
Matchings Extend to Perfect Matchings on
Hypercube Networks

Y-Chuang Chen ∗† Kun-Lung Li

Abstract—In this work, we investigate in the prob-
lem of perfect matchings with prescribed matchings in
the n-dimensional hypercube network Qn. We obtain
the following contributions: For any arbitrary match-
ing with at most n − 1 edges, it can be extended to
a perfect matching of Qn for n ≥ 1. Furthermore, for
any arbitrary non-forbidden matching with n edges,
it also can be extended to a perfect matching of Qn

for n ≥ 1. It is shown by J. Fink in 2007 that any
arbitrary perfect matching of the n-dimensional hy-
percube Qn, n ≥ 2, can be extended to a Hamiltonian
cycle. Therefore, it leads to a further result that for
any arbitrary non-forbidden matching with at most n
edges, it can be extended to a Hamiltonian cycle of
Qn for n ≥ 2.
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cycle, hypercube

1 Introduction

The underlying topology of an interconnection network
is usually modeled as a graph G = (V, E), in which
the vertex set V (G) represents processors and the edge
set E(G) represents connections between processors. We
use graphs and networks interchangeably. For the fun-
damental graph definitions and notations we follow [2].
G = (V, E) is a simple graph if V is a finite set and E is
a subset of {(a, b)|(a, b) is an unordered pair of V }. We
say that V is the vertex set and E is the edge set. The
neighborhood of v, N(v), is {x|(v, x) ∈ E}. Two vertices
are adjacent if (a, b) ∈ E. A path is a sequence of ad-
jacent edges (v0, v1), (v1, v2), · · · , (vm−1, vm), written as
〈v0, v1, · · · , vm〉, in which all the vertices v0, v1, · · · , vm

are distinct. A cycle is a path with at least three vertices
such that the first vertex is the same as the last one.
Hence, the length of a path or cycle is the number of
edges in the path or cycle. Let u and v be two vertices in
a graph, the distance from u to v, denoted by dist(u, v),
is the minimum length of any path from u to v. A cycle
is a Hamiltonian cycle if it traverses every vertex of G
exactly once [4, 5].
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A matching M in graph G is a set of pairwise non-
adjacent edges, that is, every vertex is incident with at
most one edge of M . A vertex is matched if it is in-
cident to an edge in the matching M . Otherwise the
vertex is unmatched. A maximum matching is a match-
ing that contains the largest possible number of edges.
The matching number of a graph is the size of a maxi-
mum matching. A perfect matching is a matching which
matches all vertices of the graph. That is, every ver-
tex of the graph is incident to exactly one edge of the
matching. A matching is a forbidden matching if every
vertex of N(v) is matched for some unmatched vertex
v ∈ V (G). Otherwise, it is a non-forbidden matching. A
perfect matching is also a minimum-size edge cover. For
any graph G without isolated vertices, the sum of the
edge covering number and the matching number equals
to the number of vertices. If the graph G has a perfect
matching, then both of the edge cover number and the
matching number are equal to |V (G)|/2 [11].

Perfect matchings can be applied to network disclo-
sure attacks. The Perfect Matching Disclosure Attack
performs a high rate of success when tracing messages
sent through a threshold mix in arbitrary scenarios [12].
Another related work concerning perfect matchings is
matching preclusion. A matching M in graph G is
called an almost perfect matching if M contains exactly
(|V (G)| − 1)/2 edges. An edge set F in graph G is called
a matching preclusion set if G \ F has neither a perfect
matching nor an almost perfect matching. If a network
has a large size of matching preclusion set, each vertex
(process) in this network will has a specific partner in
the event of edge (link) faults and the network will be
robust. On the side, matching preclusion is also related
to the problem of connectivity of networks [3, 10].

