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Abstract—This paper presents a new clustering technique named 
as the Olary algorithm, which is suitable to cluster nominal data 
sets. This algorithm uses a new code with the name of the Olary 
code to transform nominal attributes into integer ones through a 
process named as the Olary transformation. The number of 
integer attributes we get through the Olary transformation is 
usually different from that of the original nominal attributes. 
Meanwhile, an extension of the Olary algorithm, which we call 
the ex-Olary algorithm, is introduced. Furthermore, we provide a 
useful way to estimate the number of underlying clusters by the 
use of a new kind of diagram, which is called Number of Clusters 
versus Distance Diagram (NCDD for short). 

Index Terms-Clustering, nominal, the Olary code, the Olary 
transformation, the ex-Olary algorithm, NCDD 

I.  INTRODUCTION 
Advances in communication systems and high performance 

computers enable us to easily collect valuable information from 
the Internet and to construct databases that store huge amount 
of information [1]. As a result, data mining has becoming more 
and more popular and important in the past decades. Among 
various kinds of technologies in the area of data mining, clu-
stering has received considerable attention. 

Different from the classification technique, clustering is an 
un-supervised learning method in the purpose of discovering 
the underlying patterns and structures of a given data set. To-
day, there are many kinds of clustering algorithms and there are 
mainly five categories [2]: hierarchical clustering, partitioned 
clustering, density-based clustering, grid-based clustering and 
model-based clustering. Specially, in partitioned clustering, ea-
ch cluster is represented by its center point. 

The application of clustering algorithms to scientific res-
earch faces many challenges. First, almost all the algorithms 
require pre-specified parameters, such as the number of clusters 
k, a small positive real numberδ that is useful when testing the 
terminal conditions, a positive integer seed and so on. Second, 
different data sets contain different types of data points as well 
as different underlying structures. Usually it is not an easy job 
to select the most suitable clustering algorithm for a given data 
set without priori knowledge. Third, most clustering algorithms 
are only suitable for numeric data sets. However, in practical 
applications, we face a lot of nominal data sets. 

In this paper we provide a new clustering algorithm named 
as the Olary algorithm, which can be used to cluster nominal 
data sets. Besides, we will discuss a useful method to estimate 
the number of underlying clusters by the use of the NCDD. The 
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remaining parts are arranged as follows. In section two, we will 
introduce a new code with the name of the Olary code, which is 
used to transform nominal attributes into binary integer ones. In 
section three we will discuss how to compute the distance 
between two data points by the use of the Olary transformation. 
Section four contains the running process of the Olary algori-
thm in detail, and section five gives some experiments to show 
the performance of the Olary algorithm. Section six suggests an 
extension of the Olary algorithm, which is called the ex-Olary 
algorithm. What’s more, a useful way of estimating the number 
of underlying clusters by the use of the NCDD will be disc-
ussed. Finally, in section seven, we draw conclusions and sug-
gest some possible directions for further researches. 

II. THE OLARY CODE 
In this section we will introduce a new code named as the 

Olary code. First, let’s see some examples. The 1-length Olary 
code has two different values, 1 and 0. The 2-length Olary code 
has three different values, which are 10, 11 and 01. The 3-
length Olary code has four different values and they are 101, 
100, 110 and 010, respectively. 

Now we can present the definition of the Olary code as fol-
lows. Assume k is a positive integer (k=1, 2, 3…). The k-length 
Olary code has k+1 different values and all the values are bin-
ary integer sequences. We can get these values in the following 
manner. If k is odd, the first value is 1010…101. Else if k is 
even, the first value is 1010…1010. We can see that the first 
value contains k binary integer numbers and the first number is 
always 1. Here 1 is the opposite number of 0 and vice versa. 
Replacing the k-th number of the first value with its opposite 
number, we receive the second value of the k-length Olary 
code. Turning the (k-1)-th number of the second value into its 
opposite number, we get hold of the third value of the k-length 
Olary code. In a word, when i is larger than one, we gain the i-
th value of the k-length Olary code just by replacing the (k-
i+2)-th number of the (i-1)-th value with its opposite number. 

The Olary code can be considered as a coding system. The 
k-length Olary code has (k+1) different values. From the way 
of getting the (k+1) values of the k-length Olary code, we 
know there is exactly one different number between the i-th 
value and the (i+1)-th value (i=1…k). As a special case, 
turning all the numbers of the first value into their opposite 
numbers, we get the (k+1)-th value of the k-length Olary code. 

