
Enabling Service-Based Application Development
through Social Objects

Abstract—Software development is typically a social
activity; development is most often performed by a team
of people who must collaborate effectively. Application
development enablers, such as web services and their
APIs, can be viewed as social objects that can be
interacted with just as one may interact with other
people in the context of a social network. Extending
enterprise social network applications and ecosystems to
include API’s and applications as first-class objects will
have a significant impact on the social and technical
processes through which enterprises develop service-
based applications. In this paradigm application
enablers can be tagged, followed, searched/discovered,
and discussed across the enterprise development
community. This paper presents a prototype framework
architecture, design model, and usage scenario that
exemplify this approach.

Index Terms—application development, Enterprise 2.0,
service oriented architecture, social network

1 INTRODUCTION
Two forces are at work that will radically change the way
software applications are developed in enterprises. The first
of these forces is the rise of service oriented architecture
(SOA) [1] or more specifically “Web Oriented
Architecture” (WOA). [2, 3] With the broad proliferation of
service oriented applications based on web services,
software engineers are reaching outside their immediate
teams to leverage services provided by others, both within
their companies and outside (such as open source code and
Google Code(tm)), to enable effective development of their
applications.

While the broad availability of web services present software
engineers with many options to leverage in building the
applications, when a developer needs code to perform a
particular function, it is often easier to develop it herself than
to go through the trouble of searching to find something
suitable that might already exist. [4] Conversely, developers
who want to expose services for use by others are often

Manuscript received December 8, 2009.
Peter D. Schott is with Alcatel-Lucent Bell Laboratories, Murray Hill,

NJ 07974 USA (908-582-8163; fax: 908-582-8163; e-mail: pete.schott@
alcatel-lucent.com).

Michael J. Burns is with Alcatel-Lucent Bell Laboratories, Murray
Hill, NJ 07974 USA (e-mail: mike.burns@ alcatel-lucent.com).

R. Bruce Craig is with Alcatel-Lucent Bell Laboratories, Columbus,
OH 43213 USA (e-mail: bruce.craig@ alcatel-lucent.com).

frustrated by the lack of an effective mechanism for broadly
sharing their work.

The second trend that will change the nature of application
software development is the emergence of enterprise social
networking. At its core, enterprise software development is a
social activity, requiring collaboration and interaction across
organizational boundaries within an often global enterprise.
[5, 6] It seems natural, therefore, to look for ways that social
networking applications can assist with the social activity of
software development. One such area is the effective
exposure of application services Application Programming
Interfaces (APIs) mentioned above.

Enterprise social networks and ecosystems can be extended
to include services and applications as accessible objects.
Doing so will have a significant impact on the social and
technical processes through which enterprises develop
service-based applications. This paper describes a model
for viewing services, their APIs and the resulting
applications as “first class” objects within a social network,
thus enabling software engineers and other interested
associates to interact with these objects as members of the
social network. The key benefit is that services can be
exposed and “discovered” in the social network more
effectively than with current practice, which should
dramatically increase reuse, shorten development cycles,
and increase quality.

The remainder of this paper is organized as follows: Section
2 discusses the fundamental ideas for social networking in
the context of interacting with services and applications.
Section 3 presents a usage scenario to explore how services
and applications can interact within the social network.
Section 4 highlights conclusions and future directions for
related work.

2 ENTERPRISE SOCIAL NETWORK MODEL
2.1 Define an Example Social Network Model
Our team has developed an enterprise social networking
application, called People & Projects (P&P). We will use
P&P as an example social networking application that can
be extended to support the exposure of application services.
P&P began as an experimental effort in Alcatel-Lucent Bell
Labs to explore innovative enterprise social networking
concepts. It has been in use across Alcatel-Lucent for
approximately five months at the time of this writing.

Peter D. Schott, Michael J. Burns, and R. Bruce Craig

The People and Projects social network data model exposes
four primary social objects with which users can interact:

• People: Every Alcatel-Lucent employee and
contractor is in the P&P database. Each person has
his own Profile Page that displays information about
that person. Some of the information is pulled from
a corporate directory database; other information is
added by users. Figure 1 shows an example People
Profile Page from P&P.