The hypercube is a popular network because of its attrac-
tive properties, including regularity, symmetry, small di-
ameter, strong connectivity, recursive construction, par-
titionability, and relatively low link complexity [1, 9]. It
has been widely used in parallel systems, such as the Con-
nection machines, Symult S-series, Intel iPSC, iPSC/2,
and SGI Origin 2000 [6, 13, 14]. The formal defini-
tion of an n-dimensional hypercube is given as follows.
Each vertex v in Qn can be distinctly labeled by a bi-
nary n-bit string, v = vnvn−1 · · · v1. For 1 ≤ i ≤ n,
we use vi to denote the binary string vn · · · v̄i · · · v1.



The Qn consists of all n-bit binary strings represent-
ing its vertices. Two vertices u and v are adjacent if
and only if v = ui with some i. An n-dimensional
hypercube Qn can be constructed from two identical
(n−1)-dimensional hypercubes, Qi,0

n−1 and Qi,1
n−1, for some

1 ≤ i ≤ n, where V (Qi,0
n−1) = {vnvn−1 · · · v1|vi = 0}

and V (Qi,1
n−1) = {vnvn−1 · · · v1|vi = 1}. The vertex set

of Qn is V (Qn) = Qi,0
n−1 ∪ Qi,1

n−1, and the edge set is
E(Qn) = E(Qi,0

n−1) ∪ E(Qi,1
n−1) ∪ P where P is a set of

edges connecting the vertices of Qi,0
n−1 and Qi,1

n−1 in a one
to one fashion. An n-dimensional hypercube can be rep-
resented as Qn = Qi,0

n−1

⊕
Qi,1

n−1 with i ∈ 1, 2, · · · , n. We
need some more terms, let v be a vertex of Qi,0

n−1 and
Qi,1

n−1, we use v′ to denote the corresponding vertex of v

in Qi,1
n−1 and Qi,0

n−1, respectively. That is, (v, v′) is an edge
of Qn, one of u, v is in Qi,0

n−1, and the other is in Qi,1
n−1.

We notice that the hypercube Qn is vertex-symmetric
and edge-symmetric for n ≥ 1.

Some results on perfect matchings of hypercubes are dis-
cussed in [7, 8, 10]. In this paper, we shall show that
for any arbitrary matching with at most n − 1 edges of
the hypercube Qn for n ≥ 1, it can be extended to a
perfect matching of Qn. Furthermore, for any arbitrary
matching with exactly n edges of the hypercube Qn for
n ≥ 1, it can be extended to a perfect matching of Qn,
except it is a forbidden matching of Qn. It has shown
that any perfect matching of the hypercube Qn, n ≥ 2,
can be extended to a Hamiltonian cycle [7]. As a result,
we have a further result that any non-forbidden matching
with at most n edges of the hypercube Qn, n ≥ 2, can be
extended to a Hamiltonian cycle.

The rest of this paper is organized as follows. Section 2
shows the perfect matchings with prescribed matchings
in the n-dimensional hypercube Qn for n ≥ 1. In Section
3, we give the conclusion remarks.

2 Perfect Matchings of Hypercubes

Lemma 1 For the 3-dimensional hypercube Q3, let M
be an arbitrary matching with at most two edges in the
hypercube Q3. Then, the matching M can be extended to
a perfect matching of Q3.

Proof. First, suppose that M contains exactly zero or
one edge, it is clear that M can be extended to a perfect
matching of Q3. Now, suppose that M has exactly two
edges. Figure 1.(a) shows all the non-isomorphic cases
that M contains exactly two edges in the hypercube Q3.
Figure 1.(b) shows the perfect matchings of Q3. As a
result, the proof of this lemma is complete. ♦

Theorem 1 Assume that n ≥ 1 is an integer. Let M
be an arbitrary matching with at most n− 1 edges in the
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Figure 1: Perfect matchings of the hypercube Q3.

hypercube Qn. Then, the matching M can be extended to
a perfect matching of Qn.

Proof. We prove it by induction on n. Suppose that
n = 1, 2, it is clear that for any matching with at most
n− 1 edges, it can be extended to a perfect matching of
Qn. Suppose that n = 3, by Lemma 1, for any matching
with at most two edges, it can be extended to a perfect
matching of Q3.

