
Decoding the (41, 21, 9) Quadratic Residue Code

Chong-Dao Lee, Yaotsu Chang ∗

Abstract—This paper proposes an algebraic decod-
ing algorithm for the (41, 21, 9) quadratic residue
code via Lagrange interpolation formula to determine
error check and error locator polynomials. Programs
written in C++ language have been executed to check
every possible error pattern of this quadratic residue
code.

Keywords: Lagrange interpolation formula, quadratic

residue code, error locator polynomial

1 Introduction

Quadratic residue codes [1] are a class of good algebraic
error-correcting codes due to its large minimum distance.
Recent research on quadratic residue codes is devoted to
developing the algebraic decoding method [2]-[6], deter-
mining weight distribution [7], finding double circulant
presentation [8], and improving the bounds of the mini-
mum distance [9]. In particular, the algebraic decoding
of the (41, 21, 9) binary quadratic residue codes [10] was
based on the unknown syndrome [11]-[15], error locator
polynomial [12]-[15], and lookup table [16].

In this paper, the Lagrange interpolation formula instead
of the previous algebraic methods, such as syndrome ma-
trix and Newton identities, is utilized to derive the error
check and error locator polynomials for the use of decod-
ing algorithm of the (41, 21, 9) quadratic residue code.
Programs written in C++ language have been executed
to check every possible error pattern of this quadratic
residue code. Moreover, the decoding algorithm proposed
here requires much less computational time than Algo-
rithm D2 in [6].

Section 2 describes the brief introductions concerning QR
code, syndrome, Lagrange interpolation formula. Sec-
tion 3 defines the error check and error locator polynomi-
als. Also, these polynomials are determined by Lagrange
interpolation formula and are used in the proposed de-
coding algorithm in Section 4. Conclusions are given in
the final section of the paper.

∗Departments of Communication Engineering and Applied
Mathematics, I-Shou University, Taiwan, R.O.C. Tel/Fax: 886-7-
6577711/6578930 Email: {chongdao, ytchang}@isu.edu.tw

2 Preliminaries

2.1 Quadratic Residue Code

Let n be a prime number of the form n ≡ ±1 (mod
8). A binary quadratic residue code of length n is an
(n, (n + 1)/2, d) cyclic code with a generator polynomial
g(x) =

∏
i∈Q(x − βi) , where d stands for the minimum

distance, the set Q = {i|i ≡ j2 mod n for 1 ≤ j ≤ n − 1}
is the collection of all nonzero quadratic residues modulo
n and β is a primitive nth root of unity in E = GF (2m)
satisfying n | 2m − 1.

2.2 Syndrome

Let the code polynomial c(x) = c0 + c1x+ · · ·+ cn−1x
n−1

be transmitted through a noisy channel to obtain the
received polynomial of the form r(x) = c(x)+e(x), where
e(x) = e0 + e1x + · · ·+ en−1x

n−1 is an error polynomial.
The known syndromes are obtained by evaluating r(x) at
the roots of g(x), i.e.,

Si = r(βi) = c(βi) + e(βi) = e(βi), i ∈ Q. (1)

If i /∈ Qn, then define Si = e0+e1(βi)+ · · ·+en−1(βi)n−1

and call it unknown syndrome. When v errors occur in
the received polynomial r(x), then the error polynomial
e(x) has v nonzero terms, namely, e(x) = xl1 + xi2 +
· · · + xlv , where 0 ≤ l1 < l2 < · · · < lv ≤ n − 1. For a
quadratic residue code with minimum distance d, an error
polynomial e(x) is said to be correctable if its weight is
less than or equal to the error-correcting capacity, t =
�(d − 1)/2�, where �x� denotes the greatest integer less
than or equal to x. By definition, the syndrome Si can
be written as Si = (βl1)i + (βl2)i + · · · + (βlv )i, where
βlj for 1 ≤ j ≤ v are called the error locators. For any
binary cyclic codes, there is an obvious relation among
syndromes, namely, S2i = S2

i , with sub-indices modulo
n, if necessary.

2.3 Lagrange Interpolation Formula

The finite field version of Lagrange interpolation formula
can be found in [17] and is as follows: for q ≥ 0 let
a0, a1, . . . , aq be q + 1 distinct elements of E, and let
b0, b1, . . . , bq be q + 1 arbitrary elements of E. Then
there exists exactly one polynomial L(x) ∈ E[x] of degree
at most q such that L(ai) = bi for i = 0, 1, . . . , q. The



polynomial L(x) can be written in the form

L(x) =
q∑

i=0

bi

h′(ai)
h(x)

x − ai

with h(x) =
∏q

k=0(x − ak) and h′(x) is the derivative of
h(x).

