

Document Clustering Through Non-Negative
Matrix Factorization: A Case Study of Hadoop for

Computational Time Reduction of Large Scale
Documents

Bishnu Prasad Gautam, Dipesh Shrestha, Members IAENG1

Abstract— In this paper we discuss a new model for document
clustering which has been adapted using non-negative matrix
factorization method. The key idea is to cluster the documents
after measuring the proximity of the documents with the
extracted features. The extracted features are considered as the
final cluster labels and clustering is done using cosine similarity
which is equivalent to k-means with a single turn. This model
was implemented using apache lucene project for indexing
documents and mapreduce framework of apache hadoop
project for parallel implementation of k-means algorithm. Since
experiments were carried only in one cluster of Hadoop, the
significant reduction in time was obtained by mapreduce
implementation when clusters size exceeded 9 i.e. 40 documents
averaging 1.5 kilobytes. Thus it is concluded that the feature
extracted using NMF can be used to cluster documents
considering them to be final cluster labels as in k-means, and for
large scale documents, the parallel implementation using
mapreduce can lead to reduction of computational time. We
have termed this model as KNMF (K-means with NMF
algorithm).

Index Terms— Document Clustering, KNMF, MapReduce

1. INTRODUCTION
The need for the organisation of data is a must for a quick

and efficient retrieval of information. A robust means for
organisation of data in any organisation has been the use of
databases. Databases like the relational, object-oriented or
object-relational databases, all have well structured format to
keep data. Not all information that an organisation generates
is kept or can be kept in databases. Information is stored in
huge amount in form of unstructured or semi-structured
documents. Organising these documents into meaningful
groups is a typical sub-problem of Information Retrieval, in
which there is need to learn about the general content of data,
Cutting D et al. [1].

1.1 Document clustering

1 Bishnu Prasad Gautam is affiliated with Wakkanai Hokusei Gakuen
University, Wakabadai 1 chome 2290-28, Wakkanai, Hokkaido, Japan.
Currently doing research in cloud computing, networking and distributed
computing(Contact phone: +81-162-32-7511, Fax: +81-162-32-7500,
e-mail: gautam@wakhok.ac.jp)
Dipesh Shrestha was affiliated with Wakkanai Hokusei Gakuen University,
Wakkanani, Hokkaido, Japan. His research interests are data mining, cloud
computing and system engineering. He is now working as a System
Engineer with DynaSystem Co., Ltd., 1-14, North 6, West 6, Kita-ku,
Sapporo, Hokkaido, Japan (Contact phone: +81-11-708-6786, Fax:
+81-11-708-6787, e-mail: d_shre@dynasystem.co.jp)

Document clustering can loosely be defined as “clustering
of documents”. Clustering is a process of recognizing the
similarity and/or dissimilarity between the given objects and
thus, dividing them into meaningful subgroups sharing
common characteristics. Good clusters are those in which the
members inside the cluster have quite a deal of similar
characteristics. Since clustering falls under unsupervised
learning, predicting the documents to fall into certain class or
group isn't carried out. Methods under document clustering
can be categorized into two groups as follows:

a. Document partitioning (Flat Clustering)
This approach divides the documents into disjoint clusters.

The various methods in this category are : k-means clustering,
probabilistic clustering using the Naive Bayes or Gaussian
model, latent semantic indexing (LSI), spectral clustering,
non-negative matrix factorization (NMF).

b. Hierarchical clustering
This approach finds successive clusters of document from

obtained clusters either using bottom-up (agglomerate) or
top-bottom (divisive) approach.

1.2 Feature extraction

Traditional methods in document clustering use words as
measure to find similarity between documents. These words
are assumed to be mutually independent which in real
application may not be the case. Traditional Vector Space
Information Retrieval model uses words to describe the
documents but in reality the concepts, semantics, features,
and topics are what describe the documents. The extraction of
these features from the documents is called Feature
Extraction. The extracted features hold the most important
idea and concept pertaining to the documents. Feature
extraction has been successfully used in text mining with
unsupervised algorithms like Principal Components Analysis
(PCA), Singular Value Decomposition (SVD), and
Non-Negative Matrix Factorization (NMF) involving
factoring the document-word matrix [5].