Assume that the theorem is true for n, which means that
for any arbitrary matching M with at most n− 1 edges,
M can be extended to a perfect matching of Qn. Now,
we shall show that in the hypercube Qn+1, let M ′ be
an arbitrary matching with m ≤ n edges in Qn+1, the
matching M ′ can be extended to a perfect matching of
Qn+1.

By the definition of hypercubes, for each edge in Qn+1,
the labels of two endpoint vertices are different with
exactly one bit. Since M ′ contains at most n edges,
there exists one dimension i ∈ 1, 2, · · · , n + 1 in Qn+1 =
Qi,0

n

⊕
Qi,1

n such that each edge of M ′ is distributed in
Qi,0

n or Qi,1
n . Let M0 = M ′ ∩ Qi,0

n and M1 = M ′ ∩ Qi,1
n .

That is to say that M ′ has m0 = |M0| edges in Qi,0
n ,

m1 = |M1| edges in Qi,1
n , and m0 + m1 = m. We may

without loss of generality assume that m0 ≥ m1. We
divide the proof into the following two cases.

Case 1: m0 ≥ m1 > 0.
Notice that m0 < n and m1 < n since m0 ≥ m1 > 0.
See Figure 2.(a). By inductive hypothesis, M0 can be
extended to a perfect matching of Qi,0

n , say PM0, and
M1 can be extended to a perfect matching of Qi,1

n , say
PM1. See Figure 2.(b). Therefore, PM0 ∪ PM1 is a
perfect matching of Qn+1.

Case 2: m1 = 0.
That is, all the n edges of M ′ are distributed in Qi,0

n .
Suppose that m0 < n, by inductive hypothesis, M ′

can be extended to a perfect matching of Qi,0
n , and so

M ′ can be extended to a perfect matching of Qn+1.
Hence, we may only consider the case that m0 = n.
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Figure 2: Case 1: m0 ≥ m1 > 0.

: elements of 
M`


(a)


Q

n


i
,0
 Q

n


i
,1


Q

n
+1


{


{

Q


n


i
,0
 Q

n


i
,1


Q

n
+1


{


n

-
1


 
e

d


g

e


s


{


{

2


n

-

1

 -
2


 
e

d


g

e

s


(b)


2

n


-
1

 -
(


n

+


1

)
 


e

d


g

e

s


a


b

d


c

a


b

d


c

a'


b'

d'


c'


n

-
1


 
e

d


g

e


s


2

n


-
1

 -
(


n

+


1

)
 


e

d


g

e

s


{


2

n


-

1

 -
2


 
e

d


g

e

s


a'


b'

d'


c'


Figure 3: Case 2: m1 = 0.

Let (a, b) be an edge in M ′. By inductive hypothe-
sis, M ′ \ {(a, b)} can be extended to a perfect match-
ing of Qi,0

n , say PM0, since m − 1 ≤ n − 1. If PM0

contains the edge (a, b), it is clear that M ′ can be ex-
tended to a perfect matching of Qn+1. Here, we may
consider that PM0 do not contain the edge (a, b). Let
(a, c) and (b, d) be two edges of PM0. By inductive hy-
pothesis with n ≥ 3, {(a′, c′), (b′, d′)} can be extended to
a perfect matching of Qi,1

n , say PM1. See Figure 3.(a).
Therefore, (PM0∪PM1∪{(a, b), (a′, b′), (c, c′), (d, d′)})\
{(a, c), (b, d), (a′, c′), (b′, d′)} is a perfect matching of
Qn+1 as Figure 3.(b), and this theorem follows. ♦

Lemma 2 For the 3-dimensional hypercube Q3, let M be
an arbitrary matching with exactly three edges in the hy-
percube Q3. Then, the matching M can be extended to a
perfect matching of Q3, except M is a forbidden matching
of Q3.

