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Matchings Extend to Perfect Matchings on
Hypercube Networks

Y-Chuang Chen *f

Abstract—In this work, we investigate in the prob-
lem of perfect matchings with prescribed matchings in
the n-dimensional hypercube network @Q,. We obtain
the following contributions: For any arbitrary match-
ing with at most n — 1 edges, it can be extended to
a perfect matching of @), for n > 1. Furthermore, for
any arbitrary non-forbidden matching with n edges,
it also can be extended to a perfect matching of @,
for n > 1. It is shown by J. Fink in 2007 that any
arbitrary perfect matching of the n-dimensional hy-
percube Q.,, n > 2, can be extended to a Hamiltonian
cycle. Therefore, it leads to a further result that for
any arbitrary non-forbidden matching with at most n
edges, it can be extended to a Hamiltonian cycle of
Q. for n > 2.

Keywords: matching, perfect matching, Hamiltonian
cycle, hypercube

1 Introduction

The underlying topology of an interconnection network
is usually modeled as a graph G = (V,E), in which
the vertex set V(G) represents processors and the edge
set E(G) represents connections between processors. We
use graphs and networks interchangeably. For the fun-
damental graph definitions and notations we follow [2].
G = (V,E) is a simple graph if V is a finite set and F is
a subset of {(a,b)|(a,b) is an unordered pair of V'}. We
say that V is the vertex set and E is the edge set. The
neighborhood of v, N(v), is {z|(v,z) € E}. Two vertices
are adjacent if (a,b) € E. A path is a sequence of ad-
jacent edges (vg,v1), (v1,v2), ", (Um—1,VUm), Written as
(vo,v1, "+, Um), in which all the vertices vg,v1,- -
are distinct. A cycle is a path with at least three vertices
such that the first vertex is the same as the last one.
Hence, the length of a path or cycle is the number of
edges in the path or cycle. Let u and v be two vertices in
a graph, the distance from u to v, denoted by dist(u,v),
is the minimum length of any path from u to v. A cycle
is a Hamiltonian cycle if it traverses every vertex of G
exactly once [4, 5].
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A matching M in graph G is a set of pairwise non-
adjacent edges, that is, every vertex is incident with at
most one edge of M. A vertex is matched if it is in-
cident to an edge in the matching M. Otherwise the
vertex is unmatched. A maximum matching is a match-
ing that contains the largest possible number of edges.
The matching number of a graph is the size of a maxi-
mum matching. A perfect matching is a matching which
matches all vertices of the graph. That is, every ver-
tex of the graph is incident to exactly one edge of the
matching. A matching is a forbidden matching if every
vertex of N(v) is matched for some unmatched vertex
v € V(G). Otherwise, it is a non-forbidden matching. A
perfect matching is also a minimum-size edge cover. For
any graph G without isolated vertices, the sum of the
edge covering number and the matching number equals
to the number of vertices. If the graph G has a perfect
matching, then both of the edge cover number and the
matching number are equal to |V(G)|/2 [11].

Perfect matchings can be applied to network disclo-
sure attacks. The Perfect Matching Disclosure Attack
performs a high rate of success when tracing messages
sent through a threshold mix in arbitrary scenarios [12].
Another related work concerning perfect matchings is
matching preclusion. A matching M in graph G is
called an almost perfect matching if M contains exactly
(IV(G)| —1)/2 edges. An edge set F in graph G is called
a matching preclusion set if G\ F has neither a perfect
matching nor an almost perfect matching. If a network
has a large size of matching preclusion set, each vertex
(process) in this network will has a specific partner in
the event of edge (link) faults and the network will be
robust. On the side, matching preclusion is also related
to the problem of connectivity of networks [3, 10].

