generated by a
synthetic packet generator and with different packet lengths
in trace file provided by different benchmarks.

To simulate the protocol offloading that removes the
protocol processing from the CPU, we have used the model
shown in figure 2, when the CPU0 is used for application
processing and the NIC is used for protocol processing in
order to take advantage of the parallelism between the
communication and the application tasks.

To simulate onloading, CPU1 is used to process the
communication protocols instead of using either the NIC or
CPU0.
The behavior of the peak throughput improvement obtained
in our experiments qualitatively coincides with the one
predicted by the LAWS model when the parameter γ changes
in the case of offloading and onloading. In our simulations,
the value of σ verifies that σ<αβ, therefore; the maximum
improvement happens when c=αβ and it would be equal to
1/αβ. Moreover, peak throughput improvement growth
should be observed as αβ decreases. Figure 6 and 7 show
these effects for three different values of αβ.

Fig.6 Peak throughput offloading with various values of αβ
and 1 Gbps.

 Due to the effects of offloading in the network interface
card, we can see that the higher network bandwidth the
higher the peak throughput with αβ<1, as shown in Figure 7
compared with Figure 6. The LAWS model supposes that the
communication path is pipelined throughout the processor,
the NIC, and the network. Obviously, as these elements of the
communication path share resources, the LAWS model only

established an upper bound to the peak throughput
improvement.

Fig.7 Peak throughput offloading with various values of αβ
and 10 Gbps.

Figure 8 shows the effect of onloading when αβ=1.15. In the
case of onloading we cannot change the values of αβ because:
(1) the parameter α depends on the speed of processors (we
have considered that all the processor cores have the same
speed) and so α is always equal to 1; (2) the parameter β
depends on the time delay on the NIC, but in this case, the
driver is executed in the one of the processor cores and β will
have a fixed value.

Fig. 8 Comparison of the peak throughput between
offloading (αβ=1.01) and onloading (αβ=1.15), with 1 Gbps
of link bandwidth.

 Figure 9 compares the peak throughput between the base
system, onloading, and offloading, while αβ=1.15 and 1.01
respectively. This test provides the network performance in
terms of the available throughput. The same figure shows that
the offloading and onloading alternatives provide
improvements in the peak throughput, while these
improvements depend on the value of the values of αβ.
 Previous simulations have been done considering an
average memory access time and no detailed cache
simulation has been modeled. Figure 10, 11, 12 and 13 show
the effect in the peak throughput improvement of including a
two level cache in the simulation model.

Fig.9 Comparison of the peak throughput between base
system, offloading and onloading.

Also they show that caches improve the performance of the
peak throughput provided by each network interface
implementation alternative. Nevertheless the amount of the
improvement is different between offloading and onloading.
Thus, when the cache model is included, the improvements in
base system and in the onloading model are bigger than the
obtained with the offloaded network interface alternative.
The behavior of offloading can be explained because, as the
interface is mainly processed in the NIC, the use of a cache in
the host does not affect in its performance improvement
because the NIC uses its local memory for transferring data to
the main memory. Figure 10 shows the improvement in the
throughput in the case of offloading when L2 cache size
increases with a specific size of L1, while Figure 11 shows
the throughput improvement when L1 cache size increases
with a specific value of L2.

Fig.10 Comparison of the offloading peak throughput
improvement with the effect of the L2 cache.

The onloading strategy provides better peak throughput
improvement whenever the cache is available in the cores of
the host processor as shown in Figure 12 and 13 that provide
the peak throughput for different values of L1 and L2
respectively.

Fig.11 Comparison of the offloading peak throughput
improvement with the effect of the L1 cache.

Fig.12 Comparison of the onloading peak throughput
improvement with the effect of the different values of the L1
cache.

Fig.13 Comparison of the onloading peak throughput
improvment with the effect of the different values of the L2
cache.

Moreover, the increases in the cache size produce throughput
improvements especially in the case of onloading. The
previous results have been obtained by using a generator that
builds packets in the memory module of the sender.
Nevertheless, we have also used traces corresponding to real

applications executed either in LAN or WAN environments.
The file of traces includes Ethernet packets of different
lengths (between 64 and 1518 bytes) and the time intervals to
send them [19]. Figure 14 shows the peak throughput
performance of offloading when we use this file of traces and
different values of αβ.

