

F

Abstract— A SQL injection attack targets interactive web
applications that employ database services. Such application
accept user input, such as form fields, and then include this
input in database requests, typically SQL statements. In SQL
injection, the attacker provides user input that results in a
different database request than was intended by the application
programmer. But, the existing network security techniques are
completely inadequate to defend the web application attacks.
This paper proposes an P-SQLIAD(Pattern based SQL
Injection Attack Detection) to detect the SQL injection attacks
using pattern. The P-SQLIAD consists of PCM(Pattern Create
Module) and ADM(Attack Detection Module), and is designed
to detect an SQL injection of the web application attacks. Using
pattern of attacks, the detection time is faster than the existing
web application security and reduces the positive false rates.

Index Terms— Web Application Security, SQL Injection,
OWAPS, Authentication

I. 0BINTRODUCTION

 The use of the web application has become increasingly
popular in our routine activities, such as reading the news,
paying bills, and shopping on-line. As the availability of
these services grows, we are witnessing an increase in the
number and sophistication of attacks that target them.

Specially, HTTP doesn’t defend with Firewall, IDS and
IPS etc and is open to use Web service, Web application
attacks using HTTP are increasing. The Gartner Group states
that 75% of the cyber attacks today are at the application
level. A staggering 97% of the over 300 Web Sites audited
were found vulnerable to web application attack.[1].

In particular, SQL injection, a class of code injection
attacks in which specially crafted input string result in illegal
queries to a database, has become one of the most serious
threats to web application.

Therefore, the existing network security techniques are
completely inadequate to defend the web application attacks.

This paper proposes a P-SQLIAD (Pattern based SQL
Injection Attack Detection for detecting and preventing SQL
injection attack detection. The P-SQLIAD uses pattern based
approach to detect illegal queries before they are executed on
the database. Also, the detection time is faster than the
existing web application security and reduces the positive
false rates using pattern of attacks.

Department of Computer Engineering, Catholic University of Daegu
Daegu, Korea 712702
hangkon@cu.ac.kr

The rest of this paper is organized as follows. In section 2
gives an overview of related work and Section 3 and Section
4 present the P-SQLIAD design and evaluation of the
implementation, and finally, Section 5 concludes.

II. 1BRELATED WORK

A. 5BWeb Application Structure

Web application is the application programs which is
used in web browser and consist of three layers such as
presentation layer, CGI layer and database layer. Figure 1
shows the structure of web application [2].

Figure 1: Web application structure

Presentation Layer

The presentation layer is a graphic user interface which
collects data from user or shows the result of data process to
user. Flash, HTML and JavaScript makes the presentation
layer which directly communicates with users.

CGI Layer

The CGI Layer is located in between the presentation
layer and database layer. The CGI Layer is called Server-Side
Script Process. It translates the data which is inputted from
user and saves into database. Also the CGI Layer sends the
data of database to the presentation layer.

Namely, the CGI layer substantially processes the data on
web application and consists of JSP, PHP, ASP which are
Server-Side Scripts Language.

Database Layer

The database layer manages the information which is the
result of user data input process and saves into database. It is
very important to protect the data from malicious users.
Therefore, the database layer permits to access the important
data to non-malicious users while denying access to
malicious user.

Frameworks for SQL Retrieval on Web
Application Security

Haeng Kon Kim

B. 6BSQL Injection Attacks

SQL injection attack is a very old approach but it’s still
popular among attackers. This technique allows an attacker
to retrieve crucial information from a Web server’s database.
Namely, SQL injection attack is an attack in which malicious
code is inserted into strings that are later passed to an instance
of SQL Server for parsing and execution.

Example of SQL injection Attack

Figure 2 shows a typical web application in which a user on a
client machine can access services provided by an application
server and an underlying database. When the user enters a
login and a password in the web form and presses the submit
button, a URL is generated and sent to the web server.

Figure 2: Example of SQL Injection

If both login and pwd(password) are empty, the method
submits the following query to the database:

SELECT * FROM user WHERE login=’guest’

If login and pwd are defined by the user, the method
embeds the submitted credentials in the query. Therefore, if a
user submits login and pwd as “jang” and “duri”, the servlet
dynamically built the query:

SELECT * FROM user WHERE login=’jang’ AND
pwd=’duri’

But, If a user enters “’ OR 1=1 -- ” and “”, instead of
“jang” and “duri”, the resulting query is

SELECT * FROM user WHERE login=’’ OR 1=1 - - ‘ AND
pwd=’ ’

 The database interprets everything after the WHERE token
as a conditional statement, and the inclusion of the “OR 1=1”
clause turns this conditional into a tautology. As a result, the
database would return information about all users. An
attacker could insert a wide range of SQL commands via the
exploit [9].

