

Abstract— User authentication is very important in a
networked smart environment since that security has been an
important issue and concern in the smart home system.
Currently, a vast majority of systems use passwords as the
means of authentication because it is easier to implement.
Although the password-based is very popular in the user
authentication, but there are some drawbacks. Thus, in this
paper, R-prop technique was embedded in the Multilayer
Perceptrons neural network to investigate the performance of
network training. The learning parameters in the neural
network training for authentication system using R-Prop
technique were compared. The comparisons were based on
training time, number of epochs and Mean Square Error (MSE)
using different transfer functions. Three combinations of
transfer function for hidden and output were carried out. First,
hidden layer used logsig and output layer used Tansig
(combination A). Secondly, Tansig was applied to hidden layer
and Purelin was applied to output layer (Combination B).
Finally, Logsig and Purelin were applied to hidden layer and
output layer respectively (Combination C). Besides, the
performances of different number of training sets were also
compared for Combination B with 250 hidden neurons. From
the results obtained, it is observed that implementing
Combination B for 200 hidden neurons yield optimum results.
Apart from that, as the training sets increased, the MSE,
training time and also number of epochs increased
proportionally.

Index Terms— Learning Parameter, Neural Network,

R-Prop, User Authentication

I. INTRODUCTION
Nowadays, there are a lot of method proposed for identifying
the login user in the market, likewise, fingerprint, voice
recognition, face detection, CCTV and etc. Indeed these
systems are very powerful and secure; however they are not
widely used due to the price of the product. Password-based
user authentication is inexpensive and affordable. Thus, in
this paper, the password-based user authentication using
neural network was implemented. In the neural network
training part, local adaptive technique called R-prop
technique was embedded in the Multilayer Perceptrons

Manuscript received October 23, 2009. This work was supported in part by
Osaka Gas Grant UNIIMAS/15/01-05.08Jld.11(75).

A. Joseph is with the Faculty of Engineering, Universiti Malaysia Sarawak,
94300 Kota Samarahan. Malaysia. (phone: +60-82-583272; fax:
+60-82-583410, email: jannie@feng.unimas.my)

T.L.Jee, D.B.L. Bong, L.C.Kho and D.D.A. Mat are with the Faculty of
Engineering, Universiti Malaysia Sarawak, 94300 Kota Samarahan. Malaysia.

neural network and comparison of the learning parameter in
the training phase was done in order to investigate the
performance of the network training for the user
authentication system in the smart home. The main objective
of this paper is to compare the Mean Square Error (MSE),
training time and also number of epochs using different
transfer functions and performances of different number of
training sets for Combination B with 250 hidden neurons.

II. DATA AND PROCESS
The Multilayer Perceptions neural network has been setup

and the data collected was used to train the network. In this
paper, training set consists of 200 sets of User ID and
Password whereas the password is suggested should at least
contain 8 characters, one alphanumeric, one mixed case and
at least one special character (not A-Z or 0-9) since password
quality refers to the entropy of a password and is necessary to
ensure the security of the user’s accounts. A good password is
password that is impossible to guess by other people [1, 3, 7,
8]. After the training process, 85 sets of User ID and
Password were used as testing set in order to measure the
simulation output. For the testing set, 55 sets were correct
User ID and Password while 15 sets were Wrong User ID
with correct password and 15 sets were correct User ID with
wrong Password. In this paper, all the information input by
the user (User ID and Password) were converted into binary
form since the neural network can only recognize the
numerical data and the range of input and output value for
neural network is 0 and 1. The User ID and Password had to
be normalized before the network training and every single
data was assigned to 7 bits binary code.

III. NEURAL NETWORK IMPLEMENTATION
The Multilayer Perceptions neural network used in the

user authentication is the supervised learning method where
the training pattern includes the known input and the
expected output. Besides, the training provides the network
parameters and weight values where the weights values are
adjusted by the training patterns [5, 6]. For the local adaptive
technique, R-prop was chosen to be embedded into the neural
network training phase. The implementing of neural network
training algorithms is shown in figure 1.

Comparison of Learning Parameters Using
R-Prop Technique in The Neural Network
Training For User Authentication System

A. Joseph, T.L. Jee, D.B.L. Bong, L.C.Kho, D.D.A .Mat

Figure 1: Figure 1 shown the Block diagram of the Neural
Network Implementation

From the figure 1, the first step of neural network
implementation is to setup the feed-forward
back-propagation neural network. Before training the
network, the network is initialized in order to returns the
neural network net with the weight and bias values updated
according to the network initialization function. The network
is ready for training once the network weights and biases are
initialized. A set of examples of proper network behavior is
required for the training process. Simulation of the network
output is done after the network had been trained. There are
ten simulations were taken for each training process in order
to obtain best result since that every training would yield vary
simulation result [2]. After the training process, the network
was measured by Mean Square Error (MSE) since the
network performance shows reliability of the trained
network.

