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Abstract— In this paper we discuss a new model for document 
clustering which has been adapted using non-negative matrix 
factorization method. The key idea is to cluster the documents 
after measuring the proximity of the documents with the 
extracted features. The extracted features are considered as the 
final cluster labels and clustering is done using cosine similarity 
which is equivalent to k-means with a single turn. This model 
was implemented using apache lucene project for indexing 
documents and mapreduce framework of apache hadoop 
project for parallel implementation of k-means algorithm. Since 
experiments were carried only in one cluster of Hadoop, the 
significant reduction in time was obtained by mapreduce 
implementation when clusters size exceeded 9 i.e. 40 documents 
averaging 1.5 kilobytes. Thus it is concluded that the feature 
extracted using NMF can be used to cluster documents 
considering them to be final cluster labels as in k-means, and for 
large scale documents, the parallel implementation using 
mapreduce can lead to reduction of computational time. We 
have termed this model as KNMF (K-means with NMF 
algorithm). 
 

Index Terms— Document Clustering, KNMF, MapReduce 

1. INTRODUCTION 
The need for the organisation of data is a must for a quick 

and efficient retrieval of information. A robust means for 
organisation of data in any organisation has been the use of 
databases. Databases like the relational, object-oriented or 
object-relational databases, all have well structured format to 
keep data. Not all information that an organisation generates 
is kept or can be kept in databases. Information is stored in 
huge amount in form of unstructured or semi-structured 
documents. Organising these documents into meaningful 
groups is a typical sub-problem of Information Retrieval, in 
which there is need to learn about the general content of data, 
Cutting D et al.  [1]. 

 
1.1 Document clustering 
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Document clustering can loosely be defined as “clustering 
of documents”. Clustering is a process of recognizing the 
similarity and/or dissimilarity between the given objects and 
thus, dividing them into meaningful subgroups sharing 
common characteristics. Good clusters are those in which the 
members inside the cluster have quite a deal of similar 
characteristics. Since clustering falls under unsupervised 
learning, predicting the documents to fall into certain class or 
group isn't carried out. Methods under document clustering 
can be categorized into two groups as follows: 

 
a. Document partitioning (Flat Clustering) 
This approach divides the documents into disjoint clusters. 

The various methods in this category are : k-means clustering, 
probabilistic clustering using the Naive Bayes or Gaussian 
model, latent semantic indexing (LSI), spectral clustering, 
non-negative matrix factorization (NMF). 

 
b. Hierarchical clustering 
This approach finds successive clusters of document from 

obtained clusters either using bottom-up (agglomerate) or 
top-bottom (divisive) approach. 

 
1.2 Feature extraction 

Traditional methods in document clustering use words as 
measure to find similarity between documents. These words 
are assumed to be mutually independent which in real 
application may not be the case. Traditional Vector Space 
Information Retrieval model uses words to describe the 
documents but in reality the concepts, semantics, features, 
and topics are what describe the documents. The extraction of 
these features from the documents is called Feature 
Extraction. The extracted features hold the most important 
idea and concept pertaining to the documents. Feature 
extraction has been successfully used in text mining with 
unsupervised algorithms like Principal Components Analysis 
(PCA), Singular Value Decomposition (SVD), and 
Non-Negative Matrix Factorization (NMF) involving 
factoring the document-word matrix [5]. 

 
1.3 Latent Semantic Indexing (LSI) 

Latent Semantic Indexing (LSI) is a novel Information 
Retrieval technique that was designed to address the 
deficiencies of the classic VSM model. In order to overcome 
the shortcomings of VSM model, LSI estimates the structure 
in word usage through truncated Singular Value 
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Decomposition (SVD). Retrieval is then performed using a 
database of singular values and vectors obtained from the 
truncated  SVD. Application of LSI with results can be found 
in Berry et al. [14] and Landauer et al. [15]. 

 
1.4 Non-negative matrix factorization (NMF) 

Non-negative matrix factorization is a special type of 
matrix factorization where the constraint of non-negativity is 
on the lower ranked matrices. It decomposes a matrix Vmn 
into the product of two lower rank matrices Wmk and Hkn, 
such that Vmn is approximately equal to Wmk times Hkn. 

      (1) 
 
Where, k << min(m,n) and optimum value of k depends on 

the application and is also influenced by the nature of the 
collection itself [13]. In the application of document 
clustering, k is the number of features to be extracted or it 
may be called the number of clusters required. V contains 
column as document vectors and rows as term vectors, the 
components of document vectors represent the relationship 
between the documents and the terms. W contains columns as 
feature vectors or the basis vectors which may not always be 
orthogonal (for example, when the features are not 
independent and have some have overlaps). H contains 
columns with weights associated with each basis vectors in 
W. 