SQL Injection Techniques

a. Tautologies
The general goal of a tautology-based attack is to inject

code in one or more conditional statements so that they

always evaluate to true. The consequences of this attack
depend on how the results of the query are used within the
application. The most common usages are to bypass
authentication pages and extract data. In this type of injection,
an attacker exploits an injectable field that is used in a
query’s WHERE conditional. Transforming the conditional
into a tautology causes all of the rows in the database table
targeted by the query to be returned. In general, for a
tautology-based attack to work, an attacker must consider not
only the injectable/vulnerable parameters, but also the coding
constructs that evaluate the query results. Typically, the
attack is successful when the code either displays all of the
returned records or performs some action if at least one
record is returned.

In this example attack, an attacker submits “ ’ or 1=1 - - ”
for the login input field (the input submitted for the other
fields is irrelevant). The resulting query is:

SELECT accounts FROM users WHERE login=’’ or 1=1
-- AND pass=’’ AND pin=

The code injected in the conditional (OR 1=1) transforms
the entire WHERE clause into a tautology. The database uses
the conditional as the basis for evaluating each row and
deciding which ones to return to the application. Because the
conditional is a tautology, the query evaluates to true for each
row in the table and returns all of them [8,11,15,16]

b. UNION Queries
In union-query attacks, an attacker exploits a vulnerable

parameter to change the data set returned for a given query.
With this technique, an attacker can trick the application into
returning data from a table different from the one that was
intended by the developer. Attackers do this by injecting a
statement of the form: UNION SELECT <rest of injected
query>. Because the attackers completely control the
second/injected query, they can use that query to retrieve
information from a specified table. The result of this attack is
that the database returns a dataset that is the union of the
results of the original first query and the results of the
injected second query.

Referring to the running example, an attacker could inject
the text “’ UNION SELECT card No. from Credit Cards
where acct No.=10032 - -” into the login field, which
produces the following query:
SELECT accounts FROM users WHERE login=’’ UNION
SELECT cardNo from CreditCards where
acctNo=10032 -- AND pass=’’ AND pin=

Assuming that there is no login equal to “”, the original
first query returns the null set, whereas the second query
returns data from the “CreditCards” table. In this case, the
database would return column “cardNo” for account
“10032.” The database takes the results of these two queries,
unions them, and returns them to the application. In many
applications, the effect of this operation is that the value for
“cardNo” is displayed along with the account information
[8,11,15,16].

c. Piggy-Backed Queries
In this attack type, an attacker tries to inject additional

queries into the original query. We distinguish this type from
others because, in this case, attackers are not trying to modify
the original intended query; instead, they are trying to include
new and distinct queries that “piggy-back” on the original
query. As a result, the database receives multiple SQL

queries. The first is the intended query which is executed as
normal; the subsequent ones are the injected queries, which
are executed in addition to the first. This type of attack can be
extremely harmful. If successful, attackers can insert
virtually any type of SQL command, including stored
procedures,1 into the additional queries and have them
executed along with the original query. Vulnerability to this
type of attack is often dependent on having a database
configuration that allows multiple statements to be contained
in a single string.

If the attacker inputs “’; drop table users - -” into the pass
field, the application generates the query:
SELECT accounts FROM users WHERE login=’doe’ AND
pass=’’; drop table users -- ’ AND pin=123

After completing the first query, the database would
recognize the 1Stored procedures are routines stored in the
database and run by the database engine. These procedures
can be either user-defined procedures or procedures provided
by the database by default. query delimiter (“;”) and execute
the injected second query. The result of executing the second
query would be to drop table users, which would likely
destroy valuable information. Other types of queries could
insert new users into the database or execute stored
procedures. Note that many databases do not require a special
character to separate distinct queries, so simply scanning for
a query separator is not an effective way to prevent this type
of attack [8,12,15,16].

d. Using Comments
SQL supports comments in queries. Most SQL

implementations, such as T-SQL and PL/SQL use { { to
indicate the start of a comment (although occasionally # is
used).

