
 
 

 

 
Abstract— User authentication is very important in a 
networked smart environment since that security has been an 
important issue and concern in the smart home system. 
Currently, a vast majority of systems use passwords as the 
means of authentication because it is easier to implement. 
Although the password-based is very popular in the user 
authentication, but there are some drawbacks.  Thus, in this 
paper, R-prop technique was embedded in the Multilayer 
Perceptrons neural network to investigate the performance of 
network training. The learning parameters in the neural 
network training for authentication system using R-Prop 
technique were compared. The comparisons were based on 
training time, number of epochs and Mean Square Error (MSE) 
using different transfer functions. Three combinations of 
transfer function for hidden and output were carried out. First, 
hidden layer used logsig and output layer used Tansig 
(combination A). Secondly, Tansig was applied to hidden layer 
and Purelin was applied to output layer (Combination B). 
Finally, Logsig and Purelin were applied to hidden layer and 
output layer respectively (Combination C). Besides, the 
performances of different number of training sets were also 
compared for Combination B with 250 hidden neurons. From 
the results obtained, it is observed that implementing 
Combination B for 200 hidden neurons yield optimum results. 
Apart from that, as the training sets increased, the MSE, 
training time and also number of epochs increased 
proportionally. 

 
Index Terms— Learning Parameter, Neural Network,    

R-Prop, User Authentication 
 

I. INTRODUCTION 
Nowadays, there are a lot of method proposed for identifying 
the login user in the market, likewise, fingerprint, voice 
recognition, face detection, CCTV and etc. Indeed these 
systems are very powerful and secure; however they are not 
widely used due to the price of the product. Password-based 
user authentication is inexpensive and affordable. Thus, in 
this paper, the password-based user authentication using 
neural network was implemented. In the neural network 
training part, local adaptive technique called R-prop 
technique was embedded in the Multilayer Perceptrons 
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neural network and comparison of the learning parameter in 
the training phase was done in order to investigate the 
performance of the network training for the user 
authentication system in the smart home. The main objective 
of this paper is to compare the Mean Square Error (MSE), 
training time and also number of epochs using different 
transfer functions and performances of different number of 
training sets for Combination B with 250 hidden neurons. 

 

II. DATA AND PROCESS 
The Multilayer Perceptions neural network has been setup 

and the data collected was used to train the network. In this 
paper, training set consists of 200 sets of User ID and 
Password whereas the password is suggested should at least 
contain 8 characters, one alphanumeric, one mixed case and 
at least one special character (not A-Z or 0-9) since password 
quality refers to the entropy of a password and is necessary to 
ensure the security of the user’s accounts. A good password is 
password that is impossible to guess by other people [1, 3, 7, 
8].  After the training process, 85 sets of User ID and 
Password were used as testing set in order to measure the 
simulation output. For the testing set, 55 sets were correct 
User ID and Password while 15 sets were Wrong User ID 
with correct password and 15 sets were correct User ID with 
wrong Password. In this paper, all the information input by 
the user (User ID and Password) were converted into binary 
form since the neural network can only recognize the 
numerical data and the range of input and output value for 
neural network is 0 and 1. The User ID and Password had to 
be normalized before the network training and every single 
data was assigned to 7 bits binary code.  

 

III. NEURAL NETWORK IMPLEMENTATION 
The Multilayer Perceptions neural network used in the 

user authentication is the supervised learning method where 
the training pattern includes the known input and the 
expected output. Besides, the training provides the network 
parameters and weight values where the weights values are 
adjusted by the training patterns [5, 6]. For the local adaptive 
technique, R-prop was chosen to be embedded into the neural 
network training phase. The implementing of neural network 
training algorithms is shown in figure 1. 
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Figure 1: Figure 1 shown the Block diagram of the Neural 
Network Implementation 
 

From the figure 1, the first step of neural network 
implementation is to setup the feed-forward 
back-propagation neural network. Before training the 
network, the network is initialized in order to returns the 
neural network net with the weight and bias values updated 
according to the network initialization function. The network 
is ready for training once the network weights and biases are 
initialized. A set of examples of proper network behavior is 
required for the training process. Simulation of the network 
output is done after the network had been trained. There are 
ten simulations were taken for each training process in order 
to obtain best result since that every training would yield vary 
simulation result [2]. After the training process, the network 
was measured by Mean Square Error (MSE) since the 
network performance shows reliability of the trained 
network. 