III. THE DISTANCE METRIC 
Before calculating the distance between two data points, a 

transforming process must be done. In other words, all the 
original nominal attributes must be transformed into integer 
ones by the use of the Olary code. And each integer attribute 



takes 1 or 0 as its value. Usually the number of integer attri-
butes is different from that of the original nominal ones. And in 
some cases it changes greatly. In the following, we will discuss 
the process of this transformation, which we call the Olary tra-
nsformation. 

We use the (k-1)-length Olary code to transform a nominal 
attribute with k different values, because the (k-1)-length Olary 
code has exactly k different values. For example, suppose an 
attribute with the name of legsNumber has four different values 
and they are two legs, four legs, six legs and eight legs, res-
pectively. So we should use the 3-length Olary code to do the 
transformation. First, randomly push the four different values 
of the nominal attribute legsNumber into a stack named as 
stack1. Second, randomly push the four values of the 3-length 
Olary code into another stack with the name of stack2. Third, 
pop the top value v1 of stack1 and pop the top value v2 of 
stack2. Use v2 to substitute v1. Repeat the third step until both 
the two stacks are empty. By now, the Olary transformation on 
the attribute legsNumber is finished. This single nominal attri-
bute has been transformed into three integer ones, each of whi-
ch takes 1 or 0 as its value. 

Now we can give the distance metric used in the Olary 
algorithm. Consider two data points named as p1 and p2, res-
pectively. Perform the Olary transformation on the two points. 
Assume m is the number of integer attributes each of the two 
points has after the Olary transformation. Here p1.value(i) is 
used to denote the value of the i-th integer attribute of p1. And 
p2.value(i) is the value of the i-th integer attribute of p2. Then 
we can compute the distance between p1 and p2 as follows. 

for i = 1 to m 
      if p1.value(i) ≠ p2.value(i) 
          distance = distance + 1; 
      end if 
end for 
return distance; 

IV. THE OLARY ALGORITHM 
In this section we will discuss the Olary algorithm, whose 

main mechanism is the same as the simple K-means. The two 
algorithms have different ways of calculating the “distance” 
between two data points. The simple K-means uses the 
Euclidean distance as shown in (1). Here l is the number of 
dimensions of x and y.  However, in the Olary algorithm, we c- 
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hoose a new distance metric as discussed in section three. The 
running process of the Olary algorithm is shown as the follo-
wing steps. 

STEP1. Transform all the data points in the original data 
set through the process of the Olary transformation. We get 
hold of a new data set named as instances, which contains only 
binary integer attributes. 

STEP2. Initialize relative parameters, including the number 
of clusters k and a positive integer seed. What’s more, initialize 
a third parameter named as maxIterations, which is also a 
positive integer and denotes the maximum number of iterations 
before the Olary algorithm terminates. 

STEP3. Use the function initCenters(instances, k, seed) as 
shown in Fig. 1 to finish the initialization of the k center points. 
Here we use two integer arrays centers1[k][] and centers2[k][] 
to store the center points. 

STEP4. Compute the distances from each point in the data 
set instances to the current k center points. If the current point 
has the smallest distance from the i-th center point, then assign 
it to the i-th cluster. Use an array named as index[] to store the 
clustering indexes of all the points in instances. 

STEP5. Copy all the elements of the array centers1[k][] 
into centers2[k][]. Then compute the k new center points acco-
rding to the process computeCenters(instances, index[], k) as 
shown in Fig. 2. Store the k new centers into centers1[k][]. 

STEP6. If the contents of the two arrays centers1[k][] and 
centers2[k][] are the same or maxIterations is smaller than the 
current number of iterations, the Olary algorithm stops. Else go 
back to STEP4 and continue the iteration. 

 

Figure 1.  function initCenters(instances, k, seed) 

V. EXPERIMENTS 
In this section we illustrate the performance of the Olary 

algorithm described in the previous sections. All the data sets 
used here are from the UCI data set repository. 