Thus, each document vector from the document-term 
matrix can be approximately composed by the linear 
combination of the basis vectors from W weighted by the 
corresponding columns from H. Let vi  be any document 
vector from matrix V, column vectors of W be {W1, 
W2,,...,Wk} and the corresponding components from column 
of matrix H be {hi1,hi2,...,hik} then, 

    (2) 
 

 NMF uses an iterative procedure to modify the initial 
values of Wmk and Hkn so that the product approaches Vmn  
The procedure terminates when the approximation error 
converges or the specified number of iterations is reached. 
The NMF decomposition is non-unique; the matrices W and 
H depend on the NMF algorithm employed and the error 
measure used to check convergence. Some of the NMF 
algorithm types are, multiplicative update algorithm by Lee 
and Seung [2], sparse encoding by Hoyer [10], gradient 
descent with constrained least squares by Pauca [11] and 
alternating least squares algorithm by Pattero [12]. They 
differ in the measure cost function for measuring the 
divergence between V and WH or by regularization of the W 
and/or H matrices. 

Two simple cost functions studied by Lee and Seung are 
the squared error (or Frobenius norm) and an extension of the 
Kullback-Leibler divergence to positive matrices. Each cost 
function leads to a different NMF algorithm, usually 
minimizing the divergence using iterative update rules. Using 
the Frobenius norm for matrices, the objective function or 
minimization problem can be stated as 

 2
FWHV
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where, W and H are non-negative. The method proposed by 
Lee and Sung [2] based on multiplicative update rules using 

Forbenus norm, popularly called multiplicative method 
(MM) which can be described as follows. 

 
1.4.1 MM Algorithm 
i. Initialize W and H with non-negative values. 

ii. Iterate for each c, j, and i until within approximation 
error converge or after l iterations: 
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In steps ii (a) and ii (b), e, a small positive parameter equal 
to 10−9, is added to avoid division by zero. As observed from 
the MM Algorithm, W and H remain non-negative during the 
updates. 

Lee and Seung [2] proved that with the above update rules 
objective function (1) achieve monotonic convergence and is 
non-increasing, and they becomes constant if and only if W 
and H are at a stationary point. The solution to the objective 
function is not unique. 

 
1.5 Document clustering with NMF 

Ding C et al. [8] shows that when Frobenius norm is used 
as a divergence and adding an orthogonality constraint HT H 
= I, NMF is equivalent to a relaxed form of k-means 
clustering. Wei Xu et al. were the first ones to use NMF for 
document clustering [6] where unit euclidean distance 
constraint was added to column vectors in W. This work was 
extended by Yang et al. [7] adding the sparsity constraints 
because sparseness is one of the important characters of huge 
data in semantic space. In both of the works the clustering has 
been based on the interpretation of the elements of the 
matrices. ikhkW++i2h2W+i1hWiv ⋅⋅⋅≈ ....1

“There is an analogy with the SVD in interpreting the 
meaning of the two non-negative matrices U and V. Each 
element uij of matrix U represents the degree to which term fi 
W belongs to cluster j, while each element vij of matrix V 
indicates to which degree document i is associated with 
cluster j. If document i solely belongs to cluster x, then vix will 
take on a large value while rest of the elements in ith row 
vector of V will take on a small value close to zero.”[6] 

From the above statement, we can summarize the 
relationship as UVW ≈ . From the work of Kanjani K [9] it is 
seen that the accuracy of algorithm from Lee and Seung [2] is 
higher than their derivatives [9], [10]. In our model, the 
original multiplicative update proposed by Lee and Seung [2] 
is undertaken. 

 

2. METHODOLOGY 
 The following section describes the proposed model in 
detail. It includes the clustering method with the proposed 
model and the parallel implementation strategy of k-means. 
The latter parts contain explanation to the underlying 
architecture of Hadoop Distributed File System (HDFS) over 
which k-means algorithm is implemented. 
2.1 The Proposed Model 

 From hereinafter our model is termed as KNMF (k-means 
with NMF algorithm). In KNMF the document clustering is 



 
 

 

done on basis of the similarity between the extracted features 
and each document. Let, extracted feature vectors be 
F={f1,f2,f3....fk} computed by NMF. Let the documents in the 
term-document matrix be V = {d1,d2,d3....dn}, then document 
di is said to be the member of cluster fx if, the angle between 
di  and fx  is minimum. 
 