1.3 Latent Semantic Indexing (LSI)

Latent Semantic Indexing (LSI) is a novel Information
Retrieval technique that was designed to address the
deficiencies of the classic VSM model. In order to overcome
the shortcomings of VSM model, LSI estimates the structure
in word usage through truncated Singular Value

knmkmn HWV ⋅≈

Decomposition (SVD). Retrieval is then performed using a
database of singular values and vectors obtained from the
truncated SVD. Application of LSI with results can be found
in Berry et al. [14] and Landauer et al. [15].

1.4 Non-negative matrix factorization (NMF)

Non-negative matrix factorization is a special type of
matrix factorization where the constraint of non-negativity is
on the lower ranked matrices. It decomposes a matrix Vmn
into the product of two lower rank matrices Wmk and Hkn,
such that Vmn is approximately equal to Wmk times Hkn.

 (1)

Where, k << min(m,n) and optimum value of k depends on

the application and is also influenced by the nature of the
collection itself [13]. In the application of document
clustering, k is the number of features to be extracted or it
may be called the number of clusters required. V contains
column as document vectors and rows as term vectors, the
components of document vectors represent the relationship
between the documents and the terms. W contains columns as
feature vectors or the basis vectors which may not always be
orthogonal (for example, when the features are not
independent and have some have overlaps). H contains
columns with weights associated with each basis vectors in
W.

Thus, each document vector from the document-term
matrix can be approximately composed by the linear
combination of the basis vectors from W weighted by the
corresponding columns from H. Let vi be any document
vector from matrix V, column vectors of W be {W1,
W2,,...,Wk} and the corresponding components from column
of matrix H be {hi1,hi2,...,hik} then,

 (2)

 NMF uses an iterative procedure to modify the initial
values of Wmk and Hkn so that the product approaches Vmn
The procedure terminates when the approximation error
converges or the specified number of iterations is reached.
The NMF decomposition is non-unique; the matrices W and
H depend on the NMF algorithm employed and the error
measure used to check convergence. Some of the NMF
algorithm types are, multiplicative update algorithm by Lee
and Seung [2], sparse encoding by Hoyer [10], gradient
descent with constrained least squares by Pauca [11] and
alternating least squares algorithm by Pattero [12]. They
differ in the measure cost function for measuring the
divergence between V and WH or by regularization of the W
and/or H matrices.

Two simple cost functions studied by Lee and Seung are
the squared error (or Frobenius norm) and an extension of the
Kullback-Leibler divergence to positive matrices. Each cost
function leads to a different NMF algorithm, usually
minimizing the divergence using iterative update rules. Using
the Frobenius norm for matrices, the objective function or
minimization problem can be stated as

 2
FWHV

HW,
min

− (3)

where, W and H are non-negative. The method proposed by
Lee and Sung [2] based on multiplicative update rules using

Forbenus norm, popularly called multiplicative method
(MM) which can be described as follows.

1.4.1 MM Algorithm
i. Initialize W and H with non-negative values.

ii. Iterate for each c, j, and i until within approximation
error converge or after l iterations:

(a)
()

() e+WHW

VW
HH

cj
T

cj
T

cjcj ← (4)

(b)
()

() e+WHH

VH
WW

ic
T

ic
T

icic ← (5)

In steps ii (a) and ii (b), e, a small positive parameter equal
to 10−9, is added to avoid division by zero. As observed from
the MM Algorithm, W and H remain non-negative during the
updates.

Lee and Seung [2] proved that with the above update rules
objective function (1) achieve monotonic convergence and is
non-increasing, and they becomes constant if and only if W
and H are at a stationary point. The solution to the objective
function is not unique.

1.5 Document clustering with NMF

Ding C et al. [8] shows that when Frobenius norm is used
as a divergence and adding an orthogonality constraint HT H
= I, NMF is equivalent to a relaxed form of k-means
clustering. Wei Xu et al. were the first ones to use NMF for
document clustering [6] where unit euclidean distance
constraint was added to column vectors in W. This work was
extended by Yang et al. [7] adding the sparsity constraints
because sparseness is one of the important characters of huge
data in semantic space. In both of the works the clustering has
been based on the interpretation of the elements of the
matrices. ikhkW++i2h2W+i1hWiv ⋅⋅⋅≈1

“There is an analogy with the SVD in interpreting the
meaning of the two non-negative matrices U and V. Each
element uij of matrix U represents the degree to which term fi
W belongs to cluster j, while each element vij of matrix V
indicates to which degree document i is associated with
cluster j. If document i solely belongs to cluster x, then vix will
take on a large value while rest of the elements in ith row
vector of V will take on a small value close to zero.”[6]

From the above statement, we can summarize the
relationship as UVW ≈ . From the work of Kanjani K [9] it is
seen that the accuracy of algorithm from Lee and Seung [2] is
higher than their derivatives [9], [10]. In our model, the
original multiplicative update proposed by Lee and Seung [2]
is undertaken.