By injecting comment symbols, attackers can truncate
SQL queries with little effort. For example, SELECT *
FROM users WHERE username='greg' AND
password='secret' can be altered to SELECT * FROM users
WHERE username='admin' { { AND password=". By merely
supplying admin' {{as the username, the query is truncated,
eliminating the password clause of the WHERE condition.
Also, because the attacker can truncate the query, the
tautology attacks presented earlier can be used without the
supplied value being the last part of the query. Thus attackers
can create queries such as SELECT * FROM users WHERE
username= 'anything' OR 1=1 {{AND password='irrelevant'.

This is guaranteed to log the attacker in as the first record
in the users table, often an administrator [11].

C. 7BOWAPS

The primary aim of the OWASP Top 10 is to educate
developers, designers, architects, and organizations about the
consequences of the most common web application security
vulnerabilities. The Top 10 provides basic methods to protect
against these vulnerabilities – a great start to your secure
coding security program [5].

A1. Cross Site Scripting

A2. Injection Flaws (includes SQL injection)

A3. Malicious File Execution

A4. Insecure Direct Object Reference

A5. Cross Site Request Forgery (CSRF)

A6. Information Leakage and Improper Error

Handling

A7. Broken Authentication and Session

Management

A8. Insecure Cryptographic Storage

A9. Insecure Communication

A10. Failure to Restrict URL Access

III. 2BP-SQLIAD DESIGN AND IMPLEMENTATION

This paper proposes a simple and effective
P-SQLIAD(Pattern based SQL Injection Attack Detection)
to Detect web application attacks such as SQL injection.
P-SQLIAD consists of PCM(Pattern Creation Module) and
ADM(Attack Detection Module).
 Specially, Whenever PCM parses SQL, PCM creates an
SQL_condition and SQL extension pattern , and saves in
database. ADM uses the patterns which saved in database to
detect SQL injection attract.

Figure 3 shows the process of P-SQLIAD.

 Figure 3: The process of P-SQLIAD

A. 8BPCM Design

PCM(Pattern Creation Module) creates an signature of
SQL injection.

The steps of pattern creation are as follows:

Step 1. read SQL_query and parse SQL_query.

Sql_query : SELECT * FROM users WHERE id=’jang’
AND pwd=’duri’ -- AND pwd=’seri’

The result of parsing :
 SELECT * FROM users WHERE id = ’jang’ AND

pwd = ’duri’ -- AND pwd = ‘seri’

Step 2. if condition is existed, SQL_condition pattern is
created.
 Figure 4 shows the example of SQL_condition Pattern.

Figure 4: SQL_condition Pattern

Step 3. SQL_conditon pattern is saved.
Step 4. if extension is existed, SQL_extension pattern is
created.

Figure 5 shows the example of SQL_extionsion Pattern.

Figure 5 : SQL_extionsion Pattern

Step 5. SQL_extension pattern is saved.

B. 9BADM Design

ADM(Attack Detection Module) detects an attack of web
application using pattern which makes by PCM.

The steps of attack detection are as follows.
Step 1. Read SQL query
Step 2. Compare an pattern of SQL query and the
sql_extension of warning table(EXT_t) if the extension
exists in query.
Step 3. If the result of Step2 is TRUE, P-SQLIAD calls the
manager of Web Server.
Step 4.Compare an pattern of SQL query and the
sql_condition of warning table(CON_t) if the condition
exists in query.
Step 5. If the result of step 4 is TRUE, P-SQLIAD calls the
manager of Web Server.

Figure 6 shows the process of ADM.

Figure 6 : The process of ADM

IV. 3BSIMULATION OF P-SQLIAD

The simulation environment of the P-SQLIAD proposed
in this paper is Intel Pentium 4 CPU 3.00, 2GB RAM,
MS-Windows XP Professional OS, and PHP, JavaScript,
MySQL.

To evaluate our implementation, we selected three
real-world web applications that have been used for previous
evaluations in the literature[6,7,8,9]. Each of these web
application is provided in multiple web-programming

languages, so we used the PHP version to evaluate the
applicability of our implementation.

Table 1 shows for each subject the number of attacks and
the number of attacks detected by P-SQLIAD. As the table
shows, P-SQLIAD achieved a perfect score. For all subjects,
it was able to correctly identify all attacks as SQL injections,
that is, it generated no false positives.