 

IV. RESULTS AND DISCUSSION 
In this paper, the performance of training time, number of 

epochs and also Mean Square Error (MSE) of RPROP 
learning algorithm were compared base on different transfer 
functions and different number of training sets for 
combination B with 250 hidden neurons. Besides, some 
training parameters of the training algorithm were adjusted 
in order to obtain the best training network. The appropriate 
parameters for the algorithm were obtained by using trial and 
error method. 
 

A. Compare the Performance Using Different Transfer 
Functions 

 
The overall performance of implementing different transfer 

functions to the network was observed. 150 and 200 hidden 
neurons and one hidden layer were applied. The number of 
training set used to train the network for the comparison was 
200 sets. The training time, the number of epoch and MSE 
was the main concern because training using 
backpropagation without embedding R-prop technique was 
slow [1], [3], [4].     

  
 Three combinations of transfer function for hidden layer 
and output layer were carried out. First, hidden layer used 

Logsig and output layer used Tansig (Combination A). 
Secondly, Tansig was applied to hidden layer and Purelin 
was applied to output layer (Combination B). Finally, Logsig 
and Purelin were applied to hidden and output layer 
respectively (Combination C). 
 

1. Training Time 
 

The average training time taken to train the 200 sets of 
data using 150 and 200 hidden neurons were stated in Table 
1 and the comparison graph was shown figure 2. The training 
time was measured in minute and second (min:sec). 
 
Table 1: Training Time with Different Number of Hidden 
Neurons 

Simulation 

Transfer Funtion 

Combination A Combination B Combination C 
150 

Hidden 
Neurons 

200 
Hidden 
Neurons 

150 
Hidden 
Neurons 

200 
Hidden 
Neurons 

150 
Hidden 
Neurons 

200 
Hidden 
Neurons 

1 1:35 1:29 1:57 0:50 2:07 0:55 

2 1:30 1:25 2:04 0:50 1:58 0:53 

3 1:49 1:20 1:40 0:51 2:11 0:49 

4 1:43 1:21 1:52 0:52 2:01 0:49 

5 1:41 1:28 1:52 0:51 2:03 0:49 

6 1:34 1:26 2:04 0:51 1:50 0:50 

7 1:33 1:25 1:54 0:49 2:09 0:57 

8 1:42 1:26 2:09 0:49 2:03 0:47 

9 1:28 1:18 2:11 0:49 2:04 0:47 

10 1:46 1:23 2:14 0:46 2:12 0:53 

Average 1:38 1:24 1:59 0:49 2:03 0:50 

 

 
Figure 2: Training Time with Different Number of Hidden 
Neurons 
 
 

Table 1 and figure 2 shows the training time of the 
network with different transfer function. The average time 
taken to train the network for Combination A was 1 min 38 
sec and 1 min 24 sec for using 150 and 200 hidden neurons. 
Combination B used 1 min 59 sec and 49 sec to train the 
network for using 150 and 200 hidden neurons respectively. 
The average time taken by Combination C for using 150 and 
200 hidden neurons was 2 min 3 sec and 50 sec respectively.  
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2. Number of Epochs 
 

 Number of epochs used to train the network was recorded 
and shown in table 2 and the average of number of epochs 
with different transfer function was plotted and shown in 
figure 3. 
 
Table 2: Number of Epochs with Different Number of Hidden 
Neurons 

Simulation 

Transfer Funtion 

Combination A Combination B Combination C 
150 

Hidden 
Neurons 

200 
Hidden 
Neurons 

150 
Hidden 
Neurons 

200 
Hidden 
Neurons 

150 
Hidden 
Neurons 

200 
Hidden 
Neurons 

1 1067 919 1318 518 1468 577 

2 1059 878 1412 504 1420 562 

3 1181 817 1148 502 1531 529 

4 1169 824 1254 517 1406 530 

5 1146 890 1262 505 1441 528 

6 1126 889 1417 507 1286 537 

7 1115 901 1293 486 1486 602 

8 1215 898 1447 486 1421 510 

9 1004 825 1467 482 1443 516 

10 1210 877 1478 459 1504 583 

Average 1129.2 871.8 1349.6 496.6 1440.6 547.4 

 
 