IV. RESULTS AND DISCUSSION
In this paper, the performance of training time, number of

epochs and also Mean Square Error (MSE) of RPROP
learning algorithm were compared base on different transfer
functions and different number of training sets for
combination B with 250 hidden neurons. Besides, some
training parameters of the training algorithm were adjusted
in order to obtain the best training network. The appropriate
parameters for the algorithm were obtained by using trial and
error method.

A. Compare the Performance Using Different Transfer
Functions

The overall performance of implementing different transfer

functions to the network was observed. 150 and 200 hidden
neurons and one hidden layer were applied. The number of
training set used to train the network for the comparison was
200 sets. The training time, the number of epoch and MSE
was the main concern because training using
backpropagation without embedding R-prop technique was
slow [1], [3], [4].

 Three combinations of transfer function for hidden layer
and output layer were carried out. First, hidden layer used

Logsig and output layer used Tansig (Combination A).
Secondly, Tansig was applied to hidden layer and Purelin
was applied to output layer (Combination B). Finally, Logsig
and Purelin were applied to hidden and output layer
respectively (Combination C).

1. Training Time

The average training time taken to train the 200 sets of
data using 150 and 200 hidden neurons were stated in Table
1 and the comparison graph was shown figure 2. The training
time was measured in minute and second (min:sec).

Table 1: Training Time with Different Number of Hidden
Neurons

Simulation

Transfer Funtion

Combination A Combination B Combination C
150

Hidden
Neurons

200
Hidden
Neurons

150
Hidden
Neurons

200
Hidden
Neurons

150
Hidden
Neurons

200
Hidden
Neurons

1 1:35 1:29 1:57 0:50 2:07 0:55

2 1:30 1:25 2:04 0:50 1:58 0:53

3 1:49 1:20 1:40 0:51 2:11 0:49

4 1:43 1:21 1:52 0:52 2:01 0:49

5 1:41 1:28 1:52 0:51 2:03 0:49

6 1:34 1:26 2:04 0:51 1:50 0:50

7 1:33 1:25 1:54 0:49 2:09 0:57

8 1:42 1:26 2:09 0:49 2:03 0:47

9 1:28 1:18 2:11 0:49 2:04 0:47

10 1:46 1:23 2:14 0:46 2:12 0:53

Average 1:38 1:24 1:59 0:49 2:03 0:50

Figure 2: Training Time with Different Number of Hidden
Neurons

Table 1 and figure 2 shows the training time of the
network with different transfer function. The average time
taken to train the network for Combination A was 1 min 38
sec and 1 min 24 sec for using 150 and 200 hidden neurons.
Combination B used 1 min 59 sec and 49 sec to train the
network for using 150 and 200 hidden neurons respectively.
The average time taken by Combination C for using 150 and
200 hidden neurons was 2 min 3 sec and 50 sec respectively.

Setup the network

Initialize the network

Train the network

Simulate the Network

Measurement of the network performance

2. Number of Epochs

 Number of epochs used to train the network was recorded
and shown in table 2 and the average of number of epochs
with different transfer function was plotted and shown in
figure 3.

Table 2: Number of Epochs with Different Number of Hidden
Neurons

Simulation

Transfer Funtion

Combination A Combination B Combination C
150

Hidden
Neurons

200
Hidden
Neurons

150
Hidden
Neurons

200
Hidden
Neurons

150
Hidden
Neurons

200
Hidden
Neurons

1 1067 919 1318 518 1468 577

2 1059 878 1412 504 1420 562

3 1181 817 1148 502 1531 529

4 1169 824 1254 517 1406 530

5 1146 890 1262 505 1441 528

6 1126 889 1417 507 1286 537

7 1115 901 1293 486 1486 602

8 1215 898 1447 486 1421 510

9 1004 825 1467 482 1443 516

10 1210 877 1478 459 1504 583

Average 1129.2 871.8 1349.6 496.6 1440.6 547.4

Figure 3: Number of Epochs with Different Number of
Hidden Neurons

The training time of the network was dependent to the
number of epochs during the training. Hence, the number of
epochs had the same scenario as the training time.
Combination A stopped training at an average of 1129.2 and
871.8 epochs by using 150 and 200 hidden neurons
respectively. An average of 1349.6 and 496.6 epochs were
taken to train the network for Combination B using 150 and
200 hidden neurons respectively. Combination C used
1440.6 and 547.4 epochs for training by implementing 150
and 200 hidden neurons respectively.