• Projects: Projects represent the major work activities
that people are performing. Any P&P user can add a
new project to the database. Informal, as well as
formal, projects can be accommodated in the P&P
data model.

• Conversations: Conversations are public, text-based
dialogues between P&P users. Any user can begin a
conversation, and any other user can reply to the
conversation.

• Tags: Tags are short descriptions of people, projects,
or conversations in P&P. They provide a way for an
individual user to describe an object to help her find
the object later via P&P’s discovery mechanisms.
Because any user can tag any object, the set of tags
for any person, project, or conversation represents
the “collective wisdom” about that object. [7, 8]

Users interact with these objects in several ways including:

• Tag: Apply tags to an object to describe the object
in a meaningful context for the user.

• Follow: Denote that the user wants to monitor
changes to the object, or, in the case of people
objects, be informed when a person performs
certain activities within P&P. When an object’s
properties change, the user is notified of these
changes within P&P.

• Discuss: Have free-form conversations with other
users. These conversations may reference other
objects within P&P, such as projects.

These methods of interacting with the social objects are
open to any member of the P&P social network as long as
they are logged into P&P.

Figure 1 shows an example Profile Page for a P&P user. It
includes a short description about the user’s skills and
interests, contact information about the user, and tags that
have been applied for this person. Other tabs on this pages
show more detailed information about this person.

When a P&P user interacts with another P&P object in any
of these three ways, P&P is able to infer social relationships
through those interactions. For example, P&P users may be
related because one user has tagged another user. Similarly,
the act of following a person or project or conversation
causes a “following” relationship, and conversing about an
object causes a “discussing” relationship.

Figure 1: Example People Profile Page

Second-order relationships are also exposed in P&P. For
example, two users might share the same tag or be
following the same object. Cross-object second-order
relationships are also possible. For example, a person and a
project might be related because they share the tag “Java”
because they are both working in the Java language. These
second-order relationships are a key part of P&P. The
exposure of second-order relationships is how P&P allows
users to “discover” other users who they share interests
with or projects on which they might want to collaborate.

2.2 Service APIs and Applications as Social Objects
The above social networking model can be extended to
include software development objects, such as service APIs
and applications, as first-class objects in a social network.
Viewing service APIs and applications as social objects is a
significantly different approach from existing service-based
development approaches used today. Such an approach
offers important benefits.

The first benefit is that services and service-based
applications will be searchable and discoverable within the
social network. Just as users can search for other people or
projects in a social networking application like People &
Projects, they can search for services and applications,
based on “traditional” data about these objects such as title
and description. However, including these objects in the
social networking framework opens up the possibility of
using a much richer set of data to help discover services and
applications. These additional data or attributes include
tags applied to the services and applications by their
developers and by other social network community
members who have knowledge of the services and
applications, perhaps through their experience in using
them. The additional data also include metadata about
which applications are consuming which services, which
developers have contributed to which services and
applications, how recently services and applications have
been created and modified, etc.

In addition, exposing services and applications through a
social network enables members of the community to
“follow” services and applications that may be of interest to
them, just as they can follow people and projects that are of
interest. In this way, they can be notified immediately
when there are changes or updates to the software
development objects that are important to them.

Another benefit of this approach is the ability for the social
networking application to foster discussion about the
software development objects of interest. For example, if
one developer has a question about a particular service, he
can easily contact the service’s developer through the social
network. He could also opt to post a question about the
service to the social networking community, in which case
anyone who is following the service in question would see
the question and be able to respond.

Second-order relationships, as described above for people
and projects, also are valuable when thinking about services

and applications in this context. Tags shared by services,
applications, and developers enable shared second-order
relationships between those objects to be discovered.
Similarly, they enhance the potential for conversations
between a wider set of the community. For example, if one
developer is following the tag “call control” and a service
has been tagged with “call control,” that developer will be
notified about changes to that service or conversations
about that service, even though she is not following that
service directly. Thus, these second-order relationships are
key to exposing services and applications much more
broadly.

