
Motif and Anomaly Discovery of Time Series
Based on Subseries Join

Yi Lin ∗ and Michael D. McCool † Ali A. Ghorbani ‡

Abstract — Time series motifs are repeated similar
subseries in one or multiple time series data. Time
series anomalies are unusual subseries in one or multi-
ple time series data. Finding motifs and anomalies in
time series data are closely related problems and are
useful in many domains, including medicine, motion
capture, meteorology, and finance.

This work presents a novel approach for both the
motif discovery problem and the anomaly detection
problem. This approach first uses subseries join to
obtain the similarity relationships among subseries
of the time series data. Then the motif discovery
and anomaly detection problems can be converted to
graph-theoretic problems solvable by existing graph-
theoretic algorithms. Experiments demonstrate the
effectiveness of the proposed approach to discover
motifs and anomalies in real-world time series data.
Experiments also demonstrate that the proposed ap-
proach is efficient to process large time series datasets.
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1 Introduction

Time series are composed of sequences of data items mea-
sured at typically uniform intervals. Time series arise fre-
quently in many scientific and engineering applications,
including finance, medicine, digital audio, and motion
capture. Motifs are approximately repeated subseries in
a single time series data or a time series dataset. One ex-
ample is shown in Figure 1(a). Anomalies are unusual
subseries in a single time series data or a time series
dataset. Anomalies can be outliers in time series that
contains approximately periodic patterns, or subseries of
deviations of a quantity from some mean. Either the
mean is calculated for the entire time series, or only for
parts of it. For example, in Figure 1(b), the underlined
part is quite different from the other parts of the data
that is sine-like.
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Figure 1: Simulated examples of time series motif and
anomaly. (a) The approximate repeated subseries that
are underlined are the motif of this time series. (b) The
unusual subseries that is underlined is the anomaly of this
time series.

Motif discovery and anomaly detection are fundamen-
tal unsupervised learning techniques and are useful in
many real-world applications. For example, motifs in
Web posts or comments are frequent term-based patterns.
They are used in analyzing people’s opinions or feedbacks.
Motifs of stock prices are similar value patterns. These
patterns may indicate future trends. Anomaly detection
in cardiogram data can help a doctor to diagnose heart
deceases. Anomaly detection in network traffic analysis
will alert the network administrator of spam or malicious
attacks. Given the wide use in so many domains, discov-
ering motifs and anomalies is attracting increasing atten-
tions from both academia and industry.

Existing approaches usually handle motif discovery and
anomaly detection separately [1, 2]. Also they are lim-
ited in that they can only find similar patterns of the
same length or tolerate a limited amount of phase-scaling.
Some of them have high computational complexities.

In this work, we propose an approach for both motif dis-
covery and anomaly detection. This approach can over-
come the limitations of previous work. This work is based
on a feature representation and a subseries join operation
that were proposed in our previous work [3, 4]. Based on
subseries join, the motif discovery and anomaly detec-
tion problems can be easily converted to graph-theoretic
problems. Then motif discovery and anomaly detection
problems can be easily solved together by using existing
graph-theoretic algorithms.

The rest of the paper is organized as the follows. In Sec-



tion 2, we review previous work and underlying technol-
ogy on time series motif discovery and anomaly detection.
In Section 3, we introduce a feature representation and
a subseries join operation. Section 4 proposes our motif
discovery and anomaly detection methods. We perform
empirical evaluations in Section 5. Finally Section 6 pro-
vides conclusions and suggestions for future work.

2 Related Work

Time series motifs are widely used in various medical
applications, including examining the utility of on-body
monitoring sensors [5] and selecting maximally informa-
tive genes [6]. Time series motifs are also used in find-
ing patterns in sports motion capture data [7] and video
surveillance applications [8].

To the best of our knowledge, the first formal definition
of time series motifs was proposed in 2003 [9]. Based
on this work, a fast motif discovery algorithm was in-
troduced later in [1]. However, the above work is only
limited to discovering a motif whose subseries are of the
same length. Yankov et al. [10] proposed a motif discov-
ery method that uses a uniform scaling Euclidean dis-
tance and a symbolic representation based on thresh-
olding. Uniform scaling is important for indexing and
matching time series for motion-capture data [11] and
music. The thresholds they used to convert a time series
to a symbolic sequence are heuristically determined. This
method is semi-automatic because the user also needs to
specify the length of the motif subseries manually. This
arbitrary segmentation may cause undesirable division of
important features in the data into different segments.
Overlapping sliding windows can be used [12] to avoid
division of features but at the cost of a redundant rep-
resentation. Generally, a better definition of a “motif”
that does not depend on a priori knowledge of its shape
or length is needed.