 
Figure 3: Number of Epochs with Different Number of 
Hidden Neurons 
 

The training time of the network was dependent to the 
number of epochs during the training. Hence, the number of 
epochs had the same scenario as the training time. 
Combination A stopped training at an average of 1129.2 and 
871.8 epochs by using 150 and 200 hidden neurons 
respectively. An average of 1349.6 and 496.6 epochs were 
taken to train the network for Combination B using 150 and 
200 hidden neurons respectively. Combination C used 
1440.6 and 547.4 epochs for training by implementing 150 
and 200 hidden neurons respectively. 

 
 
 
 
 
 

3. Mean Square Error (MSE) 
 

The MSE results using different transfer function in 
hidden layer and output layer was recorded. Data was shown 
in table 3 and figure 4.  
 
Table 3: MSE with Different Number of Hidden Neurons 

Simulation 

Transfer Funtion 

Combination A Combination B Combination C 

150 
Hidden 
Neurons 

200 
Hidden 
Neurons 

150 
Hidden 
Neurons 

200 
Hidden 
Neurons 

150 
Hidden 
Neurons 

200 
Hidden 
Neurons 

1 0 . 004800 0 . 003730 0 . 001018 0 . 000975 0 . 001005 0 . 001066 

2 0 . 004090 0 . 003200 0 . 000875 0 . 000985 0 . 001045 0 . 000951 

3 0 . 005690 0 . 003820 0 . 000993 0 . 000954 0 . 000983 0 . 000945 

4 0 . 005330 0 . 003460 0 . 001044 0 . 001017 0 . 000978 0 . 0 0 1 0 6 

5 0 . 005240 0 . 003020 0 . 001028 0 . 001008 0 . 000949 0 . 000982 

6 0 . 004180 0 . 002580 0 . 000997 0 . 000988 0 . 000996 0 . 001059 

7 0 . 005240 0 . 003730 0 . 001011 0 . 000989 0 . 001003 0 . 000945 

8 0 . 005240 0 . 003110 0 . 000956 0 . 001031 0 . 000995 0 . 001056 

9 0 . 004440 0 . 004180 0 . 000976 0 . 001022 0 . 000976 0 . 000936 

10 0 . 004440 0 . 004350 0 . 000905 0 . 0 0 0 9 6 0 . 000974 0 . 001119 

Average 0.004869 0 .003518 0 .000980 0 .000993 0 .000990 0 .001012 

 
 

 
Figure 4: MSE Results with Different Transfer Function 
 

Comparing the MSE results with different transfer 
function used in hidden and output layer, it was observed that 
by implementing Combination A in the network gave highest 
average MSE which was 0.004869 and 0.003518 for 150 
hidden neurons and 200 hidden neurons respectively. 
Combination B had an average MSE 0.000980 for 150 
hidden neurons and 0.000993 for 200 hidden neurons. The 
MSE results for Combination C was 0.000990 (150 hidden 
neurons) and 0.001012 (200 hidden neurons). 
 

From the results obtained, Combination B gave the best 
average MSE result, Combination A required less time and 
less number of epochs to do the training for 150 hidden 
neurons. However, for 200 hidden neurons, Combination B 
required less time and number of epochs to train the network. 
Furthermore, for a security system, the accuracy for the 
training was the main concern. Hence, comparing the MSE 
results, training time and number of epochs of the training, it 
was observed that by using Tansig and Purelin as the transfer 



 
 

 

function for hidden and output layer respectively provide the 
optimum training.  
 

B. Compare the Performance of Different Number of 
Training Sets 

 
From the results showing in the section A for combination 

A, B and C, it is observed that Combination B obtained the 
optimum results for 200 hidden neurons.  The transfer 
function Tansig was used in the hidden layer and Purelin was 
used in the output layer for Combination B. However, the 
number of hidden neurons applied was increased to 250 this 
time. The number of training sets used for the experiment 
was 50, 100, 150 and 200 sets respectively. The results of 
MSE from the simulation were shown in table 4 and figure 5. 
 

