
 
 

 

  
Abstract—In this paper, a neural network-based sliding-mode 
controller design approach with decoupled method is proposed 
for a class of nonlinear discrete-time uncertain multi-input- 
multi-output (MIMO) systems. The neural network is used to 
generate the proper control inputs by simultaneous 
perturbation stochastic approximation (SPSA) algorithm. The 
decoupled method simplifies the design complexity to achieve 
asymptotic stability for the uncertain nonlinear system with 
external disturbance. The proposed control scheme does not 
need the exactly system model to avoid the mathematical 
derivation. In addition, the frictional force analysis for the 
nonlinear inverted double pendulum system is considered to 
investigate the relationship between controller and frictional 
force. Simulation results are presented to illustrate the 
effectiveness of our approach. 
Index Terms—nonlinear control, neural network system, 
decouple, sliding mode control, simultaneous perturbation 
stochastic approximation 

I. INTRODUCTION 
Sliding-Mode control (SMC) has been suggested as an 

approach for the control of systems with nonlinearities, 
uncertain dynamics and bounded input disturbances [1, 2]. 
SMC technique provides fast error convergence and strong 
robustness for control system [4, 5]. However, SMC requires 
system dynamic model of the plant and bounds on modeling 
uncertainty to formulate control laws with guaranteed 
stability. For solving this problem, the intelligent controllers, 
developed by principles of fuzzy logic, neural network (NN), 
and genetic algorithms, should be designed to achieve the 
control objective [1-5,7].  

Recently, NN-based stable and on-line adaptive control 
has been paid much attention in nonlinear adaptive control [1, 
3, 4, 7]. To develop the neural-network-based controller, the 
corresponding adaptive laws should be derived by the 
measurement of objective function. The usual used methods 
are gradient method and Lyapunov approach. However, it is 
difficult or impossible to directly obtain the gradient of 
objective function or the derivation of adaptive laws based on 
Lyapunov approach is difficult and complex to obtain. 
Therefore, stochastic approximation algorithms such as 
Kiefer-Wolfowitz finite difference gradient approximation 
and simultaneous perturbation stochastic approximation 
(SPSA) were proposed to solve these problems [13-15]. By 
using SPSA, we can only measure the objective function to 
solve the optimization problem for providing the adaptive 
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laws of NN.  
In this paper, we propose a new neural-network-based 

decoupled sliding-mode controller scheme to solve the 
control of a class of multi-input-multi-output (MIMO) 
nonlinear dynamic systems via the SPSA algorithm. The 
considered nonlinear system has uncertainty, variant 
parameters, and external disturbance. We use the decoupled 
architecture and sliding-mode control approach for the input 
variables of NN system for simplifying the computational 
complexity. The weights of the NN are updated according to 
the results of SPSA algorithm for the purpose of controlling 
the system states to stay in sliding surface. The NN controller 
generates the proper control signal for the unknown 
nonlinear dynamic system. Through SPSA laws, we can 
adjust the parameters to achieve the stability objective. 
Finally, the frictional force analysis for the nonlinear inverted 
double pendulum system is considered to investigate the 
relationship between controller and frictional force. 
Simulation results are presented to illustrate the effectiveness 
of our approach. 

This paper is organized as follows. Section II introduces 
the problem formulation and used neural network. The 
proposed new neural-network-based decoupled sliding-mode 
controller scheme (DSMCNN) is introduced in Section III. 
Section IV shows the simulation results. Conclusion is given 
in Section V.  

II. PRELIMINARIES 
A. System description 

It is known that the coupling phenomenon is existed in 
many real-world systems. The so-called couple phenomenon 
is that a control force will influence the states simultaneous. 
Consider the ith sub-system of discrete-time nonlinear 
system represented by the following model 
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where i=1,.., n, T
iiiii kxkxkxkxkx )](  )(  )(  )([)( 4321= is the 

measurable state vector, fi1(x) and gi1(x),where i=1,..n, are 
nonlinear discrete-time functions, ui is the control inputs, and 
di1(t), di2(t), i=1,..n, are external bounded disturbances, i.e., 
|di1(t)|≤Di1,|di2(t)|≤Di2, i=1,... n. For this ith sub-system, our 
control objective is to design the input ui such that state 
vector xi converges to zero. Obviously, the decoupling 
method should be adopted to decouple the state xi2 and xi4. 
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Thus we utilize the method of literature [4, 5, 12] to design 
decoupled control in the discrete-time form.  

For sub-system (1), we first define the following sliding 
surfaces 
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where )/)1((sat)1( 22 iiUii kszkz φ+−=+ , with 0<zUi,<1, (sat(⋅) 
denotes the saturation function). 

In the design of decoupled sliding-mode controller, we can 
give an equivalent control such that the states can stay on 
sliding surface. The equivalent control can be obtained by 
setting si1 are equal to zero. From equation (2), we can 
observe that if si1 achieves to zero, then xi1 is equal to zi and xi2 
also achieves to zero. We also find that zi and xi1 achieve to 
zero simultaneously when si2 achieves to zero. Therefore, if 
we derive si1 toward to zero, the control objective can be 
achieved. In addition, the selection of coefficients ci1 and ci2 
will affect the behavior in the transient state of the system. For 
achieving favorable transient response, proper choice of 
sliding factor is necessary. 