Fig.14. Comparison of the offloading peak throughput
improvement with various values of αβ and onloading (with a
measured αβ=0.57).

The maximum value for the peak throughput improvement is
reached when αβ=0.3. While, the worst case in our
simulations occurs when αβ=1.01, because the NIC cannot
take advantage of the offloading technique. In the case of
onloading, when αβ=0.56, our onloading simulation provides
peak throughput performance improvement reached to 25%.
The offloading and onloading strategies do not affect only in
the throughput reached but also the latency of the
communication system. Figure 15 compares the behavior of
the improvements in the latency corresponding to different
values of αβ in the case of offloading. It is also shown that for
the maximum throughput improvement, when αβ=0.3, the
minimum value of the latency is obtained.

Fig. 15. Latency improvement with various values of αβ in
the case of offloading and αβ =0.57 in the case of onloading
with 1 Gbps of link bandwidth.

The cache memory allows onloading to provide lower
latencies than offloading. Figure 16 shows the effect of the
cache in the latency improvement in the case of the
offloading and onloading.

Fig.16 Cache effect in the latency with 1Gbps of link
bandwidth.

Figure 17 shows the throughput improvement of the
communication path with 1Gbps packet generator. The small
improvement growth is observed as γ grows up to a specific
value and after this value, the throughput improvement
decreases.

Fig.17 Throughput improvement of onloading and offloading
with various values of αβ.

Figure 17 shows that there are important differences between
the throughput improvement corresponding to each curve,
not only in the amount of the throughput improvement but
also in the location of the maximum and in the rate of the
change in the throughput improvement with the application
ratio. The reason for these differences came from the effects
of the I/O buses, memory buses, etc.

V. CONCLUSION

It is clear that the offloading and onloading strategies offer
different advantages and drawbacks in the improvement of
the communication path performance amongst different
hardware/software configurations.

The HDL model which we have developed has made
possible to describe and simulate the hardware and software
components of the communication path and their
interactions. Thus, our HDL model has allowed us the study
of the offloading and onloding performance by controlling
the parameters that affect in the behavior of the system. This
way, an HDL simulation of the offloading and onloading
alternatives, and the comparison of the experimental results
obtained with the conclusions of the LAWS model, have
allowed us to analyze the different elements that determine
the performance of the network interface architecture and to
check the efficiency of the approaches to optimize it. Our
simulation results show that the onloading provides higher
improvements than offloading in the conditions of our
experiments. Moreover, the behavior which we have
observed in the experiment results qualitatively coincides
with the analysis and optimizations reached from the LAWS
model. Therefore, it is possible to use the LAWS model to
determine bounds for the experimental results.

The relative throughput improvement offered by
offloading and onloading depends on the application rate
workload to communication overhead of the implementation
and on the packet size. Both strategies can be used to reduce
the number of interrupt received by the host processor, while
in the case of onloading the other processor is used to process
all the communication tasks and NIC interrupts.

The simulation results show that changes in the LAWS
parameters αβ affect the improvement of the peak throughput
in a similar way to that predicted by LAWS model.
Nevertheless, the way in which the improvement peak
throughput depends on the LAWS parameter γ in our
experiments is different to what is predicted by the LAWS
model. It is clear that the improvements predicted by LAWS
are upper bounds of the improvements obtained by real
systems, as it has been shown in our simulations.

ACKNOWLEDGMENT

This work has been funded by project TIC-1359 (Junta de
Andalucia, Spain). The authors thank the referees for their
useful comments.

REFERENCES

[1] D.L. Schuff, V.S. Pai, P. Willmann, S. Rixner, “Parallel Programmable
Ethernet Controllers: Performance and Security”, IEEE Network,
22-28, 2007,

[2] G. Ciaccio, “Messaging on Gigabit Ethernet: Some experiments with
GAMMA and other systems”, Workshop on Communication
Architecture for Clusters, IPDPS, 2001.