3. Mean Square Error (MSE)

The MSE results using different transfer function in
hidden layer and output layer was recorded. Data was shown
in table 3 and figure 4.

Table 3: MSE with Different Number of Hidden Neurons

Simulation

Transfer Funtion

Combination A Combination B Combination C

150
Hidden
Neurons

200
Hidden
Neurons

150
Hidden
Neurons

200
Hidden
Neurons

150
Hidden
Neurons

200
Hidden
Neurons

1 0 . 004800 0 . 003730 0 . 001018 0 . 000975 0 . 001005 0 . 001066

2 0 . 004090 0 . 003200 0 . 000875 0 . 000985 0 . 001045 0 . 000951

3 0 . 005690 0 . 003820 0 . 000993 0 . 000954 0 . 000983 0 . 000945

4 0 . 005330 0 . 003460 0 . 001044 0 . 001017 0 . 000978 0 . 0 0 1 0 6

5 0 . 005240 0 . 003020 0 . 001028 0 . 001008 0 . 000949 0 . 000982

6 0 . 004180 0 . 002580 0 . 000997 0 . 000988 0 . 000996 0 . 001059

7 0 . 005240 0 . 003730 0 . 001011 0 . 000989 0 . 001003 0 . 000945

8 0 . 005240 0 . 003110 0 . 000956 0 . 001031 0 . 000995 0 . 001056

9 0 . 004440 0 . 004180 0 . 000976 0 . 001022 0 . 000976 0 . 000936

10 0 . 004440 0 . 004350 0 . 000905 0 . 0 0 0 9 6 0 . 000974 0 . 001119

Average 0.004869 0 .003518 0 .000980 0 .000993 0 .000990 0 .001012

Figure 4: MSE Results with Different Transfer Function

Comparing the MSE results with different transfer
function used in hidden and output layer, it was observed that
by implementing Combination A in the network gave highest
average MSE which was 0.004869 and 0.003518 for 150
hidden neurons and 200 hidden neurons respectively.
Combination B had an average MSE 0.000980 for 150
hidden neurons and 0.000993 for 200 hidden neurons. The
MSE results for Combination C was 0.000990 (150 hidden
neurons) and 0.001012 (200 hidden neurons).

From the results obtained, Combination B gave the best
average MSE result, Combination A required less time and
less number of epochs to do the training for 150 hidden
neurons. However, for 200 hidden neurons, Combination B
required less time and number of epochs to train the network.
Furthermore, for a security system, the accuracy for the
training was the main concern. Hence, comparing the MSE
results, training time and number of epochs of the training, it
was observed that by using Tansig and Purelin as the transfer

function for hidden and output layer respectively provide the
optimum training.

B. Compare the Performance of Different Number of
Training Sets

From the results showing in the section A for combination

A, B and C, it is observed that Combination B obtained the
optimum results for 200 hidden neurons. The transfer
function Tansig was used in the hidden layer and Purelin was
used in the output layer for Combination B. However, the
number of hidden neurons applied was increased to 250 this
time. The number of training sets used for the experiment
was 50, 100, 150 and 200 sets respectively. The results of
MSE from the simulation were shown in table 4 and figure 5.

Table 4: MSE Results with Different Number of Training
Sets

Simulation
No. of Training Sets

50 100 150 200

1 0.000941 0.000973 0.000976 0.000975

2 0.000848 0.000963 0.000983 0.000944

3 0.000958 0.000961 0.000993 0.001003

4 0.000986 0.000967 0.000987 0.000968

5 0.000973 0.001000 0.000975 0.001026

6 0.000989 0.000983 0.000976 0.000997

7 0.000978 0.000980 0.000995 0.001000

8 0.000973 0.000985 0.000988 0.000959

9 0.000978 0.000967 0.000995 0.000978

10 0.000933 0.000976 0.000993 0.000941

Average 0.000956 0.000975 0.000986 0.000979

Figure 5: MSE Results with Different Number of Training
Sets

The data in table 4 and figure 5 showed the MSE versus
different number of training sets used. It was observed that
the number of training sets does not affect much on the MSE
results. The highest MSE from 150 sets and lowest MSE
from 50 sets only have a difference of 0.00003. This was due
to the testing sets were extracted from the training sets,
hence, as long as the training was good enough, the
simulated output would be the identical to the target trained.