The hypercube is a popular network because of its attrac-
tive properties, including regularity, symmetry, small di-
ameter, strong connectivity, recursive construction, par-
titionability, and relatively low link complexity [1, 9]. It
has been widely used in parallel systems, such as the Con-
nection machines, Symult S-series, Intel iPSC, iPSC/?2,
and SGI Origin 2000 [6, 13, 14]. The formal defini-
tion of an n-dimensional hypercube is given as follows.
Each vertex v in Q,, can be distinctly labeled by a bi-
nary n-bit string, v = v,v,-1---v1. For 1 <1 < n,
we use v’ to denote the binary string v, ---0;---v;.
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The @, consists of all n-bit binary strings represent-
ing its vertices. Two vertices u and v are adjacent if
and only if v = «' with some i. An n-dimensional
hypercube @, can be constructed from two identical
(n—1)-dimensional hypercubes, Q ~, and Qn 1, for some

1 < i < n, where V(Q:",) = {v,v,_1---v1|v; = 0}
and V(Q"" ) = {vavn_1- v1|vz = 1}. The vertex set
of Q, is V(Qn) = Q" U Q" |, and the edge set is

E(Q,) = E(Q"" ) U E(Q"" ) U P where P is a set of

0 il
edges connecting the vertices of Q%° ; and Q%' | in a one

to one fashion. An n—dlmensmnal hypercube can be rep-
resented as QQ,, = @Qn , withi € 1,2,- n We
need some more terms let v be a vertex of Q —, and
Q;l_l, we use v’ to denote the corresponding vertex of v
in Q;l , and Qflo 15 respectively. That is, (v, v") is an edge
of @y, one of u,v is in Qn 1, and the other is in Qil’il
We notice that the hypercube @, is vertex-symmetric
and edge-symmetric for n > 1.

Some results on perfect matchings of hypercubes are dis-
cussed in [7, 8, 10]. In this paper, we shall show that
for any arbitrary matching with at most n — 1 edges of
the hypercube Q,, for n > 1, it can be extended to a
perfect matching of @,,. Furthermore, for any arbitrary
matching with exactly n edges of the hypercube @Q,, for
n > 1, it can be extended to a perfect matching of @,
except it is a forbidden matching of @,. It has shown
that any perfect matching of the hypercube Q,, n > 2,
can be extended to a Hamiltonian cycle [7]. As a result,
we have a further result that any non-forbidden matching
with at most n edges of the hypercube @, n > 2, can be
extended to a Hamiltonian cycle.

The rest of this paper is organized as follows. Section 2
shows the perfect matchings with prescribed matchings
in the n-dimensional hypercube @,, for n > 1. In Section
3, we give the conclusion remarks.

2 Perfect Matchings of Hypercubes

Lemma 1 For the 3-dimensional hypercube Qs, let M
be an arbitrary matching with at most two edges in the
hypercube Q3. Then, the matching M can be extended to
a perfect matching of Q3.

Proof. First, suppose that M contains exactly zero or
one edge, it is clear that M can be extended to a perfect
matching of Q3. Now, suppose that M has exactly two
edges. Figure 1.(a) shows all the non-isomorphic cases
that M contains exactly two edges in the hypercube Q3.
Figure 1.(b) shows the perfect matchings of Q3. As a
result, the proof of this lemma is complete. &

Theorem 1 Assume that n > 1 is an integer. Let M
be an arbitrary matching with at most n — 1 edges in the
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(a)
(b)
Figure 1: Perfect matchings of the hypercube Q3.

hypercube Q.,,. Then, the matching M can be extended to
a perfect matching of Q..

Proof. We prove it by induction on n. Suppose that
n = 1,2, it is clear that for any matching with at most
n — 1 edges, it can be extended to a perfect matching of
Q. Suppose that n = 3, by Lemma 1, for any matching
with at most two edges, it can be extended to a perfect
matching of Q3.

Assume that the theorem is true for n, which means that
for any arbitrary matching M with at most n — 1 edges,
M can be extended to a perfect matching of @),,. Now,
we shall show that in the hypercube Q,.1, let M’ be
an arbitrary matching with m < n edges in Q,41, the
matching M’ can be extended to a perfect matching of

Qn+1 .

By the definition of hypercubes, for each edge in Q,+1,
the labels of two endpoint vertices are different with
exactly one bit. Since M’ contains at most n edges,
there exists one dimension ¢ € 1,2,--- n+1in Qp41 =

HOP Q4L such that each edge of M s distributed in
Q” 0 or Q4. Let My = M’ N Q%Y and My = M’ N Q%L
That is to say that M’ has mg = |My| edges in Q%°,
my = |Mi| edges in Q%', and mg +m; = m. We may
without loss of generality assume that mg > mi. We
divide the proof into the following two cases.