The first one is the zoo data set, which has 16 attributes, 
including 15 ones and an integer one. The integer attribute 

Here we use N to denote the number of data points. And
instance(i) is the i-th point. What’s more, centers1[i] is the 
center point of the i-th cluster. Assume m equals to seed. 
Choose the m-th point as the first center point. 

for i = 2 to k 
      maxDistance = 0; 
      for j = 1 to N 
            if instance(j) has not been chosen as a center point 
                  currentDistance = 0; 
                  for s = 1 to i-1 
                        currentDistance += the distance between 
                        instance(j) and centers1[s]; 
                  end for 
                  if currentDistance > maxDistance 
                        maxDistance = currentDistance; 
                        n = j; 
                  end if 
            end if 
      end for 
      choose instance(n) as the i-th center point; 
end for 



suggests the number of legs, with three integer values: 0, 2 and 
4. So here we consider it as a nominal attribute. We selected 
74 data points from the zoo data set to form a new set with the 
name of zoo1. The zoo1 data set contains three clusters and its 
underlying structure is shown in Tab. I. 

In the Olary algorithm, the random property of the Olary 
transformation means one nominal data set can be transformed 
into many different integer ones. Does this property have great 
influence on the final clustering result? From the results sho-
wn in Tab. II we draw the conclusion that the Olary algorithm 
gains very good results on the zoo1 data set and the random 
property of the Olary transformation has little influence on the 

 

Figure 2.  the process computeCenters(instances, index[], k) 

TABLE I.  THE UNDERLYING STRUCTURE OF THE ZOO1 DATA SET 

cluster ID IDs of data points 
 

1 
1,2,4,5,6,7,10,11,15,17,20,22,23,24,25, 

26,29,30,35,36,37,38,39,40,41,42,49,50, 
51,52,53,54,55,56,59,60,65,69,70,72,73 

2 3,8,9,13,16,28,32,47,48,58,63,66,68 
3 12,14,18,19,21,27,31,33,34, 

43,44,45,46,57,61,62,64,67,71,74 

final result. What’s more, considering the single integer attri-
bute in the zoo1 data set as a nominal one is suitable here. 

Here is another question. Can we gain satisfactory cluster-
ing results by randomly initializing the center points instead of 
using the function initCenters(instances, k, seed)? In one expe- 
riment, we initialized the centers by the use of three randomly 

selected points from the data set and the corresponding result 
is shown in Tab. III. With the help of the underlying structure, 
we know this result is not acceptable at all. So we draw the 
conclusion that the function initCenters(instances, k, seed) is 
of great importance to gain good clustering results. 

The second data set is the sponge data set, which contains 
42 nominal attributes and 3 integer ones. Two of the 3 integer 
attributes have five values:  0, 1, 2, 3 and 4.  And the third one 

TABLE II.  RESULTS OF DIFFERENT TRANSFORMATIONS 

transformation correct rate 
trans I(0→10, 2→11, 4→01) 97.3% 
trans I(0→10, 2→01, 4→11) 100% 
trans I(0→11, 2→10, 4→01) 100% 
trans II(0→10, 2→11, 4→01) 97.3% 

TABLE III.  RESULT GAINED BY RANDOMLY INITIALIZING CENTERS 

cluster ID IDs of data points 
1 2,6,7,10,15,20,22,23,25,26,29,30, 

42,51,56,65,69,70,72 
 

2 
1,4,5,11,17,24,35,36,37,38,39,40, 

41,49,50,52,53,54,55,59,60,73 
 

3 
3,8,9,12,13,14,16,18,19,21,27,28,31,32,   
33,34,43,44,45,46,47,48,57,58,61,62,   

63,64,66,67,68,71,74 

TABLE IV.  THE UNDERLYING STRUCTURE OF THE SPONGE1 DATA SET 

cluster ID IDs of the data points 
1 2,3,4,5,6,7,8,9,38,39 
2 1,37,40,45,46,48,49 
3 12,13,14,15,16,17,18,19,20,21, 

22,23,24,25,29,36 
4 10,11,26,27,28,30,31,32,33,34, 

35,41,42,43,44,47 

TABLE V.  RESULTS OF TWO DIFFERENT TRANSFORMATIONS 

transformation correct rate
trans I 89.8% 
trans II 93.9% 

has four values: 0, 1, 2 and 3. Here we also consider them as 
nominal attributes. Many of the attributes in the sponge data 
set have a lot of values. Moreover, this data set has a high 
dimensionality. So the sponge data set is much more complex 
than the zoo data set. We selected 49 points to form a new set 
with the name of sponge1. The underlying clustering structure 
of sponge1 is shown in Tab. Ⅳ . After the Olary transfor-
mation, each point has 96 binary integer attributes, while each 
point has only 45 attributes in the original sponge data set. In 
other words, the number of attributes changes greatly. 