2. METHODOLOGY
 The following section describes the proposed model in
detail. It includes the clustering method with the proposed
model and the parallel implementation strategy of k-means.
The latter parts contain explanation to the underlying
architecture of Hadoop Distributed File System (HDFS) over
which k-means algorithm is implemented.
2.1 The Proposed Model

 From hereinafter our model is termed as KNMF (k-means
with NMF algorithm). In KNMF the document clustering is

done on basis of the similarity between the extracted features
and each document. Let, extracted feature vectors be
F={f1,f2,f3....fk} computed by NMF. Let the documents in the
term-document matrix be V = {d1,d2,d3....dn}, then document
di is said to be the member of cluster fx if, the angle between
di and fx is minimum.

2.1.1 The methodology adapted
i. Construct the term-document matrix V from the files

of a given folder using term frequency-inverse
document frequency

ii. Normalize length of columns of V to unit Euclidean
length.

iii. Perform NMF based on Lee and Seung [2] on V and
get W and H using (1).

iv. Apply cosine similarity to measure distance between
the documents di and extracted features/vectors of W.
Assign di to wx if the angle between di and wx is
smallest. This is equivalent to k-means algorithm with
a single turn.

 To run the parallel version of k-means algorithm, Hadoop
is started in local reference mode and pseudo-distributed
mode and the k-means job is submitted to the JobClient. The
time taken from i though iii and the total time taken were
noted separately.

2.1.2 Steps in indexing the documents in a folder
i. Determine if the document is new; update the index of

non-updated document.
ii. If it's up to date then do nothing . While the document

is new, create a Lucene Document, if it's not updated
then delete the old document and create new Lucene
Document.

iii. Extract the words from the document.
iv. Remove the stop-words.
v. Apply Stemming.

vi. Store the created Lucene Document in index.
vii. Remove stray files.

 The Lucene Document contains three fields namely path,
contents and modified. These fields respectively store the
full-path of the document, the terms and modified date (to
seconds). The field path is used to uniquely identify
documents in the index; the field modified is used to avoid
re-indexing the documents if it's not modified. In the step vii
the documents which have been removed from the folder but
with entries in the index are removed from index. This step
has been followed to keep the optimal word dictionary size.
 In our document stop-words are filtered using the wordlist
from the project of Key Phrase Extraction Algorithm [4]
which defines some 499 stop-words. This worldlist can be
modified by the users if further stop-words are required to be
maintained. After the removal of stop-words, the document is
stemmed by the Porter algorithm [3].

2.2 Parallel implementation of k-means

 The parallel implementation strategy of k-means
algorithms in multi-core is described [20] as:
“In k-means [9], it is clear that the operation of computing
the Euclidean distance between the sample vectors and the
centroids can be parallelized by splitting the data into
individual subgroups and clustering samples in each
subgroup separately (by the mapper). In recalculating new
centroid vectors, we divide the sample vectors into subgroups,

compute the sum of vectors in each subgroup in parallel, and
finally the reducer will add up the partial sums and compute
the new centroids. ”
 In the same paper, it was noted that the performance of
k-means algorithm with map-reduce increased in an average
1.937 times than its serial implementation without
map-reduce. From as low as 1.888 times in Synthetic Time
Series (sample = 100001 and features = 10) to as high as
1.973 times in KDD Cup 999 (sample = 494021 and features
= 41). It also adds that it was possible to achieve 54 times
speedup on 64 cores.
 Indeed, the performance upgrading with the increase of
number of cores was almost linear. This paper was the source
for the foundation of Mahout project2 which include the
implementation strategy of k-means algorithm in map-reduce
over the Hadoop. Implementation of k-means in mapreduce
is also presented in lectures from [17]. Drost, I [16] describes
k-means of Mahout project. In [18] Gillick et al. studied the
performance of Hadoop's implementation of mapreduce and
has suggested performance enhancing guidance as well.