Current approaches in building service-based applications
require the developer to either build the applications based
on services from a single source or the developer must use
his own expertise and social acumen to find and understand
appropriate services to utilize. Many times developers rely
on searching developer-focused forums and news lists,
email, and other informal channels to find pertinent
information. Once the application is built, unless the
developer has some support arrangement with the service
provider, typically at a cost, there are few effective methods
for the developer to be informed of changes to the service.

Viewing services and applications as first class social
objects has the potential to enable a fundamental paradigm
shift in service-based application development. This
paradigm shift will be realized through the ability of
software engineers and other social network members to
discover, interact with, and leverage services and
applications within the context of a social network. Further,
through interacting with members of the social network, the
availability and functionality of the services and
applications will be exposed, discovered, and evolved based
on the social interaction of the user community. A major
part of the paradigm shift that we envision comes about
because exposing services and applications as social objects
provides a social perspective and provides important new
social tools for software developers to use in the inherently
social work that they do. These tools give them a way to
unify the collaboration that is necessary in software
development, but which is currently handled through
disjointed mechanisms.

2.3 Services and Applications Data Model
This section describes a model and approach for extending
a social networking application to include software
development objects of interest.

Services and applications have many attributes that can be
exposed to interested parties. This paper does not attempt
to detail all the potential attributes, but instead highlights
and discusses attributes that are central to viewing services
and applications as objects within a social networking
ecosystem.

A service object contains data and metadata that allow the
service to be searched and discovered by others and that
provide sufficient information about the service so that the

 service is usable by application developers.

The service data model contains:

• Service name: The name of the service.
• Service description: A short description of the

primary operation(s) performed by the service.
• Service owner(s): Name(s) of the developer(s)

who created the service and/or who are currently
maintaining the service. These names would
include links to the developers’ profile pages in the
social networking application.

• Service documentation: Typically a link to any
available in-depth documentation about the service.
This documentation may be stored in the social
networking application itself or may be in a
corporate data store external to the social
networking application.

• Service definition: Definition of the service with
example usage and service parameters (if any).

• Service location: URL for the service location.
• Service creation date: Date the service was

registered with the social networking application.
• Service version history: Audit trail of changes

made to the service since it was registered with the
social networking application.

• Tags: Tags that have been applied to the service
by its developer(s) and others in the social
networking community who have knowledge of
the service

• Applications using the service: Applications that
consume the service, including a link to each
application’s profile page in the social networking
application (if the application has been registered
with the social networking application).

• Developers using service: Names of developers in
the social networking community who are using
the service, including links to their profile pages in
the social networking application.

• Service discussion: Threaded conversations about
the service among members of the social
networking community.

• Service Followers. Social networking community
members who have expressed an interest in being
notified about changes made to the service object.

The data model for applications is essentially the same as
the above model for services, but with the application as the
central object, rather than the service. In addition, one data
element for the application would provide services used by
the application (and links to the profile pages for those
services), instead of the “Applications using the service”
data element mentioned above for services. Additionally,
since applications can be deployed or installed on one or
more systems or “nodes,” therefore the application model
will contain an attribute that lists the nodes the application
is deployed to.

Services (and applications) are visualized in the social
network application through dynamic service (and
application) profile pages that present the data and metadata
listed above for a given service (or application). The profile
page is dynamic in the sense that as new services are added
into the social networking application, their profile pages
will be created dynamically, with no additional coding
effort required. Also as attributes for the services and
applications change, the changes will be reflected on the
profile pages.

Figure 2 shows an example Service Profile Page. This page
shows basic information about the service including title,
description, owner, and URL to access the service. Tags
that have been applied to the service are also shown. Other
tabs provide more detailed information about the service.

