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Abstract—This paper proposes an algebraic decod-
ing algorithm for the (41, 21, 9) quadratic residue
code via Lagrange interpolation formula to determine
error check and error locator polynomials. Programs
written in C++ language have been executed to check
every possible error pattern of this quadratic residue
code.
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1 Introduction

Quadratic residue codes [1] are a class of good algebraic
error-correcting codes due to its large minimum distance.
Recent research on quadratic residue codes is devoted to
developing the algebraic decoding method [2]-[6], deter-
mining weight distribution [7], finding double circulant
presentation [8], and improving the bounds of the mini-
mum distance [9]. In particular, the algebraic decoding
of the (41, 21, 9) binary quadratic residue codes [10] was
based on the unknown syndrome [11]-[15], error locator
polynomial [12]-[15], and lookup table [16].

In this paper, the Lagrange interpolation formula instead
of the previous algebraic methods, such as syndrome ma-
trix and Newton identities, is utilized to derive the error
check and error locator polynomials for the use of decod-
ing algorithm of the (41, 21, 9) quadratic residue code.
Programs written in C++ language have been executed
to check every possible error pattern of this quadratic
residue code. Moreover, the decoding algorithm proposed
here requires much less computational time than Algo-
rithm D2 in [6].

Section 2 describes the brief introductions concerning QR
code, syndrome, Lagrange interpolation formula. Sec-
tion 3 defines the error check and error locator polynomi-
als. Also, these polynomials are determined by Lagrange
interpolation formula and are used in the proposed de-
coding algorithm in Section 4. Conclusions are given in
the final section of the paper.
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2 Preliminaries

2.1 Quadratic Residue Code

Let n be a prime number of the form n ≡ ±1 (mod
8). A binary quadratic residue code of length n is an
(n, (n + 1)/2, d) cyclic code with a generator polynomial
g(x) =

∏
i∈Q(x − βi) , where d stands for the minimum

distance, the set Q = {i|i ≡ j2 mod n for 1 ≤ j ≤ n − 1}
is the collection of all nonzero quadratic residues modulo
n and β is a primitive nth root of unity in E = GF (2m)
satisfying n | 2m − 1.

2.2 Syndrome

Let the code polynomial c(x) = c0 + c1x+ · · ·+ cn−1x
n−1

be transmitted through a noisy channel to obtain the
received polynomial of the form r(x) = c(x)+e(x), where
e(x) = e0 + e1x + · · ·+ en−1x

n−1 is an error polynomial.
The known syndromes are obtained by evaluating r(x) at
the roots of g(x), i.e.,

Si = r(βi) = c(βi) + e(βi) = e(βi), i ∈ Q. (1)

If i /∈ Qn, then define Si = e0+e1(βi)+ · · ·+en−1(βi)n−1

and call it unknown syndrome. When v errors occur in
the received polynomial r(x), then the error polynomial
e(x) has v nonzero terms, namely, e(x) = xl1 + xi2 +
· · · + xlv , where 0 ≤ l1 < l2 < · · · < lv ≤ n − 1. For a
quadratic residue code with minimum distance d, an error
polynomial e(x) is said to be correctable if its weight is
less than or equal to the error-correcting capacity, t =
�(d − 1)/2�, where �x� denotes the greatest integer less
than or equal to x. By definition, the syndrome Si can
be written as Si = (βl1)i + (βl2)i + · · · + (βlv )i, where
βlj for 1 ≤ j ≤ v are called the error locators. For any
binary cyclic codes, there is an obvious relation among
syndromes, namely, S2i = S2

i , with sub-indices modulo
n, if necessary.

2.3 Lagrange Interpolation Formula

The finite field version of Lagrange interpolation formula
can be found in [17] and is as follows: for q ≥ 0 let
a0, a1, . . . , aq be q + 1 distinct elements of E, and let
b0, b1, . . . , bq be q + 1 arbitrary elements of E. Then
there exists exactly one polynomial L(x) ∈ E[x] of degree
at most q such that L(ai) = bi for i = 0, 1, . . . , q. The



polynomial L(x) can be written in the form

L(x) =
q∑

i=0

bi

h′(ai)
h(x)

x − ai

with h(x) =
∏q

k=0(x − ak) and h′(x) is the derivative of
h(x).