3 Key Polynomials

3.1 Error Check Polynomial

Let E(v,v+1) be the set of all syndromes obtained from
correctable error patterns of weights v and v + 1.

Definition 1: The error check polynomial H(v,v+1)(x) =∏
κ∈E(v,v+1)(x − κ) is a polynomial in xn over F2.

For the (41, 21, 9) binary quadratic residue code, the
error check polynomials are

H(1,2)(x) = 1 + x82 + x123 + x164 + x246 + x287

+ x328 + x369 + x492 + x533 + x574

+ x656 + x697 + x738 + x779 + x861 (2)

and
H(3,4)(x) =

∑

i∈Z

xi. (3)

To save space, instead of showing Z, we just show 〈Z〉 in
(7), where 〈·〉 is defined in the next subsection.

3.2 Error Locator Polynomial

For a binary quadratic residue code generated by irre-
ducible polynomial, let σ(v,v+1) be an error locator poly-
nomial in F2[S1, z] if

σ(v,v+1)(S1, z) = 1 +
v+1∑

j=1

σ̃j(S1)zj , (4)

where 1 ≤ j ≤ 4, σ̃j ∈ F2[S1] for a given correctable
syndrome S1 corresponding to an error pattern of weight
v or v + 1.

For the (41, 21, 9) binary quadratic residue code, if v = 1,
then

σ(1,2)(S1, z) = 1 + σ̃1(S1)z + σ̃2(S1)z2, (5)

where σ̃1(x) = x and σ̃2(x) = x166 + x248 + x289 + x330 +
x371 + x535 + x617 + x658 + x699 + x822. If v = 3, then (4)
becomes

σ(3,4)(S1, z) = 1 +
4∑

j=1

σ̃j(S1)zj , (6)

where σ̃1(x) = x, σ̃2(x) =
∑

i∈U2
xi, σ̃3(x) =

∑
j∈U3

xj ,

and σ̃4(x) =
∑

k∈U4
xk. The hexadecimal sequences 〈U2〉,

〈U3〉, and 〈U4〉 are given in (8), (9), and (10), respectively.

Remark: for example, let n = 41 and A = {125, 207, 248,
289}. Since every number in the index set A is congruent
to r = 2 modulo n = 41, to save space, subtract 2 and
then divide by 41 for each number of A to obtain {3, 5, 6,
7}. Use numbers of this set to indicate the positions of 1
in a binary sequence, which yields the sequence 00010111.
Convert it into a hexadecimal sequence, which is 8e in the
case, and denote the final result by 〈A〉, i.e., 〈A〉 = 8e.

Now we are ready to propose an algorithm for decoding
the (41, 21, 9) binary quadratic residue code up to its
error-correcting capacity as shown in the next section.

4 Decoding Algorithm

If the known syndromes calculated by (1) are all zeros,
there is no error in the received word. The received word
is really a codeword. When the errors occur in the re-
ceived word, the decoding algorithm is described below
by seven steps.

1. Compute the primary known syndrome S1 from (1).

2. Initialize by letting v = 1.

3. Compute the error check polynomial H(v,v+1)(S1)
for in (2) or (3).

4. If H(v,v+1)(S1) = 0, go to step 6. Otherwise, set
v = v + 2.

5. If v > 4, stop. Otherwise, go to step 3.

6. Compute the error locator polynomial σ(v,v+1)(S1, z)
in (5) or (6).

7. The error pattern is determined by the Chien search
method and then the received word can be corrected.

5 Conclusions and Future Work

The Lagrange interpolation formula presented in this pa-
per provides a practical technique to determine the error
check and error locator polynomials. An interesting open
problem remains whether there exists some simpler error-
locator polynomials for the (41, 21, 9) binary quadratic
residue code that is suitable for both software and hard-
ware implementations.

Acknowledgment

The work was supported by National Science Council,
R.O.C., under Grants NSC97-2221-E-214-027-MY2 and
NSC97-2115-M-214-001-MY2.

References

[1] MacWilliams, F.J., Sloane, N.J.A., The Theory of
Error-Correcting Codes, North-Holland, 1977.