2.1.1 The methodology adapted 
i. Construct the term-document matrix V from the files 

of a given folder using term frequency-inverse 
document frequency 

ii. Normalize length of columns of V to unit Euclidean 
length. 

iii. Perform NMF based on Lee and Seung [2] on V and 
get W and H using (1). 

iv. Apply cosine similarity to measure distance between 
the documents di and extracted features/vectors of W. 
Assign di to wx if the angle between di and wx  is 
smallest. This is equivalent to k-means algorithm with 
a single turn. 

 To run the parallel version of k-means algorithm, Hadoop 
is started in local reference mode and pseudo-distributed 
mode and the k-means job is submitted to the JobClient. The 
time taken from i though iii and the total time taken were 
noted separately. 
 

2.1.2 Steps in indexing the documents in a folder 
i. Determine if the document is new; update the index of 

non-updated document. 
ii. If it's up to date then do nothing . While the document 

is new, create a Lucene Document, if it's not updated 
then delete the old document and create new Lucene 
Document. 

iii. Extract the words from the document. 
iv. Remove the stop-words. 
v. Apply Stemming. 

vi. Store the created Lucene Document in index. 
vii. Remove stray files. 

 The Lucene Document contains three fields namely path, 
contents and modified. These fields respectively store the 
full-path of the document, the terms and modified date (to 
seconds). The field path is used to uniquely identify 
documents in the index; the field modified is used to avoid 
re-indexing the documents if it's not modified. In the step vii 
the documents which have been removed from the folder but 
with entries in the index are removed from index. This step 
has been followed to keep the optimal word dictionary size. 
 In our document stop-words are filtered using the wordlist 
from the project of Key Phrase Extraction Algorithm [4] 
which defines some 499 stop-words. This worldlist can be 
modified by the users if further stop-words are required to be 
maintained. After the removal of stop-words, the document is 
stemmed by the Porter algorithm [3]. 
 
2.2 Parallel implementation of k-means 

 The parallel implementation strategy of k-means 
algorithms in multi-core is described [20] as: 
“In k-means [9], it is clear that the operation of computing 
the Euclidean distance between the sample vectors and the 
centroids can be parallelized by splitting the data into 
individual subgroups and clustering samples in each 
subgroup separately (by the mapper). In recalculating new 
centroid vectors, we divide the sample vectors into subgroups, 

compute the sum of vectors in each subgroup in parallel, and 
finally the reducer will add up the partial sums and compute 
the new centroids. ” 
 In the same paper, it was noted that the performance of 
k-means algorithm with map-reduce increased in an average 
1.937 times than its serial implementation without 
map-reduce. From as low as 1.888 times in Synthetic Time 
Series (sample = 100001 and features = 10) to as high as 
1.973 times in KDD Cup 999 (sample = 494021 and features 
= 41). It also adds that it was possible to achieve 54 times 
speedup on 64 cores. 
 Indeed, the performance upgrading with the increase of 
number of cores was almost linear. This paper was the source 
for the foundation of Mahout project2 which include the 
implementation strategy of k-means algorithm in map-reduce 
over the Hadoop. Implementation of k-means in mapreduce 
is also presented in lectures from [17]. Drost, I [16] describes 
k-means of Mahout project. In  [18] Gillick et al. studied the 
performance of Hadoop's implementation of mapreduce and 
has suggested performance enhancing guidance as well. 
 

2.2.1 MapReduce in KNMF 
 In the method proposed in this work, since the final 
clusters are the features extracted from the NMF algorithms, 
the parallelization strategy of map-reduce can be applied to 
compute the distance between the data vectors and the feature 
vectors. Since it requires only one iteration, it can be 
considered as having only one map-reduce operation. 
Furthermore, since the cluster centred computation isn't 
needed, only one map operation is sufficient. The map 
operation intakes the list of feature vectors and individual 
data vectors and outputs the closest feature vector for the data 
vector. 
 For instance, we have list of data vectors V = {v1,v2,...vn} 
and list of feature vectors W= {w1,w2,w3} computed by 
NMF. Then, 
      <vi, W> → map → <vi, wx> 
where wx is the closest (cosine similarity) feature vector to 
data vector vi. 

 
2.3 Hadoop 

 Hadoop is a distributed file system written in Java with an 
additional implementation of Google's MapReduce 
framework [19] that enables application based on 
map-reduce paradigm to run over the file system. It provides 
high throughput access to data which is makes it suitable for 
working with large scale data (typical block size is 64 Mb). 
 
