
 
 

 

 
Abstract—The n-dimensional twisted cube, denoted by TQn, a 

variation of the hypercube, possesses some properties superior 
to the hypercube. In this paper, we show that every vertex in 
TQn lies on a fault-free cycle of every length from 6 to 2n, even if 
there are up to n − 2 link faults. We also show that our result is 
optimal. 

 

 
Index Terms—hypercubes, twisted hypercubes, fault-tolerant,  

vertex-pancyclic, interconnection network  
 

I. INTRODUCTION 
A graph G is a triple consisting of a vertex set V(G), an 

edge set E(G), and a relation that associates with each edge 
two vertices called its endpoints [24]. We usually use a graph 
to represent the topology of an interconnection network 
(network for short). The hypercube is a popular 
interconnection network with many attractive properties such 
as regularity, symmetry, small diameter, strong connectivity, 
recursive construction, partition ability, and relatively low 
link complexity [22]. The twisted cube [13], as one of the 
important variations of the hypercube, and derived by 
changing some connections of the hypercube according to 
specific rules, possesses some desirable features: its diameter, 
wide diameter, and fault diameter are about half of those of 
the comparable hypercube [2]. An n-dimensional twisted 
cube is (n − 3) fault-tolerant Hamiltonian connected [14] and 
(n − 2) fault-tolerant pancyclic [18], whereas the hypercube is 
not. Moreover, its performance is superior to that of the 
hypercube [1]. Other previous works relating to the twisted 
cube can be found in [6], [9], [11], [12], [15], [16]. 

Linear arrays and rings, two of the most fundamental 
networks for parallel and distributed computation, are 
suitable for developing simple algorithms with low 
communication costs. Many efficient algorithms designed 
based on linear arrays and rings for solving a variety of 
algebraic problems and graph problems can be found in [17]. 
The pancyclicity of a network represents its power of 
embedding rings of all possible lengths. A graph G is called 
m-pancyclic whenever G contains a cycle of each length l for 
m ≤ l ≤ |V(G)|. A graph G is m-vertex-pancyclic (respectively, 
m-edge-pancyclic) if every vertex (respectively, edge) lies on 
a cycle of every length from m to |V(G)|. It is clear that if a 
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graph G is m-edge-pancyclic, then it is m-vertex-pancyclic. 
The crossed cube [7], the twisted cube [8], and the möbius 
cube [23] are 4-edge-pancyclic. Besides, a 3-pancyclic graph 
is called pancyclic, a 3-edge-pancyclic graph is called 
edge-pancyclic, and a 3-vertex-pancyclic graph is called 
vertex-pancyclic. The alternating group graph [4] and the 
augmented cube [19] are edge-pancyclic. 

Since faults may occur to networks, the fault tolerance of 
networks is an important issue in designing network topologies. 
Let Fe  ⊂ E(G) (respectively, Fv  ⊂ V(G)) denote the faulty 
edges (respectively, the faulty vertices) in a graph G and let F 
= Fe ∪ Fv. Suppose that G − F is P, where P is pancyclic, 
vertex-pancyclic, or edge-pancyclic. Then, we call G |F| 
fault-tolerant P. In addition, G is |F|-edge fault-tolerant P 
(respectively, |F|-vertex fault-tolerant P) if F = Fe 
(respectively, if F = Fv). Note that if G is |F| fault-tolerant P, 
then G is |F|-edge fault-tolerant P and |F|-vertex fault-tolerant 
P. Previously, the pancyclicity on various faulty networks was 
studied in [3], [10], [18], [19], [20], [21]. In [18], TQn has been 
shown to be (n − 2) fault-tolerant pancyclic, where n ≥ 3 is an 
odd integer.. In this paper, we show that TQn − Fe is 
6-vertex-pancyclic if |Fe| ≤ n − 2, n ≥ 3 is an odd integer. That 
is, we show that TQn is (n − 2)-edge fault-tolerant 
6-vertex-pancyclic. In addition, we also show that our result is 
optimal. 

II.  PRELIMINARIES 
Let G be a graph and let u, v ∈ V(G). The degree of vertex 

v in G, written as degG(v), is the number of edges incident to v 
in G. In addition, δ(G) = min{degG(v)| v ∈ V(G)}. A path P[x0, 
xt] =  〈x0, x1, ⋅⋅⋅, xt〉 is a sequence of nodes such that two 
consecutive nodes are adjacent. t is the distance between 
nodes x0 and xt if P[x0, xt] is a shortest path in G. We use 

0( , )G td x x  to denote the distance between x0 and xt in G, and 
use (u, v) to denote an edge whose endpoints are u and v. 
Moreover, a path 〈x0, x1, ⋅⋅⋅, xt〉 may contain other subpaths, 
denoted as 〈x0, x1, ⋅⋅⋅, xi, P[xi, xj], xj, ⋅⋅⋅, xt〉, where P[xi, xj] = 〈xi, 
xi+1, ⋅⋅⋅,xj–1, xj〉. A cycle is a path with x0 = xt and t ≥ 3. A cycle 
(respectively, path) in G is called a Hamiltonian cycle 
(respectively, Hamiltonian path) if it contains every vertex of 
G exactly once. 