Case 1: mg > mq > 0.

Notice that my < n and m; < n since mg > m; > 0.
See Figure 2.(a). By inductive hypothesis, M, can be
extended to a perfect matching of Q4°, say PMy, and
M; can be extended to a perfect matching of Q4!, sa
PM;. See Figure 2.(b). Therefore, PMy U PM; is a
perfect matching of Q1.

Case 2: m; =0.

That is, all the n edges of M’ are distributed in Q%°.
Suppose that mg < mn, by inductive hypothesis7 M’
can be extended to a perfect matching of Q%°, and so
M’ can be extended to a perfect matching of Q1.
Hence, we may only consider the case that mg = n.
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Figure 3: Case 2: m; = 0.

Let (a,b) be an edge in M’. By inductive hypothe-
sis, M' \ {(a,b)} can be extended to a perfect match-
ing of Q40 say PMy, since m —1 < n — 1. If PMy
contains the edge (a,b), it is clear that M’ can be ex-
tended to a perfect matching of @,11. Here, we may
consider that PMy do not contain the edge (a,b). Let
(a,c) and (b,d) be two edges of PMy. By inductive hy-
pothesis with n > 3, {(a’,¢'), (b',d’")} can be extended to
a perfect matching of Q%!, say PM;. See Figure 3.(a).
Therefore, (PMyUPM; U{(a,b),(a’,V'),(c,c),(d,d)})\
{(a,c), (b,d), (d,), (V,d")} is a perfect matching of
Qn+1 as Figure 3.(b), and this theorem follows. &

Lemma 2 For the 3-dimensional hypercube Q3, let M be
an arbitrary matching with exactly three edges in the hy-
percube Q3. Then, the matching M can be extended to a
perfect matching of Qs, except M is a forbidden matching

of Qs.

Proof. Figure 4.(a) shows all the non-isomorphic cases
that M contains exactly three edges in the hypercube
Q3. Figure 4.(b) shows the perfect matchings of Q3 with
the matching M. As a result, the proof of this lemma is
complete. &

Lemma 3 For the 3-dimensional hypercube Qs, let M be
an arbitrary matching with at most one edge in the hy-
percube Q3, and x,y be any two unmatched vertices with
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Figure 5: Perfect matchings of the hypercube @3\ {z,y}.

dist(x,y) is odd. Then, the matching M can be extended
to a perfect matching of Q3 \ {z,y}.

Proof. Firstly, suppose that |M| = 0, it is clear that for
any two unmatched vertices x,y with dist(z,y) is odd,
there is a perfect matching of Q3 \ {z,y}. Now, suppose
that |M| = 1. Figure 5.(a) shows all the non-isomorphic
cases that M contains exactly one edge and x,y be any
two unmatched vertices with dist(z,y) is odd in the hy-
percube Q3. Figure 5.(b) shows the perfect matchings of
Qs \ {z,y} with the matching M. Hence, the proof of
this lemma is complete. &

Lemma 4 Assume that n > 3 is an integer. Let M be
an arbitrary matching with at most n — 2 edges in the hy-
percube Q.,, and x,y be any two unmatched vertices with
dist(x,y) is odd. Then, the matching M can be extended

to a perfect matching of Qn \ {x,y}.

Proof. We prove it by induction on n. Suppose that
n = 3, by Lemma 3, for any matching with at most
one edge and x,y be any two unmatched vertices with
dist(z,y) is odd, it can be extended to a perfect match-

ing of Q3 \ {z,y}.

Assume that the theorem is true for n, which means that
for any arbitrary matching M with at most n — 2 edges
and z,y be any two unmatched vertices with dist(z,y) is
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odd, M can be extended to a perfect matching of @, \
{z,y}. Now, we shall show that in the hypercube @41,
let M’ be an arbitrary matching with m < n — 1 edges
in @ny+1 and x,y be any two unmatched vertices with
dist(z,y) is odd, the matching M’ can be extended to a
perfect matching of Q.41 \ {z,y}.