2.3.1 Hadoop Distributed File System (HDFS)3

 
It is a distributed file system specifically designed for 
fault-tolerant which can be deployed on low-cost hardware. It 
is based on master/slave architecture. The master nodes are 
called namenodes and every cluster has only one namenode. 
It manages the filesystem namespace and access to files by 
client (opening, closing, renaming files). 

 
2 http://lucene.apache.org/mahout/ 
3 http://hadoop.apache.org/core/ 



 
 

 

 
Figure 1：Clustering with our model 

The task of datanode is to manage the data stored in the 
node (each file is stored in one of more blocks). It's 
responsible for read/write requests from clients (creation, 
deletion, replication of blocks). 

All HDFS communication protocols are layered on top of 
the TCP/IP protocol. Files in HDFS are write-once (read 
many) and have strictly one writer at any time. The blocks of 
a file are replicated for fault tolerance. The block size and 
replication factor are configurable per file. Hadoop can be 
run in Local(stand-alone), Pseudo-distributed mode or 
Fully-distributed mode. 
 
2.3.2 MapReduce framework in Hadoop  
 The input and output to the map-reduce application can be 
shown as follows: 
(input) <k1,v1>→map→<k2,v2>→reduce <k3,v3> (output) 
 The input data is divided and processed in parallel across 
different machines, processes in map phase and the reduce 
combines the data according the key to give final output. For 
this sort of task the framework should be based on 
master-slave architecture. Since HDFS is itself based on 
master-slave architecture, MapReduce framework fits well in 
Hadoop. Moreover usually the compute nodes and the 
storage nodes are the same, that is, the map-reduce 
framework and the distributed filesystem are running on the 
same set of nodes.  
This configuration allows the framework to effectively 
schedule tasks on the nodes where data is already present, 
resulting in very high aggregate bandwidth across the cluster. 
 To implement map-reduce framework in Hadoop, there is 
a single master called JobTracker per job. Job is the list of 
task submitted to the MapReduce framework in Hadoop. The 
master is responsible for scheduling the jobs' component 
tasks on the slaves, monitoring them and re-executing the 
failed tasks. There can be one slave or tasktracker per 
cluster-node. The slaves execute the tasks as directed by the 
master. 

3. IMPLEMENTATION 
Since Hadoop, Lucene and Mahout are built with Java 

natively, it would be easy for the interoperability between the 

components developed with Java. Considering this fact, Java 
was chosen as the programming language for the 
implementation 4   of our proposed model. Before the 
documents can be clustered, they need to be indexed. For the 
purpose of indexing, Lucene APIs have been utilized. The 
documents are determined whether they are up-to-date in 
index. If it's up to date then do nothing what follows. If the 
document is new, a Lucene Document is created, if it's not 
updated then old documents are deleted and new Lucene 
Document is created. The stop-words are removed using 
key-words from [4] and Potter Stemming [3] is applied. 
Indexing is described in detail in Section 2.1.2. 

Clustering has more complex steps than indexing of the 
documents. It involves creation of document-term matrix 
followed by the application of KNMF. Section 2.1.1 
describes the steps in detail. Figure 1 shows the files to be 
clustered in the left side frame and the resulting clusters and 
folders along with their corresponding files is shown in the 
lower middle frame. The upper middle frame shows the 
extracted themes. The settings regarding number of clusters, 
convergence delta for of k-means and NMF, stop words list is 
done from the right side frame. 

 

4. EXPERIMENTS AND RESULTS 
Table i: List of Topics of 20 New Groups 

 
comp.graphics 
comp.os.ms-windows.misc 
comp.sys.ibm.pc.hardware 
comp.sys.mac.hardware 
comp.windows.x 

rec.autos 
rec.motorcycles 
rec.sport.baseball 
rec.sport.hockey 

sci.crypt 
sci.electronics 
sci.med 
sci.space 

Misc.forsale Talk.politics.misc 
talk.politics.guns 
talk.politics.mideast 

talk.religion.mis
c 
alt.atheism 
soc.religion.christ
ian 

 
4 This application (named Swami) is distributed under GNU GPL v3.0. It 

is currently tested only on GNU/Linux and can be downloaded from 
http://www.wakhok.ac.jp/~dipesh/swami 



 
 

 