The vertex set of the twisted n-cube TQn is the set of all 
binary strings of length n, where n is odd. Let b = bn−1bn−2…b0 
denote one vertex in TQn. For i ∈ {0, 1, …, n − 1}, let the i-th 
parity function Pi(b) = bi⊕bi−1⊕…⊕b0, where ⊕ denotes the 
exclusive-or operation. The TQn can be defined recursively as 
follows: TQ1 is a complete graph with two vertices 0 and 1. 
Suppose that n ≥ 3. We can decompose the vertices of TQn 
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into four sets, 0,0
2nTQ − , 1,0

2−nTQ , 0,1
2−nTQ , and 1,1

2−nTQ , where ji
nTQ ,

2−
 

consists of those vertices b with bn−1 = i and bn−2 = j. For each 
ij ∈ {00, 01, 10, 11}, the induced subgraph of ji

nTQ ,
2−
 in TQn is 

isomorphic to TQn−2. Edges that connect these four subtwisted 
cubes can be described as follows: an (n − 1)-edge joins 
vertices b = bn−1bn−2…b0 and b(n−1) = 

021 ...bbb nn −−
. An (n − 

2)-edge joins vertices b and b(n−2), where b(n−2) = 021 ...bbb nn −−
 

when Pn−3(b) = 0, and b(n−2) = 
021 ...bbb nn −−
 when Pn−3(b) = 1. 

Note that (n − 1)-edges connect i
nTQ ,0

2−
 and i

nTQ ,1
2−

 and (n − 
2)-edges connect 0,1

2
0,0
2 −− ∪ nn TQTQ  and 1,1

2
1,0
2 −− ∪ nn TQTQ , where i = 

0 or 1. Fig. 1 depicts TQ5, containing four sets, 0,0
3TQ , 0,1

3TQ , 
1,0
3TQ , and 1,1

3TQ . Formally, TQn can be defined as follows. 
 

Definition 1. The vertex set of TQn is {bn–1bn–2…b0 | bi ∈ {0, 1} 
for all 0≤i≤n−1}, where n is odd. Vertex b = bn–1bn–2…b0 is 
adjacent to vertex bd, for all 0 ≤ d ≤ n − 1, where bd = 
bn–1bn–2… db …b0 if (1) d is even or (2) d is odd and Pd−1(b) = 1, 

and bd = bn–1bn–2… 1+db db …b0 if d is odd and Pd−1(b) = 0. The 
edge joining b and bd is referred to as a d-edge. 
 

Furthermore, we use bij to denote (bi)j. Note that it is 
possible that bij ≠ bji. The following lemma shown in [14], 
[18],[5] will be used often. 

 
Lemma 1. [14] TQn (respectively, i

n
i

n TQTQ ,1,0 ∪  for i ∈ {0, 1}) 

is (n − 2)-Hamiltonian (respectively, (n − 1)-Hamiltonian) 
and (n − 3)-Hamiltonian connected (respectively, (n − 
2)-Hamiltonian connected), where n ≥ 3 is an odd integer. 
 
Lemma 2. [18] TQn (respectively, i

n
i

n TQTQ ,1,0 ∪  for i ∈ {0, 1}) 

is (n − 2) fault-tolerant 4-pancyclic (respectively, (n − 1) 
fault-tolerant 4-pancyclic), where n ≥ 3 is an odd integer. 
 
Lemma 3. [5] Let u, v ∈ V(TQn) where n ≥ 3 is an odd integer. 
There is a path P[u, v] with length l, for any integer l between 

( , )
nTQd u v  + 2 and 2n − 1. 
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Fig 1. TQ5 (contains 0,0
3TQ , 0,1

3TQ , 1,0
3TQ , and 1,1

3TQ ). 

III. SOME IMPORTANT PROPERTIES 
In this section, we introduce some important properties of 

the twisted cube, which are needed to derive our main result. 
Because of the pages limitation, the proofs are omitted. 
 
Lemma 4. Let (x, y) ∈ E( 0,0 1,0

2 2n nTQ TQ− −∪ ), where n ≥ 5 is an odd 

integer. Then 
0,1 1,1

2 2

( 2) ( 2)( , )
n n

n n
TQ TQ

d x y
− −

− −
∪

 = 1 if Pn−3(x) = Pn−3(y) 

and 
0,1 1,1

2 2

( 2) ( 2)( , )
n n

n n
TQ TQ

d x y
− −

− −
∪

 = 2 if Pn−3(x) ≠ Pn−3(y). 

 
Lemma 5. Let (x, z), (z, y) ∈ E( 0,0

2nTQ −
),where n ≥ 5 is an odd 

integer  and x, y are distinct. If Pn−3(z) ≠ Pn−3(y) and Pn−3(z) ≠ 
Pn−3(x), then 0,1 1,1

2 2

( 2) ( 2)( , )
n n

n n
TQ TQ

d x y
− −

− −
∪

 = 2 and {y(n−2), x(n−2)} 

⊂ V( 0,1
2nTQ − ) or {y(n−2), x(n−2)} ⊂ V( 1,1

2nTQ − ). 
 

Lemma 6. Let z ∈ V( 0,0
2nTQ − ), x = z(n−1), and (x, y) ∈ E( 1,0

2nTQ − ), 
where n ≥ 5 is an odd integer. If Pn−3(x) ≠ Pn−3(y) then (z(n−2), 
y(n−2)) ∈ E( 0,1

2nTQ − ) or (z(n−2), y(n−2)) ∈ E( 1,1
2nTQ − ). 

 
Lemma 7. Let u, v ∈ ,

2( )j i
nV TQ −  and ,

2
( , )j i

nTQ
d u v

−
 ≤ 2, where n 

≥ 5 is an odd integer and i, j ∈ {0, 1}. For any integer l 
between ,

2
( , )j i

nTQ
d u v

−
+2 and 2n−1 − 1, there is a path P[u, v] 

with length l in 0, 1,
2 2

i i
n nTQ TQ− −∪ . 