3 Key Polynomials

3.1 Error Check Polynomial

Let E(v,v+1) be the set of all syndromes obtained from
correctable error patterns of weights v and v + 1.

Definition 1: The error check polynomial H(v,v+1)(x) =∏
κ∈E(v,v+1)(x − κ) is a polynomial in xn over F2.

For the (41, 21, 9) binary quadratic residue code, the
error check polynomials are

H(1,2)(x) = 1 + x82 + x123 + x164 + x246 + x287

+ x328 + x369 + x492 + x533 + x574

+ x656 + x697 + x738 + x779 + x861 (2)

and
H(3,4)(x) =

∑

i∈Z

xi. (3)

To save space, instead of showing Z, we just show 〈Z〉 in
(7), where 〈·〉 is defined in the next subsection.

3.2 Error Locator Polynomial

For a binary quadratic residue code generated by irre-
ducible polynomial, let σ(v,v+1) be an error locator poly-
nomial in F2[S1, z] if

σ(v,v+1)(S1, z) = 1 +
v+1∑

j=1

σ̃j(S1)zj , (4)

where 1 ≤ j ≤ 4, σ̃j ∈ F2[S1] for a given correctable
syndrome S1 corresponding to an error pattern of weight
v or v + 1.

For the (41, 21, 9) binary quadratic residue code, if v = 1,
then

σ(1,2)(S1, z) = 1 + σ̃1(S1)z + σ̃2(S1)z2, (5)

where σ̃1(x) = x and σ̃2(x) = x166 + x248 + x289 + x330 +
x371 + x535 + x617 + x658 + x699 + x822. If v = 3, then (4)
becomes

σ(3,4)(S1, z) = 1 +
4∑

j=1

σ̃j(S1)zj , (6)

where σ̃1(x) = x, σ̃2(x) =
∑

i∈U2
xi, σ̃3(x) =

∑
j∈U3

xj ,

and σ̃4(x) =
∑

k∈U4
xk. The hexadecimal sequences 〈U2〉,

〈U3〉, and 〈U4〉 are given in (8), (9), and (10), respectively.

Remark: for example, let n = 41 and A = {125, 207, 248,
289}. Since every number in the index set A is congruent
to r = 2 modulo n = 41, to save space, subtract 2 and
then divide by 41 for each number of A to obtain {3, 5, 6,
7}. Use numbers of this set to indicate the positions of 1
in a binary sequence, which yields the sequence 00010111.
Convert it into a hexadecimal sequence, which is 8e in the
case, and denote the final result by 〈A〉, i.e., 〈A〉 = 8e.

Now we are ready to propose an algorithm for decoding
the (41, 21, 9) binary quadratic residue code up to its
error-correcting capacity as shown in the next section.

4 Decoding Algorithm

If the known syndromes calculated by (1) are all zeros,
there is no error in the received word. The received word
is really a codeword. When the errors occur in the re-
ceived word, the decoding algorithm is described below
by seven steps.

1. Compute the primary known syndrome S1 from (1).

2. Initialize by letting v = 1.

3. Compute the error check polynomial H(v,v+1)(S1)
for in (2) or (3).

4. If H(v,v+1)(S1) = 0, go to step 6. Otherwise, set
v = v + 2.

5. If v > 4, stop. Otherwise, go to step 3.

6. Compute the error locator polynomial σ(v,v+1)(S1, z)
in (5) or (6).

7. The error pattern is determined by the Chien search
method and then the received word can be corrected.

5 Conclusions and Future Work

The Lagrange interpolation formula presented in this pa-
per provides a practical technique to determine the error
check and error locator polynomials. An interesting open
problem remains whether there exists some simpler error-
locator polynomials for the (41, 21, 9) binary quadratic
residue code that is suitable for both software and hard-
ware implementations.
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