 
4.1 Data set Description 

20 News Groups5 is a popular data set for text clustering 
and classification. It has a collection about 20,000 documents 
across 20 different newsgroups from Usenet. Each 
newsgroup is stored in a subdirectory, with each article 
stored as a separate file. Some of the newsgroups are closely 
related with each other while others are highly unrelated. 
Table i  shows the topics of the newsgroups arranged by 
Jason Renn6

 
4.2 Experiment 

For the purpose of experimentation, clustering was done 
using up to 10 groups. Each group containing five documents 
were taken randomly and added to a folder. The folder was 
indexed after removing the stop-words using KEA 
stop-words [4] and applying Porter stemming [3]. Then the 
clustering was done and results were noted.  Other five 
documents were taken out randomly from another group, 
added to the folder, indexed and clustered accordingly. In this 
way a total of 10 groups with 50 documents were clustered. 
Clustering results were noted for three cases, without using 
Hadoop, using Hadoop in local mode and finally using 
Hadoop in pseudo-distributed mode. 
In addition to this, for KNMF the following parameters were 
used 

i. NMF: convergence parameter = 0.001 and maximum 
iteration = 10. 

ii. K-Means: k = number of news groups in folder, 
convergence parameter = 0.001, maximum iteration = 
1, distance measure = cosine 

 
Since the length of W was not normalized as suggested by 

Xu et al. [6] there was no unique solution.  For this purpose 
the experiments with the highest values of AC among the 
three cases as mentioned above was taken. 

The performance of the clustering algorithm evaluated by 
calculating the accuracy defined in [6] is illustrated as 
follows: 

Given a document di , let li and αi  be the cluster label and 
the label provided by the document corpus, respectively. The 
AC is defined as follows: 

( )( )
n

ilmap,iαδ=AC
∑

          (6) 

where n denotes the total number of documents, δ(x, y) is 
the delta function that equals one if x = y and equals zero 
otherwise, and map(li) is the mapping function that maps 
each cluster label li to the equivalent label from the document 
corpus. 

 
4.3 Results 

Table ii  shows the time taken by KNMF algorithm on the 
20 Newsgroup collection on a Linux Ubuntu 8.04 machine 
(1.66Ghz Intel Pentium Dual-core, 1G RAM) with and 
without MapReduce (Map = 2). The numbers of clusters 
were denoted by k and the accuracy is denoted by AC. 
Further, the column Without Hadoop and Local Reference  
 

5 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html 

Table ii: Results 

k
 

AC Without  
Hadoop 

Local Reference 
mode 

Pseudo-Distri
buted mode

2 0.80 0.558/0.597 0.390/1.580 1/2 

3 0.75 0.898/0.958 0.796/2.0 1/2 

4 0.66 1.090/1.159 1.074/2.307 2/2 

5 0.60 1.961/2.111 2.155/3.457 2/2 

6 0.56 4.086/5.295 4.122/5.617 1/1 

7 0.68 6.340/7.158 6.262/7.653 2/1 

8 0.625 8.710/9.874 8.615/10.025 2/2 

9 0.533 12.435/14.088 12.503/14.027 3/3 

10 0.60 26.963/30.615 26.700/30.648 3/3 

 
mode shows time taken by NMF and KNMF (The value at 
numerator is time taken by NMF and the value at 
denominator is total time taken by KNMF). The column 
pseudo-distributed mode shows time taken by Map phases 
(The numerator value is the time taken by map phase 1 and 
the denominator value is the time taken by map phase 2). 
The figure 2 shows the time taken during the clustering 

phase which is calculated from table ii as (the total time taken 
- time by NMF). For the pseudo-distributed mode of Hadoop, 
the time taken by map phase is considered as the time taken 
for clustering. It can be seen that the time taken by the map 
phase of pseudo-distributed mode of Hadoop is quite steady 
and rises only when the number of clusters increase to 8. The 
time taken by local reference and serial implementation or 
without using Hadoop exceeds time taken by 
pseudo-distributed mode of Hadoop for cluster size 
equivalent to 10. 

 

 

Pseudo-Distributed 

Local Reference 

Without Hadoop 

Figure 2：Time taken by the clustering phase (k-means with 1 turn)  
 
 
 
 
 
 
 
 

                                                                                                  
6 http://people.csail.mit.edu/jrennie/ 



 
 

 

5. CONCLUSIONS 
In this work, a new working model for document 

clustering was given along with development of application 
based on this model. This application can be used to organise 
documents into sub-folders without having the knowledge 
about the contents of the document. This really improves the 
performance of information retrieval in any scenario. The 
accuracy of model was tested and found to be 80% for 2 
clusters of documents and 75% for 3 clusters and the results 
averages to 65% when for 2 through 10 clusters. NMF has 
shown to be a good measure for clustering document and this 
work has also shown similar results when the extracted 
features are used as the final cluster labels for k-means 
algorithm. To scale the document clustering the proposed 
model uses the map-reduce implementation of k-means from 
Apache Hadoop Project and it has shown to scale even in a 
single cluster computer when clusters size exceeded 9 i.e. 40 
documents averaging 1.5 kilobytes. 