Now we examine whether the random property of the 
Olary transformation is suitable when using the Olary algori-
thm to cluster the sponge1 data set. From the results shown in 
Tab. V we draw the conclusion that the Olary algorithm gains 

Here we assume the number of attributes is m. And we use 
instances(s).value(j) to denote the value of the j-th attri-
bute of the s-th data point. N is the number of data points. 

for i = 1 to k   (k is the user-specified number of clusters) 
      for j = 1 to m 
            count0 = 0; 
            count1 = 0; 
            for s = 1 to N 
                  if index[s]==i 
                        if instances(s).value(j)==0 
                              count0 ++; 
                        else 
                              count1 ++; 
                        end if 
                  end if 
            end for 
            if count0 >= count1 
                  centers1[i][j] = 0; 
            else 
                  centers1[i][j] = 1; 
      end for 
end for 



very good results on the sponge1 data set and the difference 
between the two results gained on two different integer data 
sets due to the random property of the Olary transformation is 
very small, although the sponge1 data set is rather complex. 
As a result, we draw the conclusion that the random property 
of the Olary transformation is suitable when using the Olary 
algorithm to cluster the sponge1 data set. What’s more, exper-
iments show that the random property of the Olary transfor-
mation is also suitable for transforming the 3 integer attributes, 
which are considered as nominal ones. 

TABLE VI.  RESULT GAINED BY RANDOMLY INITIALIZED CENTERS 

cluster ID IDs of data points 
1 2,3,4,5,6,7,8,9,10,11,26,27,28,30,31,32, 

33,34,35,38,39,41,42,43,44,47 
2 12,13,14,15,16,18,19,20,22,23,24,25,36 
3 29 
4 1,17,21,37,40,45,46,48,49 

 

 

Figure 3.  the calculation of sumDistance 

TABLE VII.  RESULTS OF THE OLARY ALGORITHM ON SPONGE1 

IDs of initial center points correct rate

28,41,1,13 87.8% 

27,28,1,17 81.6% 

9,17,1,14 83.7% 

In one experiment we randomly initialized the center 
points and the result is shown in Tab. VI. Looking back at the 
underlying structure of the sponge1 data set in Tab. IV, we 
come to the point that the clustering result in Tab. VI is not 
acceptable at all. This reflects the importance of the process 
initCenters(instances, k, seed), which is used to initialize all 
the center points when we use the Olary algorithm to cluster a 
given data set. 

VI. ESTIMATE THE NUMBER OF UNDERLYING CLUSTERS 
In this section we introduce an extension of the Olary algo-

rithm. Meanwhile, we provide a useful way of estimating the 
number of underlying clusters by the use of the NCDD. We 
have discussed some relative theories in [3]. However, the 
method we introduce here is different from that in [3]. 

A. the ex-Olary algorithm 
We gain the following information after running the Olary 

algorithm: 

• The center points of the resulting clusters are stored in 
the array centers1[k][], and here k is the user-specified 
number of clusters. 

• The array named as index[N] stores the clustering 
index of each point, and here N is the number of points 
in the original data set. 

Now we introduce a new parameter named as sumDistance, 
the calculation of which is shown in Fig. 3. We can see the 
value of sumDistance is the sum of the distances from each 
point to the corresponding center point. 

TABLE VIII.  VALUES OF SUMDISTANCE 

values of Distance

number of 
clusters zoo1 sponge1 

1 348.0 1015.0

2 208.4 560.0

3 110.2 512.2

4 94.5 458.4

5 88.3 430.8

6 82.8 404.5

7 74.9 389.6

8 69.6 371.4

9 63.6 351.4

10 61.5 329.8

11 59.6 314.0

12 57.3 299.4

13 56.0 285.9

14 52.8 275.1

15 50.2 265.8

The value of sumDistance changes as the clustering result 
varies. And we gain different results when the user-specified 
number of clusters k changes. So the value of sumDistance 
changes as k changes. Furthermore, for a fixed value of k, we 
can still get different results if the initialization of the k centers 
differs, although there is usually little difference as long as the 
results are acceptable. Thus, sumDistance usually changes as 
the initial k center points vary. We introduce an extension of 
the Olary algorithm as shown in Fig. 4, and we call it the ex-
Olary algorithm. From Fig. 4 we know the ex-Olary algorithm 
tends to gain a global minimum of sumDistance for a fixed 
value of k. Assume that N is the number of points. We can get 
N values of sumDistance by setting the parameter seed to be 
each ID of the N data points, corresponding to N clustering 