2.2.1 MapReduce in KNMF
 In the method proposed in this work, since the final
clusters are the features extracted from the NMF algorithms,
the parallelization strategy of map-reduce can be applied to
compute the distance between the data vectors and the feature
vectors. Since it requires only one iteration, it can be
considered as having only one map-reduce operation.
Furthermore, since the cluster centred computation isn't
needed, only one map operation is sufficient. The map
operation intakes the list of feature vectors and individual
data vectors and outputs the closest feature vector for the data
vector.
 For instance, we have list of data vectors V = {v1,v2,...vn}
and list of feature vectors W= {w1,w2,w3} computed by
NMF. Then,
 <vi, W> → map → <vi, wx>
where wx is the closest (cosine similarity) feature vector to
data vector vi.

2.3 Hadoop

 Hadoop is a distributed file system written in Java with an
additional implementation of Google's MapReduce
framework [19] that enables application based on
map-reduce paradigm to run over the file system. It provides
high throughput access to data which is makes it suitable for
working with large scale data (typical block size is 64 Mb).

2.3.1 Hadoop Distributed File System (HDFS)3

It is a distributed file system specifically designed for
fault-tolerant which can be deployed on low-cost hardware. It
is based on master/slave architecture. The master nodes are
called namenodes and every cluster has only one namenode.
It manages the filesystem namespace and access to files by
client (opening, closing, renaming files).

2 http://lucene.apache.org/mahout/
3 http://hadoop.apache.org/core/

Figure 1：Clustering with our model

The task of datanode is to manage the data stored in the
node (each file is stored in one of more blocks). It's
responsible for read/write requests from clients (creation,
deletion, replication of blocks).

All HDFS communication protocols are layered on top of
the TCP/IP protocol. Files in HDFS are write-once (read
many) and have strictly one writer at any time. The blocks of
a file are replicated for fault tolerance. The block size and
replication factor are configurable per file. Hadoop can be
run in Local(stand-alone), Pseudo-distributed mode or
Fully-distributed mode.

2.3.2 MapReduce framework in Hadoop
 The input and output to the map-reduce application can be
shown as follows:
(input) <k1,v1>→map→<k2,v2>→reduce <k3,v3> (output)
 The input data is divided and processed in parallel across
different machines, processes in map phase and the reduce
combines the data according the key to give final output. For
this sort of task the framework should be based on
master-slave architecture. Since HDFS is itself based on
master-slave architecture, MapReduce framework fits well in
Hadoop. Moreover usually the compute nodes and the
storage nodes are the same, that is, the map-reduce
framework and the distributed filesystem are running on the
same set of nodes.
This configuration allows the framework to effectively
schedule tasks on the nodes where data is already present,
resulting in very high aggregate bandwidth across the cluster.
 To implement map-reduce framework in Hadoop, there is
a single master called JobTracker per job. Job is the list of
task submitted to the MapReduce framework in Hadoop. The
master is responsible for scheduling the jobs' component
tasks on the slaves, monitoring them and re-executing the
failed tasks. There can be one slave or tasktracker per
cluster-node. The slaves execute the tasks as directed by the
master.

3. IMPLEMENTATION
Since Hadoop, Lucene and Mahout are built with Java

natively, it would be easy for the interoperability between the

components developed with Java. Considering this fact, Java
was chosen as the programming language for the
implementation 4 of our proposed model. Before the
documents can be clustered, they need to be indexed. For the
purpose of indexing, Lucene APIs have been utilized. The
documents are determined whether they are up-to-date in
index. If it's up to date then do nothing what follows. If the
document is new, a Lucene Document is created, if it's not
updated then old documents are deleted and new Lucene
Document is created. The stop-words are removed using
key-words from [4] and Potter Stemming [3] is applied.
Indexing is described in detail in Section 2.1.2.

Clustering has more complex steps than indexing of the
documents. It involves creation of document-term matrix
followed by the application of KNMF. Section 2.1.1
describes the steps in detail. Figure 1 shows the files to be
clustered in the left side frame and the resulting clusters and
folders along with their corresponding files is shown in the
lower middle frame. The upper middle frame shows the
extracted themes. The settings regarding number of clusters,
convergence delta for of k-means and NMF, stop words list is
done from the right side frame.