Table 4: MSE Results with Different Number of Training 
Sets 

Simulation 
No. of Training Sets 

50 100 150 200 

1 0.000941 0.000973 0.000976 0.000975 

2 0.000848 0.000963 0.000983 0.000944 

3 0.000958 0.000961 0.000993 0.001003 

4 0.000986 0.000967 0.000987 0.000968 

5 0.000973 0.001000 0.000975 0.001026 

6 0.000989 0.000983 0.000976 0.000997 

7 0.000978 0.000980 0.000995 0.001000 

8 0.000973 0.000985 0.000988 0.000959 

9 0.000978 0.000967 0.000995 0.000978 

10 0.000933 0.000976 0.000993 0.000941 

Average 0.000956 0.000975 0.000986 0.000979 

 
                  

 
Figure 5: MSE Results with Different Number of Training 
Sets 
 

The data in table 4 and figure 5 showed the MSE versus 
different number of training sets used. It was observed that 
the number of training sets does not affect much on the MSE 
results. The highest MSE from 150 sets and lowest MSE 
from 50 sets only have a difference of 0.00003. This was due 
to the testing sets were extracted from the training sets, 
hence, as long as the training was good enough, the 
simulated output would be the identical to the target trained. 

MSE of 0.001 would still be able to provide the identical 
simulated output. 
 

Apart from that, simulation also done to compare the 
training time with different number of training sets and the 
simulation results were shows in table 5 and figure 6. 
 
Table 5: Training Time with Different Number of Training 
Sets 

Simulation 
No. of Training Sets 

50 100 150 200 

1 0:01 0:05 0:12 0:34 

2 0:02 0:05 0:13 0:30 

3 0:02 0:05 0:12 0:30 

4 0:01 0:05 0:12 0:30 

5 0:02 0:05 0:12 0:29 

6 0:01 0:05 0:12 0:31 

7 0:02 0:04 0:12 0:30 

8 0:01 0:05 0:12 0:30 

9 0:02 0:05 0:13 0:29 

10 0:01 0:05 0:13 0:28 

Average 0:01 0:05 0:12 0:30 

 
 

 
Figure 6: Training Time with Different Number of Training 
Sets 
 

From the table 5 and figure 6, it is observed that the 
training time increased as the number of training sets was 
increased. Besides, to train 50 sets of User ID and password 
only required 1 sec, 100 sets only required 5 sec, 150 sets 
required 12 sec and 200 sets used 30 sec to train the network. 
All the training time from 50 sets to 200 sets was acceptable. 
 

Finally, the simulation was done to compare the number of 
epochs versus the number of training sets and the simulation 
results was shows in table 6 and figure 7. 
 
 
 
 
 
 
 
 



 
 

 

Table 6: Number of Epochs with Different Number of 
Training Sets 

Simulation 
No. of Training Sets 

50 100 150 200 

1 35 72 144 297 

2 36 69 150 296 

3 34 72 143 292 

4 34 73 146 289 

5 35 71 140 283 

6 34 74 144 297 

7 36 68 145 290 

8 33 74 143 286 

9 35 73 149 278 

10 33 70 156 276 

Average 34.5 71.6 146 288.4 

 
 

 
Figure 7: Number of Epochs with Different Number of 
Training Sets 
 

The Number of Epochs increased as the number of 
training sets was increased. By using 50 sets of training sets, 
the number of epochs was 34.5. 100 and 150 training sets had 
71.6 and 146 training epochs respectively. Lastly, 200 sets of 
training sets have 288.4 epochs during the training. The 
results were shown in table 6 and figure 7. 

 

V. CONCLUSION 
As a conclusion, the objective has been achieved. A local 

adaptive learning algorithm, R-prop, has been embedded to 
train the network. Besides, from the comparison results 
obtained in the section VI, it is observed that, implementing 
Tansig in the hidden layer and Pureline in the output layer 
(combination B) with 200 hidden neurons yield the best 
results  for training time and the number of epochs which is 
0.49 sec and 496.6 epochs respectively. Apart from that, 
Comparison results for Training Time, Number of Epochs 
and MSE based on different number of training sets shows 
that as the number of training sets increased, the training 
time and number of epochs to train the network increased 
proportionally. Furthermore, embedding an R-prop 
technique in the neural network training accelerates the 
training time.  
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