Proof. Figure 4.(a) shows all the non-isomorphic cases
that M contains exactly three edges in the hypercube
Q3. Figure 4.(b) shows the perfect matchings of Q3 with
the matching M . As a result, the proof of this lemma is
complete. ♦

Lemma 3 For the 3-dimensional hypercube Q3, let M be
an arbitrary matching with at most one edge in the hy-
percube Q3, and x, y be any two unmatched vertices with
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a forbidden matching


Figure 4: Perfect matchings of the hypercube Q3.
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Figure 5: Perfect matchings of the hypercube Q3 \{x, y}.

dist(x, y) is odd. Then, the matching M can be extended
to a perfect matching of Q3 \ {x, y}.

Proof. Firstly, suppose that |M | = 0, it is clear that for
any two unmatched vertices x, y with dist(x, y) is odd,
there is a perfect matching of Q3 \ {x, y}. Now, suppose
that |M | = 1. Figure 5.(a) shows all the non-isomorphic
cases that M contains exactly one edge and x, y be any
two unmatched vertices with dist(x, y) is odd in the hy-
percube Q3. Figure 5.(b) shows the perfect matchings of
Q3 \ {x, y} with the matching M . Hence, the proof of
this lemma is complete. ♦

Lemma 4 Assume that n ≥ 3 is an integer. Let M be
an arbitrary matching with at most n−2 edges in the hy-
percube Qn, and x, y be any two unmatched vertices with
dist(x, y) is odd. Then, the matching M can be extended
to a perfect matching of Qn \ {x, y}.

Proof. We prove it by induction on n. Suppose that
n = 3, by Lemma 3, for any matching with at most
one edge and x, y be any two unmatched vertices with
dist(x, y) is odd, it can be extended to a perfect match-
ing of Q3 \ {x, y}.
Assume that the theorem is true for n, which means that
for any arbitrary matching M with at most n − 2 edges
and x, y be any two unmatched vertices with dist(x, y) is



odd, M can be extended to a perfect matching of Qn \
{x, y}. Now, we shall show that in the hypercube Qn+1,
let M ′ be an arbitrary matching with m ≤ n − 1 edges
in Qn+1 and x, y be any two unmatched vertices with
dist(x, y) is odd, the matching M ′ can be extended to a
perfect matching of Qn+1 \ {x, y}.
By the definition of hypercubes, for each edge in Qn+1,
the labels of two endpoint vertices are different with ex-
actly one bit. Since M ′ contains at most n − 1 edges,
there exists one dimension i ∈ 1, 2, · · · , n + 1 of Qn+1 =
Qi,0

n

⊕
Qi,1

n such that each edge of M ′ is distributed in
Qi,0

n or Qi,1
n . Let M0 = M ′ ∩ Qi,0

n and M1 = M ′ ∩ Qi,1
n .

That is to say that M ′ has m0 = |M0| edges in Qi,0
n ,

m1 = |M1| edges in Qi,1
n , and m0 + m1 = m. We may

without loss of generality assume that m0 ≥ m1 and di-
vide the proof into the following three cases.

Case 1: Both x and y are in Qi,1
n .

By Theorem 1, M0 can be extended to a perfect matching
of Qi,0

n , say PM0, since m0 ≤ m ≤ n− 1. Since m0 ≥ m1

and m ≤ n−1, m1 ≤ n−2. By inductive hypothesis, M1

can be extended to a perfect matching of Qi,1
n \ {x, y},

say PM ′
1. Therefore, PM0 ∪ PM ′

1 is a perfect matching
of Qn+1 \ {x, y}.
Case 2: Both x and y are in Qi,0

n .
Case 2.1: m0 ≤ n− 2.
By inductive hypothesis, M0 can be extended to a perfect
matching of Qi,0

n \ {x, y}, say PM ′
0. By Theorem 1, M1

can be extended to a perfect matching of Qi,1
n , say PM1.