 
Lemma 8. Let x ∈ 0,1

2( )nV TQ − , y ∈ 1,1
2( )nV TQ −  and 

0,1 1,1
2 2

( , )
n nTQ TQ

d x y
− −∪

 = 2, where n ≥ 5 is an odd integer. There is a 

path P[x, y] with length l in 0,1 1,1
2 2n nTQ TQ− −∪ , for any integer l 

between 4 and 2n−1 − 1. 
 

Lemma 9. Let z ∈ 0,0
2( )nV TQ −  and F ⊂ {(v, v(n−1))| v ∈ 

0,0
2( )nV TQ − }, where n ≥ 5 is an odd integer and |F| = n − 2. 

There is a cycle C with length l in 0,0 1,0
2 2n nTQ TQ− −∪  − F such 

that z ∈ V(C) and |{(v, v(n−1))| v ∈ 0,0
2( )nV TQ − } ∩ E(C)| = 2, for 

any integer l between 2n−1 − 2 and 2n−1. 

IV. EDGE-FAULT-TOLERANT 5-VERTEX-PANCYCLICITY 
In this section, by the aid of the lemmas in Section 3, we 

will show that TQn is (n − 2)-edge fault-tolerant 
6-vertex-pancyclic. We proceed by induction on n. First, we 
need to show that TQ3 is 1-edge fault-tolerant 
6-vertex-pancyclic. We have following lemma. 
 
Lemma 10. TQ3 − {e} is 6-vertex-pancyclic for any e ∈ 
E(TQ3). 
Proof. It is easy to see that TQ3 is node-symmetry. Moreover, 
TQ3 − {e} is Hamiltonian (by Lemma 1) and a Hamiltonian 
cycle contains all nodes in TQ3. Thus, we only need to show 
that vertex 000 lies on a cycle of length l in TQ3 − {e}, for any 
integer between 6 and 7. The desired cycles of length l are as 
listed below: 

 



 
 

 

Length The edge e Desired Cycle 

6 

(000, 110), (001, 101), 
(010, 100), (010, 011), 
(010, 110), or (110, 111) 

〈000, 001, 011, 111, 
101, 100, 000〉 

(000, 001), (001, 011), 
(100, 101), or (101, 111) 

〈000, 100, 010, 011, 
111, 110, 000〉 

(000, 100), or (011, 111) 〈000, 001, 101, 100, 
010, 110, 000〉 

7 

(000, 110), (001, 101), 
(010, 011), (100, 101), or 
(101, 111) 

〈000, 001, 011, 111, 
110, 010, 100, 000〉 

(000, 001), (010, 100), or 
(010, 110) 

〈000, 100, 101, 001, 
011, 111, 110, 000〉 

(000, 100), (001, 011), or 
(110, 111) 

〈000, 001, 101, 111, 
011, 010, 110, 000〉 

(011, 111) 〈000, 001, 101, 111, 
110, 010, 100, 000〉 

  
 
Lemma 10 provides the base case. There are two steps in 

inductive phase. First, suppose that TQn is (n − 2)-edge 
fault-tolerant 6-vertex-pancyclic where n ≥ 3 is an odd integer; 
we want to show that 0, 1,i i

n nTQ TQ∪  for i ∈ {0, 1} is (n − 
1)-edge fault-tolerant 6-vertex-pancyclic. The second step is 
given that 0, 1,

2 2
i i

n nTQ TQ− −∪  for i ∈ {0, 1} is (n − 3)-edge 
fault-tolerant 6-vertex-pancyclic where n ≥ 5 is an odd integer; 
we want to show that TQn is (n − 2)-edge fault-tolerant 
6-vertex-pancyclic. We format the first step as Lemma 11 and 
second step as Lemma 12. Since the proof of Lemma 11 is 
easier than and similar to that of Lemma 12, we only prove 
Lemma 12. 
 
Lemma 11. If TQn is (n − 2)-edge fault-tolerant 
6-vertex-pancyclic, then 0, 1,i i

n nTQ TQ∪  for i ∈ {0, 1} is (n − 
1)-edge fault-tolerant 6-vertex-pancyclic, where n ≥ 3 is an 
odd integer.  
 
Lemma 12. Suppose that 0, 1,i i

n nTQ TQ∪  for i ∈ {0, 1} is (n − 
3)-edge fault-tolerant 6-vertex-pancyclic where n ≥ 5 is an 
odd integer. Then TQn is (n − 2)-edge fault-tolerant 
6-vertex-pancyclic. 
Proof. Assume that F ⊂ E(TQn) and |F| ≤ n − 2. For any z ∈ 
V(TQn) and any integer l ∈ {6, 7, …, 2n}, we want to find a 
cycle C of length l in TQn− F, such that z ∈ V(C). By Lemma 
2, there exists a cycle C of length 2n in TQn − F. Clearly, z ∈ 
V(C). Thus, we need not find the cycle of length 2n. Let F0 = F 
∩ E( 0,0 1,0

2 2n nTQ TQ− −∪ ), F1 = F ∩ E( 0,1 1,1
2 2n nTQ TQ− −∪ ), and Fc = F 

∩ {(u, u(n−2))| u ∈ V(TQn)}. Without loss of generality, assume 
that z ∈ V( 0,0

2nTQ − ). Two cases are considered: 
Case 1. |F0| ≤ n – 3. Three cases are further considered: 
Case 1.1: 6 ≤ l ≤ 2n−1. By assumption, we have 0, 1,