Enabling the visualization of services and applications
within a social network, while important, does not by itself
enable members of the community to easily discover and
utilize these services. For that to happen, the services must
be fully participating “members” of the community. This is
realized through allowing users to discover services through
the social network search facility and, most importantly, to
interact with services through the social networking
relationship objects – tagging, following, and discussing.
Since tags and discussions themselves are discoverable as
objects in the social network, they allow members to
discover services through second-order relationships as well.

The ability to follow service objects is especially important
because it enables the social networking community to
engage in the life cycle of the service and participate in the
service’s enhancements and quality. Through following a
service, a community member can monitor changes in the
service, tags applied to the service, applications and
developers using the service, and discussions about the
service. Followers are “pushed” the updates and are then
aware of changes as they occur.

Figure 3 shows the new communiqués that have come in to
alert this user that a service he is following is being
followed by another user as well as a new tag that has been
applied to a feedback conversation he is following.

2.4 Developer’s Service Cart
The “Developer’s Service Cart” helps developers in
working with services. It is a container object in which a
developer can store references to services in the social
networking application. It serves essentially as a way of
“checking out” services that the developer is considering
using in an application they are developing for easy
reference while they are being incorporated into the
application the developer is coding.

Figure 2: Service Profile Page

A typical scenario for using the “Developer’s Service Cart”
is:

1. A developer visits a service’s profile page that they
want to use,

2. The developer checks the “Add to developer’s
cart” check box option. By doing this, the
service’s information will be copied into the cart’s
container object for viewing later by the developer
within their development environment.

3. As the developer builds their application, they can
view the service’s information from the cart.

A large number of services can be added to the Developer’s
Service Cart, and they persist in the cart until the developer
explicitly removes them. Each developer can have her own
instance of the cart, which is visible only to them. A
reference to a service in the cart contains a link to that
service’s profile page in the social networking application.

3 USAGE SCENARIO
This section brings the services and applications enabled
through social objects process to life through a usage
scenario that highlights a potential use for this approach.

The user’s goal in this scenario is to develop a new service-
based application, called ConfSocial, that will enable
employees in her company to view conference papers along
with detailed information about the authors and to apply
tags to the papers. This example scenario explores how
such a service-based application can be enabled by
leveraging services visualized as objects in a social network.

This scenario builds on the People and Projects social
networking application described earlier. In addition to the
social objects described in Section 2, People and Projects
provides web services that allow access to the people,
projects, tags, and conversations object data and metadata.
These services are exposed as social objects within People
and Projects.

This scenario assumes that the enterprise has a central
repository for conference papers (ConfDB) that contains
basic information about the papers and their authors. The
data in ConfDB is exposed through web services that are
accessible by application developers within the enterprise.
These services are not modeled as social objects but are
defined on the enterprise’s development wiki pages.

 Figure 3: Communiqué Bar showing new notifications

3.1 Usage Scenario: Current Application-ConfApp
A service-based web application exists, called ConfApp,
that allows users to view conference papers stored in
ConfDB by author. ConfApp stands alone and is not
integrated with other applications or social networks.
ConfApp uses services provided by the enterprise to query
the conference paper repository by enterprise associates and
reply with papers that have been authored by associates
matching the query.

ConfApp users are also members of the enterprise’s “People
and Projects” social networking application, and these users
realize there is much more information about the authors of
conference papers that a new application could present to
those viewing the papers.

As starting step in building the new application, ConfSocial,
a software engineer is assigned to determine how to add
more author information to the application. In addition,
users have requested the ability to “tag” papers of interest
enabling them to identify the papers in a more personal
manner and find them more easily later.

3.2 Usage Scenario: Investigate Enhancement Potential
– Discover Available Services.

The software engineer is also a member of the People and
Projects social network, and knows that People and Projects

treats services and applications as viewable objects in the
social network. So the software engineer visits the People
and Projects’ services application “store.” The application
“store” is a search facility the allows users to search for
applications “registered” with it by using keywords to
match on tags, application data, conversation data, and
people data. After doing a search, the software engineer
finds there are no matches. This indicates that no
application that meets the developer’s needs has already
been developed and registered with People & Projects. The
software engineer expected this result, but started her work
with this search anyway just to be sure such an application
did not already exist. The software engineer also
understands that there is a likelihood there are services
available to provide the data required, even though the
needed application itself does not exist yet.