Therefore, PM ′
0 ∪ PM1 is a perfect matching of Qn+1 \

{x, y}.
Case 2.2: m0 = n− 1.
Let (a, b) be an edge of M0, by inductive hypothesis,
M0 \ {(a, b)} can be extended to a perfect matching of
Qi,0

n \ {x, y}, say PM ′
0, since m0 − 1 = n − 2. Firstly,

suppose that (a, b) ∈ PM ′
0. By Theorem 1, Qi,1

n has
a perfect matching, say PM1. Then, PM ′

0 ∪ PM1 is a
perfect matching of Qn+1 \ {x, y}. Now suppose that
(a, b) /∈ PM ′

0. We may let {(a, c), (b, d)} ⊆ PM ′
0.

By Theorem 1, {(a′, c′), (b′, d′)} can be extended to a
perfect matching of Qi,1

n , say PM1, as Figure 6.(a).
Then, (PM ′

0 ∪ PM1 ∪ {(a, b), (a′, b′), (c, c′), (d, d′)}) \
{(a, c), (b, d), (a′, c′), (b′, d′)} is a perfect matching of
Qn+1 \ {x, y} as Figure 6.(b).

Case 3: x is in Qi,0
n and y is in Qi,1

n .
Case 3.1: m0 ≤ n− 2.
In Qn+1, since n ≥ 3, there exists an edge (c, c′) between
Qi,0

n and Qi,1
n such that c is an unmatched vertex of Qi,0

n ,
c 6= x, dist(c, x) is odd, c′ is an unmatched vertex of
Qi,1

n , c′ 6= y, and dist(c′, y) is odd. See Figure 7.(a). By
inductive hypothesis, M0 can be extended to a perfect
matching of Qi,0

n \ {x, c}, say PM ′
0, and M1 can be ex-

tended to a perfect matching of Qi,1
n \ {y, c′}, say PM ′

1.
Therefore, PM ′

0 ∪ PM ′
1 ∪ {(c, c′)} is a perfect matching
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Figure 6: Case 2.2: m0 = n− 1.
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Figure 7: Case 3.1: m0 ≤ n− 2.

of Qn+1 \ {x, y} as Figure 7.(b).

Case 3.2: m0 = n− 1.
By Theorem 1, M0 can be extended to a perfect matching
of Qi,0

n , say PM0. Let (x, c) be an edge of PM0. By
inductive hypothesis, Qi,1

n \{c′, y} has a perfect matching,
say PM ′

1, since dist(c′, y) is odd. Therefore, (PM0 ∪
PM ′

1∪{(c, c′)})\{(c, x)} is a perfect matching of Qn+1 \
{x, y}. ♦
In the following theorem, we shall show that for any ar-
bitrary non-forbidden matching with m ≤ n edges in the
hypercube Qn, M can be extended to a perfect matching
of Qn, except M is a forbidden matching of Qn.

Theorem 2 Assume that n ≥ 1 is an integer. Let M
be an arbitrary matching with at most n edges in the hy-
percube Qn. Then, the matching M can be extended to a
perfect matching of Qn, except M is a forbidden matching
of Qn.

Proof. We prove it by induction on n. Suppose that
n = 1, 2, it is clear that for any matching with at most
n edges, it can be extended to a perfect matching of Qn.
Suppose that n = 3, by Lemma 1 and 2, for any matching
with at most three edges, it can be extended to a perfect
matching of Q3, except it is a forbidden matching of Q3.

Assume that the theorem is true for n, which means that
for any arbitrary matching M with at most n edges, M
can be extended to a perfect matching of Qn, except M



is a forbidden matching of Qn. Now, we shall show that
in the hypercube Qn+1, let M ′ be an arbitrary matching
with m ≤ n + 1 edges in Qn+1, the matching M ′ can be
extended to a perfect matching of Qn+1, except M ′ is a
forbidden matching of Qn+1. By Theorem 1, M ′ can be
extended to a perfect matching of Qn+1 if m ≤ n. Hence,
we may only consider that m = n + 1 in the following
proof of this theorem.