2 2
i i

n nTQ TQ− −∪  
for i ∈ {0, 1} is (n − 3)-edge fault-tolerant 6-vertex-pancyclic. 
Thus, for any integer l ∈ {6, …, 2n−1}, there exists a cycle C of 
the length l in 0,0 1,0

2 2n nTQ TQ− −∪  − F0 such that z ∈ V(C). Clearly, 

C is the desired cycle. 
Case 1.2: 2n−1 + 1 ≤ l ≤ 2n−1 + 2. We have two scenarios as 
follows: 
Case 1.2.1: |F0| ≤ n – 5. Let (x, y) ∈ E( 0,1 1,1

2 2n nTQ TQ− −∪ ) − F, 
where (x, x(n−2)), (y, y(n−2)) ∉ Fc. Moreover, let u ∈ 
V( 0,0 1,0

2 2n nTQ TQ− −∪ ) − {x(n−2), y(n−2), z}. Since |F0| ≤ n – 5 and |F0 

∪{u}| ≤ n – 4, by Lemma 1, there exist a Hamiltonian path 
P[x(n−2), y(n−2)] with length l0 in 0,0 1,0

2 2n nTQ TQ− −∪  − F0 

(respectively, 0,0 1,0
2 2n nTQ TQ− −∪  − (F0 ∪ {u}), where l0 = 2n−1 − 

1 (respectively, 2n−1 − 2). Clearly, z ∈ V(P[x(n−2), y(n−2)]). The 
desired cycle of length l can be constructed by 〈x, x(n−2), 
P[x(n−2), y(n−2)], y(n−2), y, x 〉 for any integer l = l0 + 3 ∈ {2n−1 + 1, 
2n−1 + 2} (see Fig. 2(a)). 
Case 1.2.2: n – 4 ≤ |F0| ≤ n – 3. Thus, |F1| + |Fc| ≤ 2. By 
assumption, 0, 1,

2 2
i i

n nTQ TQ− −∪  for i ∈ {0, 1} is (n − 3)-edge 
fault-tolerant 6-vertex-pancyclic. Thus, for any integer l'0 
between 2n−1 − 2 and 2n−1, there exists a cycle C0 of length l'0 
in 0,0 1,0

2 2n nTQ TQ− −∪  − F0 such that z ∈ V(C0) (since 2n−1 − 2 > 6 

when n ≥5). Let (x, y) ∈ E(C0) such that (x, x(n−2)), (y, y(n−2)) ∉ 
Fc, (x(n−2), x(n−2)i) ∉ F1, and (y(n−2), y(n−2)i) ∉ F1, for all i ∈ {0, 
1, … , n − 3, n − 1}1

Case 1.3: 2n−1 + 3 ≤ l ≤ 2n − 1. We have three scenarios as 
follows: 

. Let P[x, y] = C − {(x, y)} and let l0 be the 
length of P[x, y]. (Thus, l0 can be any integer between 2n−1 − 3 
and 2n−1 − 1.) By Lemma 4, the length of P[x(n−2), y(n−2)] is one 
or two. In addition, since (x(n−2), x(n−2)i) ∉ F1, and (y(n−2), y(n−2)i) 
∉ F1, for all i ∈ {0, 1, … , n − 3, n − 1}, E(P[y(n−2), x(n−2)]) ∩ F1 
= ∅. The desired cycle of length l can be constructed by 〈x, 
P[x, y], y, y(n−2), P[y(n−2), x(n−2)], x(n−2), x〉 for any integer l = l0 + 
2 + 1 ∈ { 2n−1+ 1, 2n−1+ 2} or l = l0 + 2 + 2 ∈ { 2n−1+ 1, 2n−1+ 
2} (see Fig. 2(b)). Note that the l0 ∈ {2n−1 − 2, 2n−1 − 1} 
(respectively, l0 ∈ {2n−1 − 3, 2n−1 − 2}) when the length of 
P[y(n−2), x(n−2)] is one (respectively, two).  

Case 1.3.1: |F0| = n − 3. Thus, |F1| + |Fc| = 1. Since |F0| = n − 3, 
by Lemma 1, there exists a Hamiltonian cycle C0 in 

0,0 1,0
2 2n nTQ TQ− −∪  − F0. For any integer l0 ∈ {2, 3, …, 2n−1 − 2}, 

let P[x, y] be a subpath with length l0 in C0 such that z ∈ V(P[x, 
y]), {(x, x(n−2)), (y, y(n−2))}  ∩ Fc = ∅2

0,1 1,1
2 2n nTQ TQ− −∪

. Since |F1| ≤ |F1| + |Fc| = 
1 ≤ n − 4, by Lemma 1, there exists a Hamiltonian path P[y(n−2), 
x(n−2)] in  − F1. For any integer l = l0 + 2 + 2n−1 

− 1 ∈ {2n−1+ 3, 2n−1+ 4, …, 2n − 1}, the desired cycle of length 
l can be constructed by 〈x, P[x, y], y, y(n−2), P[y(n−2), x(n−2)], 
x(n−2), x〉 (see Fig. 2(c)). 