Wei et al. proposed an anomaly detection algorithm
based on a symbolic representation of time series [13].
This representation was later used in fining unusual
shapes in a large image database [2]. This symbolic rep-
resentation divides a time series into segments of uni-
form length. However, the manual section of the segment
length is not sensitively adapt to the actual behavior of
the data. Specifically, wavelet analysis techniques have
been widely used for network intrusion detection [14, 15].
However, wavelet analysis-based anomaly detection tech-
niques often have high computation complexity due to
wavelet transformation.

3 Subseries Join

Subseries join finds pairs of similar subseries of time se-
ries. The subseries join results include similar subseries
and excludes dissimilar subseries. The similar subseries

consist of motifs. The dissimilar subseries may contain
anomalies. As a formal definition, subseries join should
return all pairs of subseries drawn from two datasets that
satisfy the similarity threshold and are also maximal-
length [4].
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Figure 2: (a) The boundary are lined up by red dotted
lines at the same positions in different scales. (b) The hi-
erarchical structure of the scales marked by long dashed
lines and arrows at the right side of (a). (c) The thin solid
curve is the original time series. The red dashed curves
are a quadratic polynomial that fits the original time se-
ries. The blue and black thick curves are the minimal
quadratic polynomial envelope.

In the following, we briefly describe the subseries join al-
gorithm proposed in our previous work [3, 4]. This sub-
series join algorithm will be applied to efficiently solve
the joint problem motif discovery and anomaly detection.
Figure 2 illustrates some kernel steps to conduct subseries
join. First, each time series in the dataset is smoothed
by an anisotropic diffusion analysis [16], which generates
a scale-space of smoothed time series. Then all the time
series in the scale space are segmented using the Canny



edge detector [17]. The boundary points between pairs
of segments are lined up at the same positions of differ-
ent scales. The scale space of time series and segmen-
tation are shown Figure 2(a). The segments at different
scales give a hierarchical structure, which is shown Fig-
ure 2(b). A minimal polynomial envelope is used to rep-
resent each segment in a reduced-dimensionality space,
which is shown in Figure 2(c). We call such a repre-
sentation a feature. A novel distance function is defined
over features. This feature representation automatically
segments time series by keeping its feature continuities,
which is not possible in most of previous work. All fea-
tures in the dataset are indexed in an R-tree. R-tree
leaves are associated with the features in the feature se-
quences instead of saving feature representations redun-
dantly. Pairs of matching features are found by an R-tree
join operation [18]. These matching features generate
candidate matching feature sequences. We use a dynamic
programming algorithm to compare and align two candi-
date matching feature sequences. The aligned matching
feature sequences can locate the matching subseries.

To give the reader a better view of the subseries join
approach, Figure 3 illustrates middle results of subseries
join. Given two time series datasets shown in Figure 3(a),
time series in the datasets are non-uniformly segmented
and pairs of matching subseries are found using dynamic
programming, which is shown in Figure 3(b). Figure 3(c)
shows a set of pairs of matching subseries that satisfy a
similarity threshold and are maximal-length.

4 Motif Discovery and Anomaly Detec-
tion

In this section, we will discuss how to use the subseries
join algorithm to solve the problems of motif discovery
and anomaly detection. For example, the results of sub-
series join of one or multiple time series can be converted
a graph to find motifs and anomalies, as shown in Fig-
ure 4. Subseries A matches E. Subseries A’, E’, and G are
found to be similar. The same is for subseries B, D, and
F. Subseries C has no matches. The relationship of sub-
series can be mapped to an undirected graph given in Fig-
ure 5(a). Every vertex represents a subseries. Every edge
between two vertices represents a matching relationship
between a pair of subseries. Then, we remove self-loops
from the graph. Also, there may exist overlapped sub-
series, for example, A and B. If the overlap percentage
is above a certain threshold e.g., our prototype system
used 70% as a threshold, the overlapped subseries, such
as A and A’, E and E’, are merged. After this processing,
Figure 5(a) turns into Figure 5(b).

Now motif discovery can be defined in graph-theoretic
terms. Several alternative graph-theoretic definitions of
a motif can be considered. One possible definition is
based on the maximal cliques. A clique in an undi-

(a) Two time series datasets.

(b) Segmenting and matching subseries.

(c) Subseries join results.

Figure 3: Middle results of subseries join.
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Figure 4: Subseries join results of a time series.

rected graph is a subgraph in which every vertex is con-
nected to every other vertex in the subgraph. A maximal
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(a) The graph of subseries
join results.
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(b) Remove the self-loops
and merge the overlapped
vertices A and A′, E and
E′.