By the definition of hypercubes, the labels of two end-
point vertices of each edge in Qn+1 is exactly different
with one bit. Since M ′ contains n + 1 edges, there exists
one dimension i ∈ {1, 2, · · · , n+1} of Qn+1 = Qi,0

n

⊕
Qi,1

n

such that at most one edge of M ′ is distributed between
Qi,0

n and Qi,1
n . Let M0 = M ′ ∩Qi,0

n , M1 = M ′ ∩Qi,1
n , and

Mc = M ′ \ (M0 ∪M1). That is that there are m0 = |M0|
edges in Qi,0

n , m1 = |M1| edges in Qi,1
n , mc = |Mc| = 0 or

1 edge between Qi,0
n and Qi,1

n , and m0 + m1 + mc = m.
We may without loss of generality assume that m0 ≥ m1.
Hence, m1 ≤ b(n + 1)/2c ≤ n − 1 for n ≥ 3. We divide
the proof into the following three cases.

Case 1: m0 = n + 1.
Assume that M0 = {(ai, bi)|i = 1, 2, · · · , n + 1}. We let
M ′

1 = {(a′i, b′i)|i = 1, 2, · · · , n + 1} and P = {(c, c′)|c ∈
(V (Qi,0

n )\{ai, bi|i = 1, 2, · · · , n+1})}. Then, M0∪M ′
1∪P

is a perfect matching of Qn+1.

Case 2: m0 = n.
Firstly, suppose that mc = 1. Assume that M0 =
{(ai, bi)|i = 1, 2, · · · , n}. We let M ′

1 = {(a′i, b′i)|i =
1, 2, · · · , n} and P = {(c, c′)|c ∈ (V (Qi,0

n ) \ {ai, bi|i =
1, 2, · · · , n})}. Then, M0 ∪M ′

1 ∪ P is a perfect matching
of Qn+1. Now, suppose that m1 = 1. We divide this case
into two subcases.

Case 2.1: M0 is a non-forbidden matching of Qi,0
n .

By inductive hypothesis, M0 can be extended to a perfect
matching of Qi,0

n , say PM0. By another, since m1 = 1
and n ≥ 3, M1 can be extended to a perfect matching
of Qi,1

n , say PM1. Therefore, PM0 ∪ PM1 is a perfect
matching of Qn+1.

Case 2.2: M0 is a forbidden matching of Qi,0
n .

Let M0 = {(a1, b1), (a2, b2), · · · , (an, bn)} and c be the
common neighbor of a1, a2, · · · , an in Qi,0

n . Since m1 = 1
and n ≥ 3, among the (a1, b1), (a2, b2), · · · , (an, bn), there
exists a matching element, say (an, bn), and a neigh-
bor unmatched vertex of bn, say d, in Qi,0

n such that
d′ is an unmatched vertex. Here, it is clear that c′

is also an unmatched vertex, otherwise M is a forbid-
den matching of Qn+1. By inductive hypothesis, since
(M0 ∪ {(bn, d)}) \ {(an, bn)} is a non-forbidden match-
ing of Qi,0

n with n edges, it can be extended to a per-
fect matching of Qi,0

n , say PM0. By Lemma 4, M1

can be extended to a perfect matching of Qi,1
n \ {c′, d′},

say PM ′
1. See Figure 8.(a). Therefore, (PM0 ∪ PM ′

1 ∪
{(an, bn), (c, c′), (d, d′)})\{(an, c), (bn, d)} forms a perfect
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Figure 8: Case 2.2: M0 is a forbidden matching of Qi,0
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Figure 9: Case 3.1: an and a′n are unmatched vertices.

matching of Qn+1 as Figure 8.(b).