[3] R.A.F. Bhoedjang, T. Rühl, H.E. Bal, “User-level Network Interface
Protocols”, 53-60, IEEE Computer, 1998.

[4] P. Balaji, P. Shivam, P. Wyckoff, D.K. Panda, “High performance user
level sockets over Gigabit Ethernet”, Proc. of the Cluster ’02, 179-186,
2002.

[5] J. Chase, A. Gallatin, Y.G. Yocum, “End-System Optimizations for
High-Speed TCP”, IEEE Communications, 2000.

[6] H.W. Jin, P. Balaji, C. Yoo, J.Y Choi, D.K. Panda, “Exploiting NIC
architectural support for enhancing IP based protocols on high
performance networks”, Journal of Parallel and Distributed
Computing, 1348-1365, 65(11), 2005.

[7] K. Magoutis, M. Seltzer, E. Gabber, “The case against user-level
networking”, Third Annual Workshop on System Area Networks
(SAN-3), 2004.

[8] D. Freimuth, et al., “Server Network Scalability and TCP offload,
USENIX Annual Technical Conference”, General Track, 209-222,
2005.

[9] H.-Y Kim, S. Rixner, “TCP offload through connection handoff”,
ACM Eurosys’06, 279-290, 2006.

[10] Y. Hoskote, el al., “A TCP Offload Accelerator for 10 Gb/s Ethernet in
90 nm CMOS”, IEEE Journal of Solid-State Circuits, 1866-1875,
38(11), 2003.

[11] J.C. Mogul, “TCP offload is a dumb idea whose time has come”, 9th
Workshop on Hot Topics in Operating Systems (HotOS IX), 2003.

[12] D.D. Clark, et al., “An analysis of TCP processing overhead”, IEEE
Communications Magazine, 23-29, 1989.

[13] G. Regnier, et al., “TCP onloading for data center servers”, IEEE
Computer, 48-58, 2004.

[14] G. Regnier, et al., “ETA: experience with an Intel Xeon processor as a
packet processing engine”, IEEE Micro, 24-31, 2004.

[15] M. Rangarajan, et al., “TCP Servers: Offloading TCP processing in
Internet Servers, Design, Implementation and Performance”, Tech.
Report, DCS-TR-481, Rugers University, 2002.

[16] B. Wun, P. Crowley, “Network I/O Acceleration in Heterogeneous
Multicore Processors”, In Proceedings of the 14th Annual Symposium
on High Performance Interconnects (Hot Interconnects), 2006.

[17] P. Shivam, J.S. Chase, “On the elusive benefits of protocol offload”,
SIGCOMM’03 Workshop on Network-I/O convergence: Experience,
Lessons, Implications (NICELI), 2003.

[18] M. Pirvu, L. Bhuyan, R. Mahapatra, “Hierarchical simulation of a
multiprocessor architecture”, Proc. Of the 2000 IEEE Int. Conference
on Computer Design: VLSI in Computers and Processors, 2000.

[19] The Internet Traffic Archive,
http://ita.ee.lbl.gov/html/contrib/BC.html.

[20] E.P. Markatos, “Speeding up TCP/IP: faster processors are not
enough”, in: IEEE21st International Performance, Computing, and
Communications Conference, 2002.

[21] A.F. Díaz, J. Ortega, A. Cañas, F.J. Fernández, M. Anguita, A. Prieto,
A., “Light weight protocol for gigabit Ethernet”, in: Workshop on
Communication Architecture for Clusters (CAC’03) (IPDPS’03),
2003.

[22] R. Westrelin et al., “Studying network protocol offload with emulation:
approach and preliminary results”, 2004

[23] C.L. Su, A.M. Despain, “Cache Designs for Energy Efficiency”,
Hawaii International Conference on System Sciences 28th, 1995.

[24] M5 simulator system Source Forge page:
http://www.m5sim.org/wiki/index.php/Main_Page, 2009.

[25] M. Rosenblum et al., “Using the SimOS machine simulator to study
complex computer systems”, ACM Transactions on Modeling and
Computer Simulation, 1997.

[26] P.S. Magnusson et al., “Simics: a full system simulation platform”,
IEEE Computer, 2002.