〈Z〉 = d799f67dbc6e88632b7f7a4e4f6a44e7ae270109765fbf2bf584c746397a9306e8aff52a2d8b2ae1ef234761f

3faa148b407b9db2536b781440497595fa0a548d0436be07f16b2a1158645a5b280e35f1894bbfd5ce8e920a5a

7d425c6b3994b64c3e6a046ee1bb10dece7d4855cec202d2cdf4e549af8a323c7525512b19f52e3d8695626a73
d6f67c59f9fbfcf4121648edd089ae6af4090488ff5f7099c393bef1cdf1339193814880e86e50ba2c2e2acf41
11092d9bf0e59490341f94ec45913caa0516479c2638e1ed1df281c7800de77e134c82fb8542b0851e00d8c78f

c790c1e92b5ebebe208f645e4ce8d0fc2de79357cb9566eff92da3754b66a504568272e705d6403fad2df8112b

6dbc0b1c2f8735d382a39121c5ac11252b591d3fc73dac2b8a8af50408e132cbdb3d28990d8eb1b9e9dd6d8ea1
cc11673c68b23b4c0dd03de1510e19de07e63def97e8f22a9006a5. (7)

〈U2〉 = dcf091273ab79b6239ca01c45df069cdbc753e5b913b9173987457e00358b09303d397eb3cf6f22bde0123a39
a1d90e2ff279f7f31934f6bc09fdeb12dc1dfe0aa3ee488e8635c18b034451af657e36218c2f297e98509fd402
6ceec706de389da3087cf5d8ddc1a0d87c34c1ae538ee93cad4e95bf3a205d2a60a5332f3171a462e3ee323b3f

e4f3062c4cf03b54d01108e76b46d769f0695c9773a57c84c883e33375a49fece37fe13ea9e24b50adf40bbd2d

dc6e55c3a4234cc1868e1056fe80fdf41abcbb48022e44c2daa27d56357c86379de24e6686a8974f6740a4577c

f0f02eea8a5ac0ce3e9d37b235105646da800b1d459abd284f14e091304bbc034b89e49dfaed9b0a91701ff23a

5cc032a5649dc311cbb779365ee118a5658875b1ad911a86125be3d0e04e0f0e03e1c71bb694e5e516c1d1adcf

0a7ae48b01a4385f33d345d430177b0cacc2314a89f28ef2a1e25 (8)

〈U3〉 = 19f3c4a38e8ff4fc59b105601241f538f9c26667dba60ccc8c964cef5257145ab6d22d9e46164775c18ecd332
73c7e69c9a230ef49d9077dd38c6cead11e97c261b9e61a5e2d5c9689ae23d13bcc640047ca9455cfa6d1853ea

9f2abae547242cc15e99fc3f6ee20b9d68fb86533a9858d82bde04912afcb6bb1c93321f2e614c9c484c89f863
09f3906453b80cb10bf3d384e331c7407b29ba005412c6c11a1f338f06d447cb99ff8036a621c6f67be8e93e55
a35ab7534b3b3d4e0e3cb5f31ccd32684235e5f42ceb343a996e562ff3aa512809794d5a713cc532fc1291873c

d5e0e32031ecc9f23d0ed175c6df6f9b95a2586846f6dcd7c8dc0e8aea44a4b47a09a98d8e6e6cb2292fbf8128
e98d06fe769c25ae5367b03d188cd6ad6fa42633e017e433e498ed23a47de0f8e7d4f16de119e9af0e1c7582d5
f1c0dff6f2d347a17504e7cbaf3731b73144fd1f391e1dac75f3e3 (9)

〈U4〉 = 41ab52f1cb58c4d9beb4976476d48ba1eb2aad52509c1ba301c624f75a6788527f2811dbafb0caf9bfec32c53
1a268179bde06884cd1d7d22cf83ed26aa476b32deb2bc23bc0834120ed39b32934432393598de3155c96cfe16
1caec77ee8f8d7784e019006a824def13f430a6f8f855eea06af355ff5eb54b6c5545e46b116aabb1e6eb33b2a