The software engineer knows People and Projects supports
a similar “store” for services that have been developed by
the various business units and the research departments.
The business units and research organizations have already
added many services to Services store so that they are
modeled as objects within the People and Projects social
network as described in section 2.2.

The software engineer visits the service “store” and does a
search using keywords that could return services that would

be useful for the application the software engineer wants to
develop. For example, she might search for “authors ‘get
people info‘ ‘create tags’”. In her search criteria she
includes terms to find technologies she wants to use, in this
case “PHP”. The search returns a listing of several services
that meet the search criteria based on service data such as
service titles, services descriptions, tags, and conversation
text.

In this case, among the query results, People & Projects
services for “getting people information,” “finding tags,”
and “applying tags” are returned. Future work, will focus
on introducing a recommendation approach to presenting
the results. A recommender “engine” will view services
metadata and developer profile information and suggest
services based on analysis of the search results. The
software engineer then visits each service’s profile page to
explore the details of the services.

3.3 Usage Scenario: Services Object Profile Page
The software engineer visits the service object profile pages
of the three services to get information about the services to
determine whether they are applicable for the new
application.

In the case of the “getting people information” and “finding
tags” services, the information presented on the service
profile page makes it clear that the services do match the
requirements and the software engineer adds the services
into her Developer’s Service Cart. However, the “applying
tags” service description raises some questions so the
software engineer decides to start a conversation on the
service profile page, hoping she can get the questions
answered. When a visitor engages in conversation about a
service, all owners of the service and all community
members who are following the service, the service owner,
or tags that have been applied to the service will be notified
of the discussion and can participate in the conversation
with the visitor. Additionally, all conversations are logged
and are reviewable by community members. In short order,
the questions are answered and the software engineer adds
the “applying tags” service into the “Developer’s Service
Cart.”

At this point, the software engineer has the required
services to build the ConfSocial application to include more
author information and enable tags to be applied to the
conference papers. The software engineer develops the
required code to access the services, leveraging the
information contained in the “Developer’s Service Cart” in
her development environment.

The new conference paper application now includes the

additional author information and allows for tagging of the
papers. It is determined this application should be made
available across the enterprise. To achieve this effectively,
the application needs cross-organization exposure. Typical
tools for advertising applications include broadcast emails
and postings to blogs or wikis. A drawback of these
methods is that once the initial announcement is made,
associates who may have missed it won’t know about it.
Also, email search is awkward at best. In People &
Projects, an application can be made easily discoverable by
registering the application with the People and Projects
application store. This action allows applications to be
searched and discovered similarly to services discovery
described in section 3.2. Knowing this, the software
engineer decides to register the application with the People
and Projects applications store.

3.4 Usage Scenario: Register Application
To register the enhanced conference paper application, the
software engineer visits People and Projects Applications
Store. Here when the software engineer is presented with
the Application store home page, she selects “Register
Application” and her “developer” profile page is presented
displaying personalized information for that developer
including:

• Applications that developer has registered, with
links to each application’s profile page

• Services that developer has recently viewed
• Services that developer is following
• That developer’s Developer’s Service Cart

In addition the page includes a button that the developer can
click to register a new application

Since the software engineer wants to register the conference
paper application, the software engineer presses the
“Register Application” button and a wizard guides her
through the registration process.

The registration process includes collecting information to
instantiate the new application social object in the social
network, including:

• Application name and description.
• Application location (URL).
• Services used by the application (can be added

from the Developer’s Service Cart).
• Tags to apply to the application

After the developer completes the wizard, the application is
registered and can be discovered using the various methods
supported by People and Projects.

Figure 4: Application Profile Page

Figure 4 shows Application Profile Page for the ConfSocial
application after the application has been registered. It
includes title, description, owner, and other key information
about the application. Tags that have been applied to the
application are also shown. Users can follow this
application by clicking on the “follow” link.