According the above discussion, si1 will be fed into the 
neural-network (NN) to generate the proper control signals. 
In addition, our control objective can also be transferred as to 
derive si1 to approach to zero. 
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Figure1: Network diagram of the used NN system. 

B. NEURAL-NETWORK SYSTEM 

Fig. 1 shows the schematic diagram of a three layer NN 
system. Layer 1 accepts input variables. Its nodes represent 
input linguistic variables. The nodes only transmit input 
variables to the next layer directly, 
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where si1(k) is input at discrete-time index k. Layer2 is a 
hidden layer.  
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where )(kvij  is the weight between the layer 1 and layer 2. 
Finally, Layer 3 is the output layer. The links between layer 2 
and layer 3 are connected by weighting value 
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III. DESIGN OF DECOUPLED NN SLIDING-MODE CONTROLLER 

Most of control systems contain the un-model uncertainty, 
parameters variation, or external disturbance. Therefore, the 

adaptive property and robustness analysis should be 
considered. In this section, we introduce the decoupled 
neural network sliding-mode controller for obtaining the 
equivalent control. This approach does not need the system 
dynamics model exactly. It uses the model free concept to 
develop the adaptive DSMCNN control scheme. Fig. 2 
shows the decoupled adaptive control scheme. First, the 
system state variables are transferred into SMC variables s11 
and s21 by the decoupled method (shown in equations (2)). 
Then, the NN can generate the proper control signals such 
that the system outputs approach to zero. The adaptive laws 
of NN’s parameters can be derived by the following 
description. 
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Figure 2:The proposed DSMCNN control scheme via SPSA. 
 

Our control goal is to minimize the following cost 
function: 
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By the gradient-descent method, the update laws of NN’s 
parameters are 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−+=Δ+=+
pj

pjpjpjpj w
kEηkwkwkwkw )()()()()1( (8) 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

∂
∂

−+=Δ+=+
ij

ijijijij v
kEηkvkvkvkv )()()()()1( .     (9) 

To avoid deriving the gradient of objective function, we here 
utilize the SPSA algorithm to approximate 
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where Rij(k) is perturbation due to the equation and Δij(k) is a 
vector whose elements are either 1 or -1 in random.  

Therefore, we should calculate, E(wpj(k)+Rpj(k)⋅Δpj(k)), 
E(wpj(k)), E(vij(k)+Rij(k)⋅Δij(k)), and E(vij(k)) at first. 
However, in experimental applications, we cannot feed two 
control forces to evaluate the corresponding objective values 
at the same time. In this paper, we use mathematics derivation 
to improve the problem. 

From equation (7), we have 
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Next, we use modified SPSA to approximate 
pj

i

w
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Substitute system (1) into the sliding surface (2), we have  
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The perturbed results is shown below: 
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Using the SPSA algorithm to approximate 
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obtain  
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Substituting equations (16) and (17) into equations (12) and 
(13), we can obtain 
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Without derivation from the system dynamics model, we 
should evaluate the objective function  twice for obtaining 

the gradient terms 
pj

i

w
ks

∂
∂ )(1  and 

ij

i

v
ks

∂
∂ )(1 . As above, we can 

obtain the same result without repetition evaluations. In 
addition, the control signal is proportional to the difference 
between the control input and perturbed control one. That is, 
the control input does not feed into the nonlinear system for 
evaluating the objective function. This provides a simple 
approach for real-time control system. In this paper, this 
approach is applied on a double pendulum on cars.  
 

 
Fig. 3: System diagram of two inverted pendulums connected 

by a moving spring mounted on two carts. 
 

IV. SIMULATION RESULTS 
Herein, we apply the proposed approach to solve the 

stabilization of the two inverted pendulums connected by a 
moving spring mounted on two carts which is modified from 
[19]. Fig. 3 is the diagram of inverted double pendulums on 
cars systems which includes the cars which can move 
horizontally and each car has a pendulum which swings left 
and right. In addition, these two cars are connected by a 
spring. In the diagram, u1 and u2 are control input forces of 
the cars, X=[x1 x2]T is the output position of the car, θ=[θ1 θ2]T 
is the angle between vertical axis and pendulum, and k is the 
spring constant, m is mass of load, M is mass of car, l is length 
of pendulum, r is the radius of load, and ml is mass of 
pendulum, and L is the initial distance of two cars. In this 
paper, we consider the stabilization of X and θ, this is 
different from the previous literature.  

For the further analysis of the dynamic system 
characteristic, we have to establish the mathematical model. 
Then we have the following motion equations.  