4. EXPERIMENTS AND RESULTS
Table i: List of Topics of 20 New Groups

comp.graphics
comp.os.ms-windows.misc
comp.sys.ibm.pc.hardware
comp.sys.mac.hardware
comp.windows.x

rec.autos
rec.motorcycles
rec.sport.baseball
rec.sport.hockey

sci.crypt
sci.electronics
sci.med
sci.space

Misc.forsale Talk.politics.misc
talk.politics.guns
talk.politics.mideast

talk.religion.mis
c
alt.atheism
soc.religion.christ
ian

4 This application (named Swami) is distributed under GNU GPL v3.0. It

is currently tested only on GNU/Linux and can be downloaded from
http://www.wakhok.ac.jp/~dipesh/swami

4.1 Data set Description

20 News Groups5 is a popular data set for text clustering
and classification. It has a collection about 20,000 documents
across 20 different newsgroups from Usenet. Each
newsgroup is stored in a subdirectory, with each article
stored as a separate file. Some of the newsgroups are closely
related with each other while others are highly unrelated.
Table i shows the topics of the newsgroups arranged by
Jason Renn6

4.2 Experiment

For the purpose of experimentation, clustering was done
using up to 10 groups. Each group containing five documents
were taken randomly and added to a folder. The folder was
indexed after removing the stop-words using KEA
stop-words [4] and applying Porter stemming [3]. Then the
clustering was done and results were noted. Other five
documents were taken out randomly from another group,
added to the folder, indexed and clustered accordingly. In this
way a total of 10 groups with 50 documents were clustered.
Clustering results were noted for three cases, without using
Hadoop, using Hadoop in local mode and finally using
Hadoop in pseudo-distributed mode.
In addition to this, for KNMF the following parameters were
used

i. NMF: convergence parameter = 0.001 and maximum
iteration = 10.

ii. K-Means: k = number of news groups in folder,
convergence parameter = 0.001, maximum iteration =
1, distance measure = cosine

Since the length of W was not normalized as suggested by

Xu et al. [6] there was no unique solution. For this purpose
the experiments with the highest values of AC among the
three cases as mentioned above was taken.

The performance of the clustering algorithm evaluated by
calculating the accuracy defined in [6] is illustrated as
follows:

Given a document di , let li and αi be the cluster label and
the label provided by the document corpus, respectively. The
AC is defined as follows:

()()
n

ilmap,iαδ=AC
∑

 (6)

where n denotes the total number of documents, δ(x, y) is
the delta function that equals one if x = y and equals zero
otherwise, and map(li) is the mapping function that maps
each cluster label li to the equivalent label from the document
corpus.

4.3 Results

Table ii shows the time taken by KNMF algorithm on the
20 Newsgroup collection on a Linux Ubuntu 8.04 machine
(1.66Ghz Intel Pentium Dual-core, 1G RAM) with and
without MapReduce (Map = 2). The numbers of clusters
were denoted by k and the accuracy is denoted by AC.
Further, the column Without Hadoop and Local Reference

5 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

Table ii: Results

k

AC Without
Hadoop

Local Reference
mode

Pseudo-Distri
buted mode

2 0.80 0.558/0.597 0.390/1.580 1/2

3 0.75 0.898/0.958 0.796/2.0 1/2

4 0.66 1.090/1.159 1.074/2.307 2/2

5 0.60 1.961/2.111 2.155/3.457 2/2

6 0.56 4.086/5.295 4.122/5.617 1/1

7 0.68 6.340/7.158 6.262/7.653 2/1

8 0.625 8.710/9.874 8.615/10.025 2/2

9 0.533 12.435/14.088 12.503/14.027 3/3

10 0.60 26.963/30.615 26.700/30.648 3/3

mode shows time taken by NMF and KNMF (The value at
numerator is time taken by NMF and the value at
denominator is total time taken by KNMF). The column
pseudo-distributed mode shows time taken by Map phases
(The numerator value is the time taken by map phase 1 and
the denominator value is the time taken by map phase 2).
The figure 2 shows the time taken during the clustering

phase which is calculated from table ii as (the total time taken
- time by NMF). For the pseudo-distributed mode of Hadoop,
the time taken by map phase is considered as the time taken
for clustering. It can be seen that the time taken by the map
phase of pseudo-distributed mode of Hadoop is quite steady
and rises only when the number of clusters increase to 8. The
time taken by local reference and serial implementation or
without using Hadoop exceeds time taken by
pseudo-distributed mode of Hadoop for cluster size
equivalent to 10.