for i = 1 to N 

dis = the distance between the i-th point and the 
corresponding center point centers1[index[i]]; 

sumDistance = sumDistance + dis; 

end for 

return sumDistance; 



results. And the smallest one of the N values is the global 
minimum that the ex-Oary algorithm tries to get. Just randomly 
choose one result as the final result if the global minimum 
corresponds to several initializations and clustering results. 

Setting k to be 3, we run the ex-Olary algorithm to cluster 
the zoo1 data set. The data set after the Olary transformation is 
the same as trans I in Tab. II. Corresponding to the global 
minimum of sumDistance, the correct rate of the clustering 
result is 97.3%, while the correct rate of the result in Tab. II is 
also 97.3%. Now let’s turn to the sponge1 data set, which is 
rather complex. The data set used here after the Olary trans-
formation is the same as trans I in Tab. V. We did several exp-
eriments on this data set by the use of the Olary algorithm and 
the results are shown in Tab. VII. The correct clustering rate by 
the use of the ex-Olary algorithm is 87.8%, which is the same 
as the best one in Tab. VII. By now, we can draw a conclusion 
that the clustering result of the ex-Olary algorithm is close to 
the best result that the Olary algorithm can gain. What’s more, 
the distance metric we use is just to count the number of integer 
attributes having different values between data points after the 
Olary transformation. As a result, the running time of the ex-
Olary algorithm is usually acceptable. 

 

Figure 4.  the ex-Olary algorithm 

B. Estimate the Number of Clusters by the Use of the NCDD 
In order to estimate the number of underlying clusters in a 

given data set, we introduce a new variable Distance, the 
calculation of which is shown in Fig. 5. The ex-Olary algorithm 
tries to get the global minimum of the parameter sumDistance. 
Here the global minimum means the smallest value of the N 
values of sumDistance got by running the Olary algorithm N 
times, each time setting seed to be a different ID of the N 
points in the data set. However, the value of the new variable 
Distance is the average of the N values of sumDistance. The 
variable Distance is a better estimate of the sum of the dis-
tances from each point to the corresponding center point than 
sumDistance. Then a new kind of diagram can be drawn. The 
horizontal axis of the diagram is the number of user-specified 

number of clusters, and the vertical axis is the corresponding 
values of the parameter Distance. We call this kind of diagram 
Number of Clusters versus Distance Diagram, NCDD for short. 
In the following, we will estimate the number of underlying 
clusters by the use of NCDD along with similar theories having 
been discussed in [3]. 

For both the zoo1 and the sponge1 data sets, the values of 
Distance are shown in Tab. VIII. The NCDD for the zoo1 data 
set is shown in Fig. 6. Here k is the user-specified number of 
clusters and m is the number of underlying clusters. When k is 
smaller than m, at least one resulting cluster contains more than 
one underlying clusters. The distances between data points 
from different clusters are usually much larger than those of 
points from the same cluster. So values of Distance are very 
large. As k increases, resulting clusters consisting of more than 
one underlying clusters split and the values of Distance usually 
decrease sharply. When k is smaller than 3, the value of 
Distance decreases significantly as k increases in Fig. 6. 

When k is larger than m, each resulting cluster contains at 
most one underlying cluster. So the value of Distance is usually 
small. What’s more, some underlying clusters split as k 
increases. The value of Distance decreases more and more 
slowly as k increases, basing on the fact that distances between 
data points in the same cluster differ little. In other words, the 
value of Distance tends to converge. As shown in Fig. 6, when 
k is larger than 3, Distance tends to converge as k increases. 

 

Figure 5.  the caculation of Distance 

When k equals to m-1, there is exactly one resulting cluster 
that contains two underlying clusters. As k increases to m, this 
resulting cluster splits. As a result, the value of Distance 
usually decreases significantly. When k is m+1, one underlying 
cluster will split into two sub-clusters. The value of the decre-
ase of Distance is usually small, because data points in the 
same cluster are quite similar to each other. As a result, we can 
draw the conclusion that the value of |value(m-1) – value (m)| 
is usually much larger than that of |value(m) – value(m+1)|, 
where value(i) denotes the value of Distance when k equals to i. 
This is a significant property, which is of great importance 
when estimating the number of underlying clusters. In Fig. 6, 
|value(2) – value(3)| is much larger than |value(3) – value(4)|, 
indicating that the correct number of underlying clusters is 3. 
Furthermore, a resulting NCDD similar to that in Fig. 6 sugg-
ests good clustering results, and vice versa. 