Case 1.3.2: |F0| ≤ n − 4 and |F1| ≤ n − 3. Since |F1| ≤ n − 3, by 
Lemma 1, there exists a Hamiltonian cycle C1 in 

0,1 1,1
2 2n nTQ TQ− −∪  − F1. For any integer l1 ∈ {2, 3, …, 2n−1 − 2}, 

let P[x, y] be the subpath with length l1 in C1 such that (x, 

 
1 Let S = {(v, t)| (v, t) ∈ E(C0), (v, v(n−2)) ∈Fc or (t, t(n−2)) ∈Fc} and T = {(v, t)| 
(v, t) ∈ E(C0), (v(n−2), v(n−2)i) ∈F1 or (t(n−2), t(n−2)j) ∈F1, for some i, j ∈ {0, 
1, … , n − 3, n − 1}}. We have |S| ≤ 2 × |Fc| and |T| ≤ 4 × |F1|. Since |F1| + |Fc| 
≤ 2. We have |S ∪ T| ≤ 8. Thus, we have |E(C0) − (S ∪ T)| ≥ 2n−1 − 2 − 8 ≥ 6 
(since n ≥ 5). Thus, we can always find such an edge. 
2 Clearly, we have l0 choices. We can always find such a path since l0 ≥ 2 > 
|Fc|. 



 
 

 

x(n−2)), (y, y(n−2)) ∉ Fc
 3

0,0 1,0
2 2n nTQ TQ− −∪

. Since |F0| ≤ n − 4, by Lemma 1, there 
exists a Hamiltonian path P[y(n−2), x(n−2)] in  − 

F0 (certainly, z ∈ V(P[y(n−2), x(n−2)])). For any integer l = 2n−1 − 
1 + 2 + l1 ∈ {2n−1+ 3, 2n−1+ 4, …, 2n − 1}, the desired cycle of 
length l can be constructed by 〈x, P[x, y], y, y(n−2), P[y(n−2), 
x(n−2)], x(n−2), x〉 (see Fig. 2(d)). 
Case 1.3.3: |F1| = n − 2 (thus, |F0| + |Fc| = 0). Let (x', y') ∈ F1. 
Then, |F1 −{(x', y')}| = n − 3. By Lemma 2, for any integer l'1 
∈ {4, 5, …, 2n−1}, there exists a cycle C1 of length l'1 in 

0,1 1,1
2 2n nTQ TQ− −∪  − (F1 − {(x', y')}). If (x', y') ∈ E(C1), then let x 

= x' and y = y'. If (x', y') ∉ E(C1), then randomly choose an 
edge (x, y) ∈ E(C1). Let P[x, y] = C − {(x, y)} and let l1 be the 
length of P[x, y]. (Thus, l1 can be any integer between 3 and 
2n−1 − 1.) Let u ∈ V( 0,0 1,0

2 2n nTQ TQ− −∪ ) − {x(n−2), y(n−2), z}. Since 

|F0| = 0 and |F0 ∪{u}| = 1 ≤ n – 4, by Lemma 1, there exist a 
Hamiltonian path P[y(n−2), x(n−2)] with length l0 in 

0,0 1,0
2 2n nTQ TQ− −∪  − F0 (respectively, 0,0 1,0

2 2n nTQ TQ− −∪  − (F0 ∪ 

{u}), where l0 = 2n−1 − 1 (respectively, l0 = 2n−1 − 2). The 
desired cycle of length l can be constructed by 〈x, P[x, y], y, 
y(n−2), P[y(n−2), x(n−2)], x(n−2), x〉 for any integer l = l0 + 2 + l1 ∈ 
{2n−1+ 3, 2n−1+ 4, …, 2n − 1} (see Fig. 2(e)).  
Case 2: |F0| = n − 2. Thus, |F1| + |Fc| = 0. Two cases are further 
considered: 
Case 2.1: 6 ≤ l ≤ 2n−1+2. Let S0 = {(z, v)| v ∈ V( 0,0

2nTQ − ) and 
Pn−3(v) = Pn−3(z)}, S1 = {(z, v)| v ∈ V( 0,0

2nTQ − ) and Pn−3(v) ≠ 

Pn−3(z)}. Note that |S0 ∪ S1| = n − 2 and S0 ∩ S1 = ∅. We have 
four scenarios as follows: 
Case 2.1.1: |S0 − F0| ≥ 1. That is, there exists an edge (z, x) ∈ 

0,0
2nTQ −  − F0 such that Pn−3(x) = Pn−3(z). By Lemma 4, we have 

0,1 1,1
2 2

( 2) ( 2)( , )
n n

n n
TQ TQ

d x z
− −

− −
∪

 = 1. By Lemma 7, for any integer l1 

∈ {3, 4, …, 2n−1 − 1}, there is a path P[x(n−2), z(n−2)] with length 
l1 in 0,1 1,1

2 2n nTQ TQ− −∪ . The desired cycle of length l can be 

constructed by 〈z, x, x(n−2), P[x(n−2), z(n−2)], z(n−2), z〉 for any 
integer l = 1 + 2 + l1 ∈ {6, 7, …, 2n−1 + 2} (see Fig. 3(a)). 
Case 2.1.2: F0 ⊂ E( 0,0

2nTQ − ). Thus, (z, z(n−1)) ∉ F0. Let x = z(n−1). 

Clearly, Pn−3(z) = Pn−3(x). The rest of the discussion is the 
same as that of Case 2.1.1.  
Case 2.1.3: F0 ⊄ E( 0,0

2nTQ − ) and |S0 − F0| = 0. Since F0 ⊄ 

E( 0,0
2nTQ − ), we have |F0 ∩ (S0 ∪ S1)| ≤ |F0 ∩ E( 0,0

2nTQ − )| ≤ |F0| − 

1 = n − 3. Moreover, because |S0 ∪ S1| = n − 2 and |S0 − F0| = 0, 
we have |S1 − F0| ≥ 1. That is, there exists an edge (z, x) ∈ 

0,0
2nTQ −  − F0 such that Pn−3(x) ≠ Pn−3(z).  