Pseudo-Distributed

Local Reference

Without Hadoop

Figure 2：Time taken by the clustering phase (k-means with 1 turn)

6 http://people.csail.mit.edu/jrennie/

5. CONCLUSIONS
In this work, a new working model for document

clustering was given along with development of application
based on this model. This application can be used to organise
documents into sub-folders without having the knowledge
about the contents of the document. This really improves the
performance of information retrieval in any scenario. The
accuracy of model was tested and found to be 80% for 2
clusters of documents and 75% for 3 clusters and the results
averages to 65% when for 2 through 10 clusters. NMF has
shown to be a good measure for clustering document and this
work has also shown similar results when the extracted
features are used as the final cluster labels for k-means
algorithm. To scale the document clustering the proposed
model uses the map-reduce implementation of k-means from
Apache Hadoop Project and it has shown to scale even in a
single cluster computer when clusters size exceeded 9 i.e. 40
documents averaging 1.5 kilobytes.

REFERENCES
[1] Cutting, D, Karger, D, Pederson, J & Tukey, J (1992). Scatter/gather:

A cluster-based approach to browsing large document collections, In
Proceedings of ACM SIGIR.

[2] Lee, D & Seung, H (2001). Algorithms for non-negative matrix
factorization. In T. G. Dietterich and V. Tresp, editors, Advances in
Neural Information Processing Systems, volume 13, Proceedings of the
2000 Conference: 556-562,The MIT Press.

[3] Porter, MF (1980). "An algorithm for suffix stripping", Program, Vol.
14, No. 3, pages 130-137
 http://tartarus.org/~martin/PorterStemmer/def.txt

[4] Key Phrase Extraction Algorithm (KEA)
 http://www.nzdl.org/Kea/

[5] Guduru, N (2006). Text mining with support vector machines and
non-negative matrix factorization algorithm. Masters Thesis.
University of Rhode Island, CS Dept.

[6] Xu, W, Liu, X & Gong, Y (2003). Document clustering based on
non-negative matrix factorization, Proceedings of ACM SIGIR, pages
267–273.

[7] Yang, CF, Ye, M & Zhao, J (2005). Document clustering based on
non-negative sparse matrix factorization. International Conference on
advances in Natural Computation, pages 557–563.

[8] Ding, C, He X, & Simon, HD (2005). On the Equivalence of
Nonnegative Matrix Factorization and Spectral Clustering.
Proceedings in SIAM International Conference on Data Mining, pages
606-610.

[9] Kanjani, K (2007). Parallel Non Negative Matrix Factorization for
Document Clustering.

[10] Hoyer, P (2002). Non-Negative Sparse Coding. In Proceedings of the
IEEE Workshop on Neural Networks for Signal Processing, Martigny,
Switzerland.

[11] Pauca, V, Shahnaz, F, Berry, MW & Plemmons R (April 22-24, 2004).
Text Mining Using Non-Negative Matrix Factorizations. In
Proceedings of the Fourth SIAM International Conference on Data
Mining, Lake Buena Vista, FL.

[12] Amy, L & Carl, M (2006). ALS Algorithms Nonnegative Matrix
Factorization Text Mining.

[13] Guillamet, D & Vitria, J (2002). Determining a Suitable Metric when
Using Non-Negative Matrix Factorization. In Sixteenth International
Conference on Pattern Recognition (ICPR’02), Vol. 2, Quebec City,
QC, Canada.

[14] Berry, M, Dumais, ST & O'Brien, GW(1995). Using Linear Algebra
for Intelligent Information Retrieval. Illustration of the application of
LSA to document retrieval.

[15] Landauer, T, Foltz, PW & Laham, D(1998). Introduction to Latent
Semantic Analysis.. Discourse Processes 25: pages 259–284

[16] Drost, I (November 2008). Apache Mahout : Bringing Machine
Learning to Industrial Strength, In Proceedings of ApacheCon 2008,
pages 14-29, New Orleans

[17] Michels, S (July 5, 2007). Problem Solving on Large-Scale Clusters,
Lecture 4.

[18] Gillick, D, Faria, A & DeNero, J (December 18, 2006). MapReduce:
Distributed Computing for Machine Learning.

[19] Dean, J & Ghemawat, J (December 2004). MapReduce: Simplified
Data Processing on Large Clusters, In the Proceedings of the 6th Symp.
on Operating Systems Design and Implementation.

[20] Chu, CT, Kim, SK, Lin, YA, Yu, YY, Bradski, G, Yng, Andrew, &
Olukotun, K (2006). Map-Reduce for Machine Learning on Multicore,
NIPS

http://www.nzdl.org/Kea/

	INTRODUCTION
	Methodology
	Implementation
	Experiments And Results
	Conclusions