 

REFERENCES 
[1] Cutting, D, Karger, D, Pederson, J  & Tukey, J (1992). Scatter/gather: 

A cluster-based approach to browsing large document collections, In 
Proceedings of ACM SIGIR. 

[2] Lee, D & Seung, H (2001). Algorithms for non-negative matrix 
factorization. In T. G. Dietterich and  V. Tresp, editors, Advances in 
Neural Information Processing Systems, volume 13, Proceedings of the 
2000 Conference: 556-562,The MIT Press.  

[3] Porter, MF (1980 ). "An algorithm for suffix stripping", Program, Vol. 
14, No. 3, pages 130-137 
 http://tartarus.org/~martin/PorterStemmer/def.txt 

[4] Key Phrase Extraction Algorithm (KEA) 
 http://www.nzdl.org/Kea/

[5] Guduru, N (2006). Text mining with support vector machines and 
non-negative matrix factorization algorithm. Masters Thesis. 
University of Rhode Island, CS Dept. 

[6] Xu, W, Liu, X & Gong, Y (2003). Document clustering based on 
non-negative matrix factorization, Proceedings of ACM SIGIR, pages 
267–273.  

[7] Yang, CF, Ye, M & Zhao, J (2005). Document clustering based on 
non-negative sparse matrix factorization. International Conference on 
advances in Natural Computation, pages 557–563. 

[8] Ding, C, He X, & Simon, HD (2005). On the Equivalence of 
Nonnegative Matrix Factorization and Spectral Clustering. 
Proceedings in SIAM International Conference on Data Mining, pages 
606-610. 

[9] Kanjani, K (2007). Parallel Non Negative Matrix Factorization for 
Document Clustering.  

[10] Hoyer, P (2002). Non-Negative Sparse Coding. In Proceedings of the 
IEEE Workshop on Neural Networks for Signal Processing, Martigny, 
Switzerland. 

[11] Pauca, V, Shahnaz, F, Berry, MW & Plemmons R (April 22-24, 2004). 
Text Mining Using Non-Negative Matrix Factorizations. In 
Proceedings of the Fourth SIAM International Conference on Data 
Mining, Lake Buena Vista, FL.  

[12] Amy, L & Carl, M (2006). ALS Algorithms Nonnegative Matrix 
Factorization Text  Mining.  

[13] Guillamet, D & Vitria, J (2002). Determining a Suitable Metric when 
Using Non-Negative Matrix Factorization. In Sixteenth International 
Conference on Pattern Recognition (ICPR’02), Vol. 2, Quebec City, 
QC, Canada.  

[14] Berry, M, Dumais, ST &  O'Brien, GW(1995). Using Linear Algebra 
for Intelligent Information Retrieval. Illustration of the application of 
LSA to document retrieval.  

[15] Landauer, T, Foltz, PW & Laham, D(1998). Introduction to Latent 
Semantic Analysis.. Discourse Processes 25: pages 259–284  

[16] Drost, I (November 2008). Apache Mahout : Bringing Machine 
Learning to Industrial Strength, In Proceedings of ApacheCon 2008, 
pages 14-29, New Orleans 

[17] Michels, S (July 5, 2007). Problem Solving on Large-Scale Clusters, 
Lecture 4. 

[18] Gillick, D, Faria, A & DeNero, J (December 18, 2006). MapReduce: 
Distributed Computing for Machine Learning. 

[19] Dean, J & Ghemawat, J (December 2004 ). MapReduce: Simplified 
Data Processing on Large Clusters, In the Proceedings of the 6th Symp. 
on Operating Systems Design and Implementation. 

[20] Chu, CT, Kim, SK, Lin, YA, Yu, YY, Bradski, G, Yng, Andrew, & 
Olukotun, K (2006). Map-Reduce for Machine Learning on Multicore, 
NIPS 

 
 
 
 

http://www.nzdl.org/Kea/

	INTRODUCTION
	Methodology
	Implementation
	Experiments And Results
	Conclusions