MSE of 0.001 would still be able to provide the identical
simulated output.

Apart from that, simulation also done to compare the
training time with different number of training sets and the
simulation results were shows in table 5 and figure 6.

Table 5: Training Time with Different Number of Training
Sets

Simulation
No. of Training Sets

50 100 150 200

1 0:01 0:05 0:12 0:34

2 0:02 0:05 0:13 0:30

3 0:02 0:05 0:12 0:30

4 0:01 0:05 0:12 0:30

5 0:02 0:05 0:12 0:29

6 0:01 0:05 0:12 0:31

7 0:02 0:04 0:12 0:30

8 0:01 0:05 0:12 0:30

9 0:02 0:05 0:13 0:29

10 0:01 0:05 0:13 0:28

Average 0:01 0:05 0:12 0:30

Figure 6: Training Time with Different Number of Training
Sets

From the table 5 and figure 6, it is observed that the
training time increased as the number of training sets was
increased. Besides, to train 50 sets of User ID and password
only required 1 sec, 100 sets only required 5 sec, 150 sets
required 12 sec and 200 sets used 30 sec to train the network.
All the training time from 50 sets to 200 sets was acceptable.

Finally, the simulation was done to compare the number of
epochs versus the number of training sets and the simulation
results was shows in table 6 and figure 7.

Table 6: Number of Epochs with Different Number of
Training Sets

Simulation
No. of Training Sets

50 100 150 200

1 35 72 144 297

2 36 69 150 296

3 34 72 143 292

4 34 73 146 289

5 35 71 140 283

6 34 74 144 297

7 36 68 145 290

8 33 74 143 286

9 35 73 149 278

10 33 70 156 276

Average 34.5 71.6 146 288.4

Figure 7: Number of Epochs with Different Number of
Training Sets

The Number of Epochs increased as the number of
training sets was increased. By using 50 sets of training sets,
the number of epochs was 34.5. 100 and 150 training sets had
71.6 and 146 training epochs respectively. Lastly, 200 sets of
training sets have 288.4 epochs during the training. The
results were shown in table 6 and figure 7.

V. CONCLUSION
As a conclusion, the objective has been achieved. A local

adaptive learning algorithm, R-prop, has been embedded to
train the network. Besides, from the comparison results
obtained in the section VI, it is observed that, implementing
Tansig in the hidden layer and Pureline in the output layer
(combination B) with 200 hidden neurons yield the best
results for training time and the number of epochs which is
0.49 sec and 496.6 epochs respectively. Apart from that,
Comparison results for Training Time, Number of Epochs
and MSE based on different number of training sets shows
that as the number of training sets increased, the training
time and number of epochs to train the network increased
proportionally. Furthermore, embedding an R-prop
technique in the neural network training accelerates the
training time.

ACKNOWLEDGEMENT

 The work reported in this paper is supported in part by the
Universiti Malaysia Sarawak, Department of Electronic
under Osaka Gas Grant UNIMAS/15/01-05.08Jld.11(75).

REFERENCES

[1] I-C. Lin, H-H. Ou, M-S. Hwang, A User

Authentication System using backpropagation
Network, Neural Comput & Applic, 2005.

[2] A. Pavelka, A. Proch’azka, “Algorithms for

Initalization of Neural Network Weights”, Institute of
Chemical technology, department of Computing and
Control Engineering

[3] S-Z Reyhani, M-Mahdavi, “User Authentication

Using Neural Network in Smart Home Networks”,
International Journal of Smart Home, Vol. 1, July
2007, pp147+.

[4] S.Wang, H.Wang, “ Password Authentication Using

Hopfield Neural Networks”, IEEE Transactions on
Systems, man, and Cybernertics, Vol 38, No 2, March
2008.

[5] R. Berteig, NeuralystTM User Guide, California:

Cheshire Enginnering Corporation 2003

[6] K. Mehrotra, C.K.Mohan, S. Ranka, Elments of

Artificial Neural Networks, Cambridge: The Mit
Press, 1997

[7] U-Manber, A Simple Scheme to Make Passwords

Based on One way Functions Much Harder to Crack,
2000

[8] M. Curphey, A Guide to Building Secure Web

Applications, The Open Web Application Security
Project (OWASP), Boston, USA, 2002

	INTRODUCTION
	data and process
	Neural network implementation
	results and discussion
	Compare the Performance Using Different Transfer Functions
	Training Time
	Compare the Performance of Different Number of Training Sets

	Conclusion