First, we discuss the situation that 7 ≤ l ≤ 2n−1+2. By 
Lemma 4, we have 0,1 1,1

2 2

( 2) ( 2)( , )
n n

n n
TQ TQ

d x z
− −

− −
∪

 = 2. By Lemma 

7, for any integer l1 ∈ {4, 5, … , 2n−1 − 1}, there is a path 
P[x(n−2), z(n−2)] with length l1 in 0,1 1,1

2 2n nTQ TQ− −∪ . The desired 

cycle of length l can be constructed by 〈z, x, x(n−2), P[x(n−2), 
z(n−2)], z(n−2), z〉 for any integer l = 1 + 2 + l1 ∈ {7, 8,  …, 2n−1 + 
2} (see Fig. 3(b)).  

 
3 Since |E(C1)| = 2n−1, we have at least 2n−1 choices. If such a path does not 
exist, then |F| ≥ 2n−1/2 > n − 2 when n ≥ 5, which is a contradiction. 

Now, we discuss the situation that l = 6. First, consider that 
|S1 − F0| ≥ 2, i.e., there exists two edges (z, x), (z, y) ∈ 0,0

2nTQ −  − 

F0 such that Pn−3(z) ≠ Pn−3(y) and Pn−3(z) ≠ Pn−3(x). By Lemma 
5, we have 0,1 1,1

2 2

( 2) ( 2)( , )
n n

n n
TQ TQ

d x y
− −

− −
∪

 = 2. Let P[y(n−2), x(n−2)] 

have length 2 . The desired cycle of length 6 can be 
constructed by 〈x, z, y, y(n−2), P[y(n−2), x(n−2)], x(n−2), x〉 (see Fig. 
3(c)). Then, consider that |S1 − F0| = 1. We have |F0 ∩ (S0 ∪ 
S1)| = |F0 ∩ E( 0,0

2nTQ − )| = n − 3. Thus, if e ∈ E( 0,0
2nTQ − ) − (S0 ∪ 

S1), then e ∉ F0. Let y ∈ {x0, x2} − {z}. Clearly, since (x, y) ∈ 
E( 0,0

2nTQ − ) − (S0 ∪ S1) and Pn−3(y) ≠ Pn−3(x). Since Pn−3(x) ≠ 

Pn−3(y) and Pn−3(x) ≠ Pn−3(z), by Lemma 5, we have 
0,1 1,1

2 2

( 2) ( 2)( , )
n n

n n
TQ TQ

d z y
− −

− −
∪

 = 2. Let P[y(n−2), z(n−2)] have length 2. 

The desired cycle of length 6 can be constructed by 〈z, x, y, 
y(n−2), P[y(n−2), z(n−2)], z(n−2), z〉 (exchange x with z in Fig. 3(c)). 
Case 2.2: 2n−1 + 3 ≤ l ≤ 2n − 1. We have two scenarios as 
follows: 
Case 2.2.1: F0 ⊂ {(v, v(n−1))| v ∈ 0,0

2nTQ − }. By Lemma 9, there 

is a cycle C0 with length l'0 in 0,0 1,0
2 2n nTQ TQ− −∪  − F0 such that z 

∈ V(C0) and |{(v, v(n−1))| v ∈ 0,0
2nTQ − } ∩ E(C0)| = 2, for any 

integer l'0 ∈ {2n−1 − 2, 2n−1 − 1, 2n−1}. Let (x, y) ∈ E(C0) − {(v, 
v(n−1))| v ∈ 0,0

2nTQ − }. Clearly, we have x, y ∈ 0,0
2nTQ −  or x, y ∈ 

1,0
2( )nV TQ − . Let P[x, y] = C0 − {(x, y)} and l0 = |E(P[x, y])|. 

Thus, l0 can be any integer between 2n−1 − 3 and 2n−1 − 1. 
If {x(n−2), y(n−2)} ⊂ 1,0

2( )nV TQ −  or {x(n−2), y(n−2)} ⊂ 1,1
2( )nV TQ − , 

then 0,1
2

( 2) ( 2)( , )
n

n n
TQ

d x y
−

− −  = 1. By Lemma 7, for any integer l1 

∈ {3, 4, …, 2n−1 − 1}, there is a path P[y(n−2), x(n−2)] with length 
l1 in 0,1 1,1

2 2n nTQ TQ− −∪ . The desired cycle of length l can be 

constructed by 〈x, P[x, y], y, y(n−2), P[y(n−2), x(n−2)], x(n−2), x〉 for 
any integer l = l0 + 2 + l1 ∈ {2n−1+ 2, 2n−1+ 3, …, 2n − 1} (see 
Fig. 2(e) with 1 1

02 3 2 1n nl− −− ≤ ≤ − ).  

If x ∈ 0,1
2( )nV TQ − , y ∈ 1,1

2( )nV TQ −  or y ∈ 0,1
2( )nV TQ − , x ∈ 

1,1
2( )nV TQ − , then 0,1

2

( 2) ( 2)( , )
n

n n
TQ

d x y
−

− −  = 2. By Lemma 8, there 

is a path P[y(n−2), x(n−2)] with length l1 in 0,1 1,1
2 2n nTQ TQ− −∪  for 

any integer l1 between 4 and 2n−1 − 1. The desired cycle of 
length l  can be constructed by 〈x, P[x, y], y, y(n−2), P[y(n−2), 
x(n−2)], x(n−2), x〉 for any integer = l0 + 2 + l1 ∈ {2n−1+ 3, 2n−1+ 
4, …, 2n − 1} (see Fig. 2(e) with 1 1

02 3 2 1n nl− −− ≤ ≤ − ).  