Figure 5: Convert the subseries join results into a graph.
The maximal cliques that are framed by dashed circles
give the motifs. The isolated vertex C is an anomaly.

clique is a complete subgraph that is not contained in
any other complete subgraph. Unfortunately, the maxi-
mal clique problem is an NP-complete problem, and the
clique enumeration problem is NP-hard. However, there
exist many heuristic algorithms to approximately solve
the clique enumeration problem [19], including parallel
algorithms [20], and polynomial-time approximation al-
gorithms [21]. Another possible definition of motif is
based on the k-connected subgraph. A k-connected sub-
graph in an undirected graph is a subgraph in which ev-
ery vertex is connected to at least k other vertices in
the subgraph. Although k-connected subgraph problem
is also NP-complete, many existing approximation algo-
rithms can efficiently solve this problem [22].

Anomaly detection can be defined as finding the isolated
vertices in the graph. For example, in Figure 5, the ver-
tex C is an isolated vertex. Finding isolated vertices is
simpler than finding maximal cliques or k-connected sub-
graphs in a graph, because it requires only linear compu-
tational time. We used the algorithms in the Boost Graph
Library [23] for our prototype system implementation.

Note that we assume that an anomaly pattern does not
repeat in a time series, because if an anomaly pattern
repeats, it may be considered as a motif. In real applica-
tions, determining whether a pattern is a motif, anomaly,
or something else is often subjective, related to different
data, domains, and tasks. However, our approach can
help the user to efficiently find candidate targets of inter-
est.

5 Experimental Results

We evaluate the effectiveness of our proposed approach
for discovering motifs and anomaly in real-world data in-
cluding stock prices [24] and Electrocardiograph (ECG)
data [25]. Figure 6 shows motifs discovered by our pro-
totype system in a time series of stock prices. Figure 7

shows an anomaly discovered by our prototype system in
a time series of Electrocardiograph (ECG) data. The
found motifs have similar shapes of different lengths.
Parts of the found motifs are also overlapped. The found
anomaly’s properties, such as height and length, can
be controlled by parameters in the prototype system.
The user can choose different parameters for different
data, domains, and tasks. Compared to most previous
work [1, 10], our approach can easily adapt to different
application by parameter tuning.

Jan2007 Apr2007 Aug2007 Dec2007 Apr2008 Aug2008 Dec2008 Apr2009 Aug2009 Nov2009
0

1

2

3

4

5

6

7

8

9

10
x 10

5

(a) One motif is marked by thick green lines.
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(b) Another motif is marked by thick blue lines.

Figure 6: Motifs discovered in stock prices: NASDAQ
Monthly High, Jan 1, 2007∼Nov 30, 2009.

To evaluate the performance of our approach, the proto-
type system was also tested on a 3.15GB motion capture
dataset [26] containing 3,962,581 frames. A frame is an
element in a motion time series. The dataset contains var-
ious kinds of motion time series data. Each motion data
is a time series data ranging in length from about 300 to
23000 frames. All experiments were run on Linux Kernel
2.6 PC with 500MB RAM and Pentium IV 3.0GHz CPU.
The prototype generated 101,397 segments of the dataset.
The prototype system needs about 3.5 hours for repre-
sentation and index construction for the whole dataset.
We conduct the proposed subseries join operation on the
whole dataset to discover motifs, i.e., motion subseries
of different styles. The total computational time is 35.6
minutes. The average computational time per time se-
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Figure 7: An anomaly marked by thick red lines discov-
ered in Electrocardiograph (ECG) data.

ries is 0.86 seconds. Figures 8-10 show some motifs that
are similar motions found in the whole dataset. From
the figures, we can see that the motif motions have sim-
ilar but different poses, e.g., the second elements in the
running motions. The motif motions also have different
lengths, i.e., different speeds of motions. This demon-
strates that our approach can tolerate different lengths
and phase-scaling.

(a) Length: 91 frames

(b) Length: 85 frames

(c) Length: 109 frames

Figure 8: A motif found in the dataset that are running
motions.

6 Conclusions

In this work, we have discussed motif discovery and
anomaly detection for time series data. We propose a
novel approach for both problems. This approach is based
on a new definition of subseries join and an algorithm
to compute subseries join efficiently. Experiments have
demonstrated the effectiveness of our proposed approach
for discovering motifs and anomalies in real-world time
series data. Experiments also show that our approach can
efficiently find motifs and anomalies in a large dataset.

Our work provides a general solution motif discovery and

(a) Length: 148 frames

(b) Length: 143 frames

(c) Length: 126 frames

Figure 9: A motif found in the dataset that are jumping
motions.

(a) Length: 119 frames

(b) Length: 127 frames

(c) Length: 153 frames

Figure 10: A motif found in the dataset that are kicking
motions.

anomaly detection on any time series data. Therefore,
our prototype systems need some user-defined parame-
ters that are tuned for data in a specific domain. At
present, the parameters are selected empirically without
any domain knowledge involved. In the future, we will
apply this work in some specific domains, such as Web
mining and network security. Domain knowledge will be
used to automatically tune the system parameters.
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