)( 121111 LxxKHuxM −−+−=&&       
)( 122222 LxxKHuxM −−−−=&&           (20) 

where H denotes the pendulums’ horizontal forces 
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The rotating motion equations for pendulums are  
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Herein, we select m=m1=m2, M=M1=M2, and r=r1=r2 for 
simplifying the design. Define the state variables as q11=θ1, 
q12= 1θ& , q13= x1, q14= 1x& , q21= θ2, q22= 2θ& , q23=x2-x1-L, and 

1224 xxq && −= . Therefore, system (20) can be represented as  
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According the decoupled control scheme introduced above, 
we define  
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In the simulation, the following specifications are used: 
g=9.8m/s2, l=0.5m, ma=0.8kg, m=0.1kg, r=0.01m, L=0.1m, 
k=1, c1=5, c2=0.5, Φ1=5, Φ2=15, zU1=π/4, c3=5, c4=0.5, Φ3=5, 
Φ4=15, zU2=π/4. Initial condition is [-π/12, 0, -π/12, 0, 0, 0, 
0.1, 0]. The sample time Ts is 0.002 second. The 
corresponding learning rates for NN are ηw=0.3/Ts, ηv=0.1/Ts. 
Fig. 4 and 5 show the simulation results of system without 
disturbance and perturbed by impulse, respectively. 
According to the simulation result of Fig. 4, we can find that 
the decoupled NN controller and SMC are better than the 
results of using fuzzy logic control approach. From the 
comparison results of performance in stabilizing time, we can 
find that DSMCNN control has the better performance. 

Subsequently, we discuss the effect if there are external 
disturbance. Firstly, when the simulation time T=15sec, we 
add external disturbance such as θ1=-π/20. Fig. 5 shows the 
simulation results. After adding disturbance, we could 
obviously find that the disturbance rejection ability of NN 
performed better than fuzzy logic control and SMC. For the 
consideration of robustness, we can find that NN only need 

smaller effort such that system outputs achieve to stable even 
system having external disturbance. 

In addition, we consider the effect of frictional force. In 
real system, the frictional force may result in a delay 
appearance. In the system model, we use the frictional force 
model as the following description [6]. After considering the 
frictional force, the horizontal displacement should be  
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The inverted pendulums on cars with frictional force are  
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Herein, the coulomb frictional and viscous friction models 
are [6] 
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&& +=        
In the simulation, the following specifications are used: 
KFS1=KFS2 =KFS3=KFS4=0.5, KFQ1=KFQ2=KFQ3= KFQ4=0.1. Fig. 
6 shows the simulation results of our approach. From Fig. 6, 
we can find that NN has better performance for treating the 
frictional force. Compare with fuzzy logic control and SMC 
approaches, we observe that the position of the right car has 
bigger steady state error, and the proposed approach results 
smaller error which is close to 0. In addition, the control 
effort of DSMCNN is smooth. From Fig.7, after adding 
frictional force, external disturbance and external force, we 
could obviously find the system still achieve to stable. 
Therefore, we can conclude that using DSMCNN has the best 
performance. 

V. CONCLUSION 

In this study, we have proposed a DSMCNN with SPSA 
algorithm control scheme for solving the control of a class of 
nonlinear discrete-time MIMO uncertain systems. The 
control method provides a simple way to achieve asymptotic 
stability for uncertain nonlinear system with frictional force 
and external disturbance. In addition, we use SPSA algorithm 
to derive the adaptive laws of the NN’s parameters, which not 
only decrease computation complexity but also get over 
friction. The illustrated example of two inverted pendulums 
connected by a moving spring mounted on two carts has been 
introduced to show the effectiveness of our approach. 
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Figure 4: The simulation results without disturbance. 
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Figure 5: The simulation results adding external disturbance and external force. 

 



 
 

 

0 5 10 15 20 25 30 35
-0.5

0

0.5

time(sec)

sy
st

em
 o

ut
pu

t x
1(ra

d) (a)

 

 

0 5 10 15 20 25 30 35
-0.5

0

0.5

1

time(sec)

sy
st

em
 o

ut
pu

t x
1

(b)

 

 

0 5 10 15 20 25 30 35
-50

0

50

time(sec)

sy
st

em
 c

on
tro

l u
1

(c)

 

 

0 0.2 0.4 0.6 0.8 1
-50

0

50

time(sec)

sy
st

em
 c

on
tro

l u
1

(g)

 

 

0 5 10 15 20 25 30 35
-0.5

0

0.5

time(sec)

sy
st

em
 o

ut
pu

t x
2(ra

d) (d)

 

 

0 5 10 15 20 25 30 35
-0.5

0

0.5

1

time(sec)

sy
st

em
 o

ut
pu

t x
2

(e)

 

 

0 5 10 15 20 25 30 35
-50

0

50

time(sec)

sy
st

em
 c

on
tro

l u
2

(f)

 

 

0 0.2 0.4 0.6 0.8 1
-50

0

50

time(sec)

sy
st

em
 c

on
tro

l u
2

(h)

 

 

 DSMCNN
FUZZY
SMC

DSMCNN
FUZZY
SMC

DSMCNN
FUZZY
SMC

DSMCNN
FUZZY
SMC

DSMCNN
FUZZY
SMC

DSMCNN
FUZZY
SMC

DSMCNN DSMCNN

 
Figure 6: The simulation results adding friction models. 
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Figure 7: The simulation results adding friction, external disturbance and external force models. 
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