3d4b3954bf54a0d68a68e4ba4888c6ba229a4be2a8914d2ff102047ba811f065afa5ea74ddb1f3f6b473a3bf42
e1bd9104f46a4f3ca8547c2dcbb8b6539a46c5bed6bdc68b2863c5cfdb65a65849fd9ae2a15cd37721995126cf

deac741ba28bce7f047ac0c6a82a285e3ac1f255b81a2de80d5cdff5afd3d1be718376fe2225248e05b83fd342
e083996639fb17af0934ae78a9f0c2d249051cd23d4f4477f930f9385a6c77348b2217566ef2cdbe675736af16
2cd0e5fbd58c6193a37361498eb407ccf485eef0e41c4e1ba38552 (10)

[2] Augot, D., Bardet, M., Faugère, J.-C., “On the De-
coding of Binary Cyclic Codes With the Newton Iden-

tities,” Journal of Symbolic Computation, V44, N12,
PP. 1608-1625, 12/09



[3] Orsini, E. Sala, M., “Correcting Errors and Erasures
Via the Syndrome Variety,” Journal of Pure and Ap-
plied Algebra, V200, N1-2, pp. 191-226, 8/05.

[4] Orsini, E. Sala, M., “General Error Locator Polyno-
mials for Binary Cyclic Codes With t ≤ 2 and n < 63
,” IEEE Trans. on Information Theory, V53, N3, pp.
1095-1107, 3/07.

[5] Truong, T.K., Shih, P.Y., Su, W.K., Lee, C.D.,
Chang, Y., “Algebraic Decoding of the (89, 45, 17)
Quadratic Residue Code,” IEEE Trans. on Informa-
tion Theory, V54, N11, pp. 5005-5011, 11/08.

[6] Chang, Y., Lee, C.D., “Algebraic Decoding of a Class
of Binary Cyclic Codes Via Lagrange Interpolation
Formula,” IEEE Trans. on Information Theory, V56,
N1, pp. 130-139, 1/10.

[7] Truong, T.K., Chang, Y., Lee, C.D., “The Weight
Distributions of Some Quadratic Residue Codes,”
IEEE Trans. on Information Theory, V51, N5, pp.
1776-1782, 5/05.

[8] Musa, M.B., “On Some Double Circulant Binary Ex-
tended Quadratic Residue Codes,” IEEE Trans on
Information Theory, V54, N2, pp. 898-905, 2/08.

[9] Helleseth, T., Voloch, J.F., “Double Circulant
Quadratic Residue Codes,” IEEE Trans on Informa-
tion Theory, V50, N9, pp. 2154-2155, 9/04.

[10] Reed, I.S., Truong, T.K., Chen, X., Yin, X., “The
Algebraic Decoding of the (41, 21, 9) Quadratic
Residue code,” IEEE Trans on Information Theory,
V38, N3, pp. 974-986, 5/92

[11] Lin, T.C., Truong, T.K., Lee, H.P., Chang, H.C.,
“Algebraic Decoding of the (41, 21, 9) Quadratic
Residue Code,” Information Sciences, V179, N19, pp.
3451-3459, 9/09

[12] Chen, Y.H., Lee, C.D., Chen, Y.H., Tai, S.H., “Ef-
ficient Decoding of Systematic (41, 21, 9) Quadratic
Residue Code,” IEEE Asia-Pacific Services Comput-
ing Conference, Yilin, Taiwan, pp. 128-133, 12/08

[13] Lee, C.D., Chen, Y.H., “A Decoding Method
for Binary Quadratic Residue Codes,” The 14th
Asia-Pacific Conference on Communications, Toyko,
Japan, 10/08

[14] Su, W.K., Shih, P.Y., Lin, T.C., Truong, T.K.,
“A Modified Algorithm for Decoding the (41, 21,
9) Quadratic Residue Code,” IEEE VTS Asia Pa-
cific Wireless Communications Symposium, Sendai,
Japan, 8/08

[15] Su, W.K., Shih, P.Y., Lin, T.C., Truong, T.K., “De-
coding of the (41, 21, 9) Quadratic Residue Code Us-
ing the Gao’s Algorithm,” International MultiCon-
ference of Engineers and Computer Scientists, Hong
Kong, China, 3/08

[16] Chen, Y.H., Truong, T.K., Huang, C.H., Chien,
C.H., “A Lookup Table Decoding of Systematic (47,
24, 11) Quadratic Residue Code,” Information Sci-
ences, V179, N14, pp. 2470-2477, 6/09

[17] Lidl, R., Niederreiter, H., Introduction to Finite
Fields and Their Applications, Cambridge Univ.
Press, 1986.