If the application is later tagged or followed by other
community members, the application’s software engineer
will be notified. Additionally, the software engineer can be
notified of application usage. If anyone in the community
is currently following the software engineer, they will be
notified that she has registered the application.

3.5 Usage Scenario: Discovering the Application

After the application is registered in People & Projects, the
social network community can discover the application in
several ways that leverage the application being exposed as
a social object. These include searching for the application
by tags, keywords, or developer. Community members will
also be notified about second-order relationship events that
are relevant to the application, so they might discover the
new application because they are following one of the tags
that has been applied to the application. Like other social
objects in People & Projects, the application can be
followed by social network community members.

Followers of applications will be notified when the
application is tagged, attributes are changed or
conversations about the application are started or replies
made to previous conversation threads

3.6 Usage Scenario: Conversing with/about Applications
Each application and service object profile page has an area
that provides visitors with the ability to start or join
conversation threads pertaining to the application. The
conversations are themselves a first class social object.
Therefore community members who are following the
application or tags that have been applied to the application
or people who participate in the conversation will be
notified about the new conversation. The conversation can
be viewed by community members and they can participate
in the conversation. This enables the community to share
and explore discussions on application topics across the
enterprise, increasing the potential for effective
collaboration around similar topics.

4 FUTURE WORK
Future work will focus on providing a mechanism for
effective discovery of existing services that are outside
social networks so they can automatically be registered as
new objects in the social network. Other work will focus
on observing patterns of service use, for example what

services are used together and in what sequence so that the
platform can recommend services that should be considered
based on services the user already has expressed interest in.
This recommendation engine could use fuzzy linguistic
modeling as described in [9].

ACKNOWLEDGMENT
The authors wish to acknowledge the important
contributions to People & Projects and to many of the
concepts described in this paper made by Brian Friedman
and John Vaughan.

REFERENCES

[2] D. Linthicum, "Web-Oriented Architecture (WOA) Gains
Momentum, Web 2.0 Journal, May, 2008. Available:
http://web2.sys-con.com/node/560954.

[3] D. Hinchcliffe, "What Is WOA? It's The Future of Service-
Oriented Architecture (SOA)," Dion Hinchcliffe's Blog -
Musings and Ruminations on Building Great Systems,
February, 2008 Available:
http://hinchcliffe.org/archive/2008/02/27/16617.aspx.

[4] K. Sherif and A. Vinze. “Barriers to adoption of software
reuse: A qualitative study, ” Information & Management,
Volume 41, Issue 2, December 2003, pp 159-175.

[6] A. McAfee. “Enterprise 2.0: The Dawn of Emergent
Collaboration,” MIT Sloan Management Review, Volume
47, Number 3, 2006, pp.21-28.

[7] S. Farrell, T. Lau, E. Wilcox, S. Nusser, and M. Muller,
“Socially Augmenting Employee Profiles with People-
Tagging,” Symposium on User Interface Software and
Technology Proceedings of the 20th Annual ACM
Symposium on User Interface Software and Technology
(UIST), 2007, pp. .91-100.

[8] C. Li and J. Bernoff, Groundswell: Winning in a World

Transformed by Social Technologies, Boston, MA: Harvard
Business School Press, 2008.

[9] C. Porcel, A.G. Lopez-Herrera, E. Herrera-Viedma, “A

Recommender System for Research Resources based on
Fuzzy Linguistic Modeling,” Expert Systems with
Applications: An International Journal, Volume 36, Issue 3,
2009, pp. 5173-5183.

[1] D. Garlan, "Software Architecture: a Roadmap,"
International Conference on Software Engineering,
Proceedings of the Conference on The Future of Software
Engineering, 2000, pp. 91 – 101.

[5] R.Spencer, "The streamlined cognitive walkthrough method,

working around social constraints encountered in a software
development company," Conference on Human Factors in
Computing Systems, Proceedings of the SIGCHI
Conference on Human factors in Computing Systems, 2000
pp. 353-359.