By the definition of hypercubes, for each edge in @1,
the labels of two endpoint vertices are different with ex-
actly one bit. Since M’ contains at most n — 1 edges,
there exists one dimension i € 1,2,---,n+ 1 of Q,41 =
QL0 P Q! such that each edge of M’ is distributed in
QL0 or Q4. Let My = M' N Q%Y and My = M’ N Q%1
That is to say that M’ has mg = |Mp| edges in Q5°,
my = |M;| edges in Q%!, and mg +m; = m. We may
without loss of generality assume that mg > m; and di-
vide the proof into the following three cases.

Case 1: Both z and y are in Q4.

By Theorem 1, Mj can be extended to a perfect matching
of Q0 say PMy, since mg < m < n— 1. Since mg > my
and m < n—1, my <n—2. By inductive hypothesis, M;
can be extended to a perfect matching of Qi! \ {z,y},
say PMj. Therefore, PMy U PMj is a perfect matching

of Qnt1 \ {377 y}

Case 2: Both z and y are in Q%°.

Case 2.1: mg <n — 2.

By inductive hypothesis, M, can be extended to a perfect
matching of Q40 \ {x,y}, say PM},. By Theorem 1, M;
can be extended to a perfect matching of Q%1 say PM;.
Therefore, PM} U PM; is a perfect matching of Qn41 \

{z,y}.

Case 2.2: mg=n—1.

Let (a,b) be an edge of My, by inductive hypothesis,
My \ {(a,b)} can be extended to a perfect matching of
QLO\ {z,y}, say PM, since mg —1 = n — 2. Firstly,
suppose that (a,b) € PM}. By Theorem 1, Q%' has
a perfect matching, say PM;. Then, PM}) U PM; is a
perfect matching of Q.41 \ {z,y}. Now suppose that
(a,b) ¢ PMj. We may let {(a,c),(b,d)} C PM,.
By Theorem 1, {(a’,c),(¥',d’)} can be extended to a
perfect matching of Q4', say PM;, as Figure 6.(a).
Then, (PMy U PM; U {(a,b),(d,b"),(c,c),(d,d")}) \
{(a,c), (b,d), (d,), (V,d")} is a perfect matching of
Qn+1 \ {z,y} as Figure 6.(b).

Case 3: z is in Q%0 and y is in Q%!.

Case 3.1: mg <n—2.

In Q,41, since n > 3, there exists an edge (¢, ¢’) between

Q%0 and Q%! such that ¢ is an unmatched vertex of Q%9

¢ # x, dist(c,x) is odd, ¢ is an unmatched vertex of
blo¢ # vy, and dist(c,y) is odd. See Figure 7.(a). By

inductive hypothesis, My can be extended to a perfect

matching of Q%0 \ {x,c}, say PM{, and M; can be ex-

tended to a perfect matching of Q4! \ {y,c'}, say PMj.

Therefore, PM, U PM] U {(c,¢')} is a perfect matching

ISBN: 978-988-17012-8-2
ISSN: 2078-0958 (Print); ISSN: 2078-0966 (Online)

Proceedings of the International MultiConference of Engineers and Computer Scientists 2010 Vol I,
IMECS 2010, March 17 - 19, 2010, Hong Kong

o " G c c' b c | l~c
&) e 2f) @—=e
i 4 a' o~ ! 4, a
o H H
= .—.! = *>—0
b fb/ . b
4 . 3 LHe"0—O0 Oda s ffO—O
éﬂ o—=0 d d E, o—0 o o dX 2 o——o
3 1 o § i ° N
& i K | “No——o0 s o—o
o—0 o—0
& Oy ! Oy
X i1 0 il
Q‘“ o i 0
n 0., n Q, 0,., N
(a) (b)
Figure 6: Case 2.2: mg =n — 1.
< [ o— sf*— | |sfo—° s
150 50)) @ S0) Qu—
;“ .l_. 5 0c'a .l—O 3 : o oc¢ B I
Lo fleo—e le—o fle—e
& ES
i + |
B 1 s |
TN o0—o0 Qoo
xO Oy ; xO E\‘ Oy
; 0 1
Q"O QI,I 0 0
! Ql(+] ! ! Qn+] '
(a) (b)

Figure 7: Case 3.1: mg <n — 2.

of Quny1 \ {z,y} as Figure 7.(b).

Case 3.2: mg=n—1.