Here we use N to denote the number of points in the 
original data set. 

minValue = 0.0; 
minSeed = 0; 
for i = 1 to N 
      seed = i; 
      run the Olary algorithm; 
      compute the value of sumDistance as shown in Fig. 3; 
      if minValue > sumDistance 
            minValue = sumDistance; 
            minSeed = i; 
      end if 
end for 

now we know setting seed to be minSeed, we can get the 
global minimum of sumDistance by the use of the Olary 
algorithm; 

Here we use N to denote the number of points in the 
original data set. 

for i = 1 to N 
      seed = i; 
      run the Olary algorithm; 
      compute the value of sumDistance as shown in Fig. 3; 
      Distance = Distance + sumDistance; 
      end if 
end for 
Distance = Distance/N; 
return Distance; 



Now let’s turn to the NCDD of the sponge1 data set shown 
in Fig. 7. This diagram seems not as good as that in Fig. 6, 
suggesting that the clustering results are not as satisfactory as 
those on the zoo1 data set. However, the results are acceptable, 
and we can estimate the correct number of underlying clusters 
as follows. When k is smaller than 4, the value of Distance 
decreases sharply as k increases. When k is larger than 4, the 
Distance decreases more slowly as k increases. What’s more, 
the value of |value(3) – value(4)| is significantly larger than the 
value of |value(4) – value(5)|, which is the important property 
at the point of k being equal to the correct number of under-
lying clusters. Basing on theses facts, we can draw the 
conclusion that the number of underlying clusters in the 
sponge1 data set is 4, which is the correct number in fact. 

 

Figure 6.  the NCDD of the zoo1 data set 

VII. CONCLUSIONS 
In this paper we give a discussion of the Olary algorithm, 

which is suitable to cluster nominal data sets. A new code with 
the name of the Olary code is introduced. And nominal attr-
ibutes can be transformed into binary integer ones through the 
process of the Olary transformation. The number of integer 
attributes is usually different from that of the nominal ones. For 
example, the sponge1 data set has 96 integer attributes after the 
Olary transformation, while the number of the original attri-
butes is only 45. Experiments show that the Olary algorithm 
has good performances on nominal data sets, including high-
dimensional ones such as the sponge1 data set. What’s more, 
the random property of the Olary transformation is suitable. 

The ex-Olary algorithm, which is an extension of the Olary 
algorithm, tries to find the global minimum of sumDistance for 
a fixed value of user-specified number of clusters. As a result, 
the ex-Olary algorithm usually gains very good clustering 
results. Because we just have to count the number of attributes 
with different values when computing the distances between 
data points, the running time is usually acceptable. 

Moreover, we introduce the NCDD, which is used to 
estimate the number of underlying clusters in a given data set. 
The value of the parameter Distance decreases as the number 
of clusters increases in the NCDD, as long as the clustering 
result is acceptable. Assume k is the user-specified number of 
clusters. And value(i) denotes the value of Distance when k 
equals to i. Then we can estimate the number of underlying 
clusters by the use of the NCDD as follows. 

Choose x that satisfies the following properties as the 
number of underlying clusters. When k is smaller than x, 
Distance decreases sharply as k increases. When k is larger 
than x, the value of Distance obviously tends to converge as 
shown in Fig. 6, as long as the clustering result is satisfactory. 
If the result is not very good, Distance decreases more slowly 
than it does in the case of k being smaller than x, as shown in 
Fig. 7. What’s more, the value of |value(m-1) – value(m)| is 
much larger than that of |value(m) – value(m+1)|. 

 

Figure 7.  the NCDD of the sponge1 data set 

In the future, further researches need to be done. Does any 
special mathematical theory hide behind the Olary algorithm? 
Why can the algorithm gain good clustering results by the use 
of the Olary transformation? Is the parameter with the name of 
maxIterations indispensable? In other words, does the Olary 
algorithm terminate after finite iterations without the use of this 
parameter? All theses questions can guideline our further res-
earches. 
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