 Table 1: the Result of Simulation
Web

Application
P-SQLIAD AMNESIA[9]

Attack/detection Attacks/detection
Bookstore 18/18 182/182
Classifieds 20/20 200/200
Events 26/26 260/260
Portal 14/14 140/140

V. 4BCONCLUSIONS

The use of web applications has become increasingly
popular in our routine activities, such as reading the news,
paying bills, and shopping on-line. As the availability of
these services grows, web application system incurs many
problems about security, and falls away the capacity of
system.

This paper proposes an P-SQLIAD (Pattern based SQL
Injection Attack Detection) to detect web application attacks
using pattern. The P-SQLIAD consists of PCM(Pattern
Create Module) and ADM(Attack Detection Module), and is
designed to detect the SQL injection and Cross Site
Scripting(XSS) of web application attacks.

The evaluation of P-SQLIAD was used three real
applications. The result of the study show that P-SQLIAD
was able to stop all of the attempted attacks without any false
positives.

ACKNOWLEDGMENT

This work was supported by the Korea National Research
Foundation (NRF) granted funded by the Korea Government
(MEST No. R- 2009-0083879).

REFERENCES
[1] HUhttp://www.j2ktechnology.com/products_services_security/applicatio

n_test.html U
[2] In-yong Lee, Jae-ik Cho, Kyu-hyung Cho, Jong-sub Moon, “A Method

for SQL Injection Attack Detection using the Removal of SQL”,
vol.10, no.5, pp.135-147, 2008

[3] The Open Web Application Security Project, “OWASP Top10project”
http://www.owasp.org/index.php/Cross-cite_Scripting_(XSS)

[4] HUhttp://www.crosssitescripting.com/U
[5] The Open Web Application Security Project, “OWASP Top10 Project”

http://www.owasp/org/index.php/Top_1-_2007..
[6] GotoCode, http://www.gotocode.com/
[7] Z. Su, G.Wassermann, “The Essence of Command Injection Attacks in

Web Applications”, In Conference Record of the 33rd ACM
SIGPLANSIGACT Symposium on Principles of Programming
Languages, pp.372- 382, 2006

[8] W.G.Halfond, J.Viegas, A.Orso, “A Classification of SQL-Injection
Attacks an Countermeasures”, In Proceeding on International
Symposium On Secure Software Engineering Ralegh, NC, USA,
pp.65-81, 2006.

[9] W.G.Halfond and A.Orso, “AMNESIA : Analysis and Monitoring for
Neutralizing SQL-Injection Attacks”, In Proceedings of 20th ACM
International Conference on Automated Software Engineering(ASE),
pp.174-183, 2005

[10] F.Valeur, D.Mutz, G.Vigna, “A Learning Based Approach to the
Detection of SQL Attacks”, In proceedings of the Conference on
Detection of Intrusions and Malware and Vulnerability Assessment,
pp123-140, 2005

[11] Gregory T. Buehrer, Bruce W. Weide, and Paolo A. G. Sivilotti, “Using
Parse Tree Validation to Prevent SQL Injection Attacks”, In
Proceedings of the 5th international Workshop on Software
Engineering and Middleware(SEM), pp.105- 113, 2005.

[12] Chris Anley, “Advanced SQL Injection In SQL Server Applications”,
An NGSSoftware Insight Security Research(NISR) Publication, 2002.
URL:http://www.nextgenss.com/papaers/ advanced_sql_injection.pdf

[13] Stephen Thomas, Laurie Williams, “Using Automated Fix Generation
to Secure SQL Statements”, In proceeding of the 29th International
Conference on Software Engineering Workshops(ICSE), pp.54-60,
2007

[14] Z. su, G. Wassermann, “The Essence of Command Injection Attacks in
Web Applications”, 33rd ACM SIGPLAN- SIGACT Symposium on
Principles of Programming Languages, pp.372-382, 2006

[15] S. McDonald, “SQL Injection:Modes of attack, defence, and why it
matters”, White paper, GovernmentSecurity.org, April 2002.
http://www.governmentsecurity.org/articles/SQLInjecetionModesofAt
tackDefenceandWhyItMatter.php

[16] S.Labs, SQL Injection White paper, SPI Dynamics, Inc., 2002,
http://www.spidynamics.
com/assets/documents/whitepaperSQLInjection.pdf