By Theorem 1, My can be extended to a perfect matching
of Q40 say PM,. Let (z,¢) be an edge of PMy. By
inductive hypothesis, Q%!\ {c/, y} has a perfect matching,
say PMj, since dist(c',y) is odd. Therefore, (PMy U
PM{U{(c,)})\{(c,x)} is a perfect matching of Q41 \

{z,y}. %

In the following theorem, we shall show that for any ar-
bitrary non-forbidden matching with m < n edges in the
hypercube Q,,, M can be extended to a perfect matching
of Q,,, except M is a forbidden matching of @,.

Theorem 2 Assume that n > 1 is an integer. Let M
be an arbitrary matching with at most n edges in the hy-
percube QQ,,. Then, the matching M can be extended to a
perfect matching of Qy,, except M is a forbidden matching

of Qn.

Proof. We prove it by induction on n. Suppose that
n = 1,2, it is clear that for any matching with at most
n edges, it can be extended to a perfect matching of @),,.
Suppose that n = 3, by Lemma 1 and 2, for any matching
with at most three edges, it can be extended to a perfect
matching of @3, except it is a forbidden matching of Q3.

Assume that the theorem is true for n, which means that
for any arbitrary matching M with at most n edges, M
can be extended to a perfect matching of @, except M
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is a forbidden matching of @,. Now, we shall show that
in the hypercube @11, let M’ be an arbitrary matching
with m < n + 1 edges in Q,41, the matching M’ can be
extended to a perfect matching of Q,,11, except M’ is a
forbidden matching of Q,41. By Theorem 1, M’ can be
extended to a perfect matching of @, 1 if m < n. Hence,
we may only consider that m = n 4+ 1 in the following
proof of this theorem.

By the definition of hypercubes, the labels of two end-
point vertices of each edge in @41 is exactly different
with one bit. Since M’ contains n + 1 edges, there exists
one dimension i € {1,2,---,n+1} of Q11 = Q4" P Q4*
such that at most one edge of M’ is distributed between

QL0 and Qb Let My = M'NQL, My = M'NQ%L, and
M.=M"\ (Mo UMl). That is that there are mo = | My
edges in Q40 my = |M;| edges in Q%Y m. = |M.| =0 or

1 edge between Ql 0 and Qh, and mg + my + m. = m.
We may without loss of generality assume that mg > m;.
Hence, m; < [(n+1)/2] <n —1for n > 3. We divide
the proof into the following three cases.

Case 1: mg=n+1.

Assume that My = {(a;,b;)|i = 1,2,---,n+ 1}. We let
M) = {(a},b})]i = 1,2,---,n+ 1} and P = {(¢,)|c €
(V(Qu"\{as, bili = 1,2,--- ,n+1})}. Then, MoUM{UP

is a perfect matching of Q,,11.

Case 2: mg =n.

Firstly, suppose that m., = 1. Assume that M, =
{(a;, b)) = 1,2,---,n}. We let M] = {(a},b))|i =
1,2,---,n} and P = {(c,d)|c € (V(QL%) \ {a;,b;|i =
1,2,---,n})}. Then, My U M; U P is a perfect matching
of @,+1. Now, suppose that m; = 1. We divide this case

into two subcases.

Case 2.1: M is a non-forbidden matching of Q3.
By inductive hypothesis, My can be extended to a perfect
matching of Q40 say PMy. By another, since m; = 1
and n > 3, M; can be extended to a perfect matching
of Q41 say PM;. Therefore, PMy U PM; is a perfect

matching of Qy,41.

Case 2.2: M, is a forbidden matching of Qu0.

Let MQ = {((Zl,bl),(ag,bg) (an, )} and ¢ be the
common neighbor of a1,as, -, a, in Q” Since m; =1
and n > 3, among the (ay, b1), (ag, b2),- -+, (an, by), there
exists a matching element, say (an,bn)7 and a neigh-
bor unmatched vertex of b,, say d, in Q%° such that
d’ is an unmatched vertex. Here, it is clear that ¢
is also an unmatched vertex, otherwise M is a forbid-
den matching of @,11. By inductive hypothesis, since
(Mo U {( bmd)}) \ {(an,bn)} is a non-forbidden match-
ing of Q%Y with n edges, it can be extended to a per-
fect matching of Q%°, say PMy. By Lemma 4, M;
can be extended to a perfect matching of Q%! \ {c¢/,d'},
say PM]. See Figure 8.(a). Therefore, (PMy U PM| U
{(an,bn), (¢, ), (d,d)})\{(an,c), (bn,d)} forms a perfect
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Figure 9: Case 3.1: a,, and a], are unmatched vertices.

matching of Q.41 as Figure 8.(b).