Case 2.2.2: F0 ⊄ {(v, v(n−1))| v ∈ 0,0
2( )nV TQ − }. Let (x', y') ∈ F0 − 

{(v, v(n−1))| v ∈ 0,0
2( )nV TQ − }. Since |F0 − {(x', y')}| = n − 3 and 

0,0 1,0
2 2n nTQ TQ− −∪  is (n − 3)-edge fault-tolerant 

6-vertex-pancyclic, there exists a cycle C0 of length l'0 in 
0,0 1,0

2 2n nTQ TQ− −∪  − (F0 − {(x', y')}) such that z ∈ V(C0) for any 

integer l'0 between 6 and 2n−1. If (x', y') ∈ E(C0), then let x = x' 
and y = y'; otherwise, let (x, y) ∈ E(C0) − {(v, v(n−1))| v ∈ 

0,0
2( )nV TQ − }. Clearly, we have x, y ∈ 0,0

2( )nV TQ −  or x, y ∈ 
1,0

2( )nV TQ − . The rest of the discussion is the same as Case 2.2.1. 
  

By Lemma 10, Lemma 11, and Lemma 12, we have 
following theorem. 



 
 

 

Theorem 1. TQn is (n − 2) edge fault-tolerant 
6-vertex-pancyclic, where n ≥ 3 is an odd integer. 
 

The result of Theorem 1 is optimal since there are 
distributions of n – 2 edge faults over a TQn such that no 
fault-free cycles of length four or five contain some specific 
vertex z in the faulty TQn. Consider that z = 0n (n consecutive 
0’s). First, we show that the situation that no fault-free cycles 
of length four contain z. Suppose that (z, zd) is faulty if and 
only if d ∉ {0, n − 2}. Thus, every fault-free cycle contains z 
must contains (z, z0) and (z, z(n − 2)). Assume that there exists a 
fault-free cycle of length four contains (z, z0) and (z, z(n − 2)), 
then this cycle should be 〈z, z0, u, z(n − 2), z〉 for some vertex u ∈ 
V(TQn). If u ∈ V( 0,0 1,0

2 2n nTQ TQ− −∪ ), then (u, z(n − 2)) is an edge 

that connects 0,0 1,0
2 2n nTQ TQ− −∪  and 0,1 1,1

2 2n nTQ TQ− −∪ , i.e., (u, 

z(n−2)) is an (n − 2)-edge, which is a contradiction since (z, z(n−2)) 
is already an (n − 2)-edge (see Fig. 4(a)). If u ∉ 
V( 0,0 1,0

2 2n nTQ TQ− −∪ ), i.e., u ∈ V( 0,1 1,1
2 2n nTQ TQ− −∪ ), then (z0, u) is 

an (n − 2)-edge. That is, u = 010n−31. However, it is easy to see 
that there is no edge between vertex u (= 010n−31) and z(n − 2) (= 
110n−2) (see Fig. 4(b)). As a result, we can conclude no 
fault-free cycles of length four contain z. 

Then, we show the situation that no fault-free cycles of 
length five contain z. Suppose that (z, zd) is faulty if and only if 
d ∉ {1, n − 2}. Thus, every cycle contains z must contains (z, 
z1) and (z, z(n−2)). Assume that there exists a fault-free cycle of 
length five contains (z, z1) and (z, z(n−2)), then this cycle should 
be 〈z, z1, u, v, z(n−2), z〉 for some vertex u, v ∈ V(TQn). If u, v ∈ 
V( 0,0 1,0

2 2n nTQ TQ− −∪ ), then (v, z(n−2)) is an (n − 2)-edge, which is a 

contradiction (since (z(n−2), z) is already an (n − 2)-edge) (see 
Fig. 4(c)). If u, v ∈ V( 0,1 1,1

2 2n nTQ TQ− −∪ ), then u = z1(n−2) = 

110n−5110. Note that z(n−2) = 110n−2. It is not difficult to see 
that there is an edge between u and z(n−2). Therefore, 〈u, v, 
z(n−2), u〉 is a cycle of length three, which is a contradiction 
since there is no cycle of three in TQn (see Fig. 4(d)). If u ∈ 
V( 0,0 1,0

2 2n nTQ TQ− −∪ ) and v ∈ V( 0,1 1,1
2 2n nTQ TQ− −∪ ), then two cases 

are further considered: 
Case 1: u ∈ 0,0

2( )nV TQ −  and v ∈ 1,1
2( )nV TQ − . Let u = 

00un−3un−4…u0, then v = 11un−3un−4…u0. Note that (v, z(n−2)) = 
(11un−3un−4…u0, 110n−2) ∈ E( 1,1

2nTQ − ). Thus, it is not difficult 

to see that (00un−3un−4…u0, 0n) = (u, z) ∈ E( 0,0
2nTQ − ). 

Consequently, 〈z, z1, u, z〉 is a cycle of length three, which is a 
contradiction (see Fig. 4(e)). 
Case 2: u ∉ 0,0

2( )nV TQ −  or v ∉ 1,1
2( )nV TQ − . That is, u = z1(n−1) = 

100n−5110 or v = z(n−2)(n−1) = 010n−2. If u =100n−5110, then v = 
u(n−2) = 010n−5110. Thus, there is not an edge between z(n−2) (= 
110n−2) and v, which is a contradiction (see Fig. 4(f)). With 
similar discussion, we can prove that there is not an edge 
between z1 and u when v = 010n−2. 