Case 3: m0 ≤ n− 1.
Firstly, suppose that mc = 0. M0 can be extended to
a perfect matching of Qi,0

n , say PM0. By another, since
m1 ≤ n − 1 for n ≥ 3, M1 can be extended to a perfect
matching of Qi,1

n , say PM1. Therefore, PM0 ∪ PM1 is a
perfect matching of Qn+1. Now, suppose that mc = 1.
Let Mc = {(c, c′)} where c is in Qi,0

n . Then, in Qi,0
n ,

among the n neighbors of c, denoted by a1, a2, · · · , an, if
there exists at least an unmatched vertex, say an, such
that M0 ∪ {(c, an)} is a non-forbidden matching of Qi,0

n

and a′n is also an unmatched vertex as Figure 9.(a), this
shall be discussed in the following Case 3.1. Otherwise,
ai or a′i is matched in Qn+1 for i = 1, 2, · · · , n as Figure
10.(a), this shall be discussed in Case 3.2.

Case 3.1: an and a′n are unmatched vertices.
Then, by inductive hypothesis, M0 ∪ {(c, an)} can be ex-
tended to a perfect matching of Qi,0

n , say PM0. Since
m0 ≥ m1 and mc = 1, m1 ≤ b (n+1)−1

2 c ≤ n − 2 for
n ≥ 3. Hence, M1 ∪ {(c′, a′n)} can be extended to a per-
fect matching of Qi,1

n , say PM1. See Figure 9.(a). There-
fore, (PM0 ∪PM1 ∪ {(c, c′), (an, a′n)}) \ {(c, an), (c′, a′n)}
is a perfect matching of Qn+1 as Figure 9.(b).

Case 3.2: ai or a′i is matched in Qn+1 for i =
1, 2, · · · , n.
Since m0 ≥ m1, m0 ≤ n − 1, and m0 +
m1 = n, we may without loss of generality as-
sume that M0 = {(a1, b1), (a2, b2), · · · , (ai, bi)} and
M1 = {(a′i+1, d

′
i+1), (a

′
i+2, d

′
i+2), · · · , (a′n, d′n)} where i ∈

{2, 3, · · · , n − 1}. Let {(a1, b1), (a2, b2), · · · , (an, bn)}
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Figure 10: Case 3.2: ai or a′i is matched in Qn+1 for
i = 1, 2, · · · , n.

be a forbidden matching of Qi,0
n , note the c is

the common neighbor of a1, a2, · · · , an. Then,
{(c, a1), (a2, b2), (a3, b3), · · · , (an, bn)} is a non-forbidden
matching of Qi,0

n with n edges, and it can be extended to
a perfect matching of Qi,0

n , say PM0. Let (b1, g) ∈ PM0.
On account of dist(c, g) = 3 and in Qi,1

n , the distance of c′

and each of the matched vertices of Qi,1
n is at most 2, so g′

is unmatched. By Lemma 4, M1 can be extended to a per-
fect matching of Qi,1

n \{c′, g′}, say PM ′
1, since m1 ≤ n−2

and dist(c′, g′) is odd. See Figure 10.(a). Therefore,
(PM0 ∪PM ′

1 ∪ {(a1, b1), (c, c′), (g, g′)}) \ {(a1, c), (b1, g)}
is a perfect matching of Qn+1. See Figure 10.(b). ♦
It has shown in [7] that every perfect matching of the n-
dimensional hypercube with n ≥ 2 can be extended to a
Hamiltonian cycle. Consequently, we have the following
corollary.

Corollary 1 Assume that n ≥ 2 is an integer. Let M
be an arbitrary matching with at most n edges in the hy-
percube Qn. Then, the matching M can be extended to a
Hamiltonian cycle of Qn, except M is a forbidden match-
ing of Qn.

3 Conclusion Remarks

Perfect matchings can be applied to network disclosure
attacks, such as the Perfect Matching Disclosure Attack.
Perfect matching problem is also applicable to connec-
tivity of networks. In this paper, we assign an arbitrary
non-forbidden matching with at most n edges to form a
perfect matching or a Hamiltonian cycle on the hyper-
cube Qn for n ≥ 2.

An open problem is that on the hypercube Qn, if we as-
sign a matching with more than n edges, how can we re-
strict the prescribed matching to obtain a perfect match-
ing or a Hamiltonian cycle.
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