Case 3: mog <n-—1.

Firstly, suppose that m. = 0. M can be extended to
a perfect matching of Q%°, say PMy. By another, since
m; <n-—1 for n > 3, M can be extended to a perfect
matching of , say PMj. Therefore, PMy U PMj is a
perfect matchlng of @n+1. Now, suppose that m. = 1.
Let M. = {(c,c’)} where c is in Q%°. Then, in Q%°,
among the n neighbors of ¢, denoted by ay,as, - -, ay, if
there exists at least an unmatched vertex, say a,,, such
that Mo U {(c,a,)} is a non-forbidden matching of Q%°
and a), is also an unmatched vertex as Figure 9.(a), this
shall be discussed in the following Case 3.1. Otherwise,
a; or a} is matched in Qp41 for i = 1,2,---,n as Figure
10.(a), this shall be discussed in Case 3.2.

Case 3.1: a, and a], are unmatched vertices.
Then, by inductive hypothesis, My U {(c, an)} can be ex-
tended to a perfect matching of Q4°, say PM,. Since
mo > m1 and me = 1, m; < L("LJ < n— 2 for
n > 3. Hence, M7 U {(c/,al,)} can be extended to a per-
fect matching of Q%1 say PM;. See Figure 9.(a). There-
fore, (PMo U PMy U{(c, ), (an, a,)}) \{(¢; an), (¢, a3,)}
is a perfect matching of Q,,+1 as Figure 9.(b).

Case 3.2: q; or a) is matched in Q.41 for i =
1,2,---,n

Since mg > my, mg < n — 1, and mg +
m; = mn, we may without loss of generality as-

sume that M, = {(a1,b1),(a2,b2) ,(a;,b;)} and

M1 - {( z+17 z+1) ( ;+2vd;+2)’ (anvd/n)} where { €
{2,3 ,n — 1}, Let {(al,bl),(ag,bg) oy (an,bn)}
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be a forbidden matching of Q%Y, mnote the c is
the common neighbor of aj,a9, --,ay. Then,
{(¢,a1), (az,b2), (a3, b3), -, (an,by)} is a non-forbidden
matching of Q% with n edges, and it can be extended to
a perfect matching of Q4°, say PMy. Let (b1,g) € PMp.
On account of dist(c, g) = 3 and in Q%!, the distance of ¢/
and each of the matched vertices of Q%! is at most 2, so ¢’
is unmatched. By Lemma 4, M; can be extended to a per-
fect matching of Q:1\ {c/, ¢'}, say PM], since m; < n—2
and dist(c’,¢') is odd. See Figure 10.(a). Therefore,
(PMO U PM{ U {(ala bl)’ (Cv Cl)’ (g’g/)}) \ {(ala C), (blvg)}

is a perfect matching of @,+1. See Figure 10.(b). &

It has shown in [7] that every perfect matching of the n-
dimensional hypercube with n > 2 can be extended to a
Hamiltonian cycle. Consequently, we have the following
corollary.

Corollary 1 Assume that n > 2 is an integer. Let M
be an arbitrary matching with at most n edges in the hy-
percube Q.. Then, the matching M can be extended to a
Hamiltonian cycle of Q,,, except M is a forbidden match-

an Of QTL'

3 Conclusion Remarks

Perfect matchings can be applied to network disclosure
attacks, such as the Perfect Matching Disclosure Attack.
Perfect matching problem is also applicable to connec-
tivity of networks. In this paper, we assign an arbitrary
non-forbidden matching with at most n edges to form a
perfect matching or a Hamiltonian cycle on the hyper-
cube @, for n > 2.

An open problem is that on the hypercube @, if we as-
sign a matching with more than n edges, how can we re-
strict the prescribed matching to obtain a perfect match-
ing or a Hamiltonian cycle.
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