Therefore, we can conclude that TQn is neither (n − 2)-edge 
fault-tolerant 4-vertex-pancyclic nor (n − 2)-edge 
fault-tolerant 5-vertex-pancyclic, where n ≥ 5 is an odd 
integer  

V. DISCUSSION AND CONCLUSION 
Linear arrays and rings, two of the most fundamental 

networks for parallel and distributed computation, are 
suitable for developing simple algorithms with low 
communication costs. The pancyclicity of a network 
represents its power of embedding rings of all possible 
lengths. In this paper, using inductive proofs, we showed that 
TQn is (n − 2)-edge fault-tolerant 6-vertex-pancyclic. In other 
words, every vertex of an TQn with at most n − 2 faulty edges 
lies on a fault-free cycle of every length from 6 to 2n. In 
addition, we also showed that our result is optimal. 

TQn is (n − 2) fault-tolerant 4-pancyclic (thus, (n − 2)-edge 
fault-tolerant 4-pancyclic), where n ≥ 3 is an odd integer [18]. 
We have shown that TQn is (n − 2)-edge fault-tolerant 
6-vertex-pancyclic, but not (n − 2)-edge fault-tolerant 
5-vertex-pancyclic. A topic for further research is to explore 
the vertex-pancyclicity and/or edge-pancyclicity of twisted 
cubes in the presence of hybrid faults. Moreover, we have an 
interesting open problem as follows. Suppose a graph G is m 
fault-tolerant i-pancyclic and m fault-tolerant 
j-vertex-pancyclic. Clearly, we have j ≤ i. What kind of G can 
cause j = i? Or is it impossible? 

(b)

x

(d)

y

z

(e)

( 2)nx −

y

z

1 1
02 2 2 1n nl− −− ≤ ≤ −

0l

(a)

x

y

z

0l

1 1
02 3 2 1n nl− −− ≤ ≤ −

1l

1
13 2 1nl −≤ ≤ −

( 2)ny −

x

0,0 1,0
2 2n nTQ TQ− −∪ 0,1 1,1

2 2n nTQ TQ− −∪ 0,1 1,1
2 2n nTQ TQ− −∪0,0 1,0

2 2n nTQ TQ− −∪

0l

( 2)nx −

( 2)ny −

1 1
02 2 2 1n nl− −− ≤ ≤ −

0,0 1,0
2 2n nTQ TQ− −∪ 0,1 1,1

2 2n nTQ TQ− −∪

x

y

z

12 1n− −

1l

1
12 2 2nl −≤ ≤ −

0,1 1,1
2 2n nTQ TQ− −∪0,0 1,0

2 2n nTQ TQ− −∪

( 2)nx −

( 2)ny −

1 or 2

x

y

z

12 1n− −0l

1
02 2 2nl −≤ ≤ −

0,1 1,1
2 2n nTQ TQ− −∪0,0 1,0

2 2n nTQ TQ− −∪

( 2)nx −

( 2)ny −

(c)

( 2)nx −

( 2)ny −

Fig 2. Construction of cycles in Cases 1 and 2.2 in Lemma 12. 



 
 

 

 

(b)

( 2)nx −

1
13 2 1nl −≤ ≤ −

(a)

( 2)nz −z

0,1 1,1
2 2n nTQ TQ− −∪

(c)

x

1l

0,0
2nTQ −

1,0
2nTQ −

x

y

z

0,1 1,1
2 2n nTQ TQ− −∪0,0

2nTQ −

1,0
2nTQ −

2

( 2)nx −

( 2)ny −

( 2)nx −

( 2)nz −
z

0,1 1,1
2 2n nTQ TQ− −∪

x
1l

0,0
2nTQ −

1,0
2nTQ −

1
14 2 1nl −≤ ≤ −

 
Fig 3. Construction of cycles in Cases 2.1 in Lemma 12. 
 

(b)

( 2)nz −

z

(a)

u

0,0 1,0
2 2n nTQ TQ− −∪ 0,1 1,1

2 2n nTQ TQ− −∪

0z

( 2) 2110n nz − −=

z

3010 1nu −=

0,0 1,0
2 2n nTQ TQ− −∪ 0,1 1,1

2 2n nTQ TQ− −∪

0z

( 2)nz −

z

(c)

u

0,0 1,0
2 2n nTQ TQ− −∪ 0,1 1,1

2 2n nTQ TQ− −∪

1z
v

(d)

( 2) 2110n nz − −=

z

5110 110nu −=

0,0 1,0
2 2n nTQ TQ− −∪ 0,1 1,1

2 2n nTQ TQ− −∪

1z

v

(e)

( 2) 2110n nz − −=

0nz =

3 4 000 ...n nu u u u− −=

0,0 1,0
2 2n nTQ TQ− −∪ 0,1 1,1

2 2n nTQ TQ− −∪

1z
3 4 000 ...n nv u u u− −=

(f)

( 2) 2110n nz − −=

0nz =

5100 110nu −=

0,0 1,0
2 2n nTQ TQ− −∪ 0,1 1,1
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1 30 110nz −=

 
Fig. 4. The explanation that TQn is neither (n−2)-edge 
fault-tolerant 4-vertex-pancyclic nor (n−2)-edge fault-tolerant 
5-vertex-pancyclic. 
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