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Application of Genetic Immune Algorithm on
Solving Disinfection Problem of
Water Distribution Network System

Chien-Wei Chu, Shuang-Fu Yeh, and Min-Der Lin"

Abstract—This paper presents the methodology and
application of genetic immune algorithms (GIA) on solving
optimal scheduling of booster disinfection problems in a water
distribution network system (WDNS). The objective of this
study is to initiate a total chlorination dose to satisfy the
minimum and maximum required chlorine residual at every
demand node in a WDNS while minimizing the chlorine
consumption as much as possible. The performance of GIA is
evaluated using a well-known benchmark WDNS booster
disinfection case study. The comparison results indicate that
GIA is able to find solutions comparable to the best solutions
published in the literature.

Index Terms—immune algorithm; genetic algorithm; genetic
immune algorithm; water distribution network system; booster
disinfection.

I. INTRODUCTION

A water distribution network system (WDNS) is an
important composition of a water supply system in any city
and it carries out the task of transporting drinking water to the
consumers. However, the quality of drinking water in a
WDNS usually becomes worse or at risk for disease because
of the long transport time which can bring about the process
of physical, chemical, and microorganism change in the
water. For this reason, drinking water must be dealt with a
supply source by water purification plants. Chlorination
disinfection is the most popular treatment technology
because residual chlorine concentrations can be maintained
in a WDNS to restrain microbes. The conventional
management practice for residual chlorine maintenance is to
add large quantities of chlorine at the source to guarantee a
sufficient residual throughout the remote parts of a WDNS.
Nevertheless, the high residual chlorine may not only cause
the consumers to complain about the taste and odor, but also
result in the formation of disinfectant by-products (DBPs)
which may have harmful effects on human health [1]-[2].
Since the chlorine concentration must be avoided overdose,
the chlorine concentration should be increased either at the
source or at some critical locations, e.g., boosters, in the
network. Booster chlorination, a strategy where disinfectant
is reapplied within the network, make use of scheduling in
space and time, then assure more uniform disinfectant
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residual and less risk of DBPs formation throughout the
WDNS.

Over the past decades, few attempts have been made to
study booster disinfection. Boccelli et al. (1998) were the
first to solve a linear programming problem which optimizes
the locations and operation schedules of booster disinfection
stations [3]. Tryby et al. (2002) extended the above model as
a mixed-integer linear programming problem that the number
of booster stations becomes a decision variable [4]. Propato
and Uber (2004) employed a least-squares technique to solve
the optimal injection rates of disinfection boosters to
minimize the space-time variation of the residual disinfectant
distributed in the system [5]. Probabilistic heuristic
algorithms, such as genetic algorithm (GA), have recently
been utilized for optimal booster disinfection problems.
Several studies have adopted a GA approach with a focus on
minimizing the chlorine injection scheduling while
maintaining a bounded chlorine concentration at the
consumer node [6]-[9]. Another effective heuristic algorithm
in simulating biological processes is the immune algorithm
(IA), a relatively new optimization algorithm that imitates the
immune system defending against invaders in a biological
body [10]-[13]. IA has been successfully applied to various
benchmarking and real-world optimization problems
including allocation problems, synchronous motors with
parameter correction, VLSI floor plan design problems, and
structural optimization [14]-[17]. IA also has successfully
solved scheduling of booster disinfection optimization
problem and the evaluation results confirm the efficacy of [A
[18]. Therefore, this study combines GA with IA into a
genetic immune algorithm (GIA), which employs GA to
briefly screen initial antibody repertoires for IA, to enhance
IA efficacy for solving the optimal scheduling of booster
disinfection problems. A benchmark case study described by
[3] is evaluated to validate the effectiveness and efficiency of
the proposed GIA.

II. OPTIMIZATION MODEL FORMULATION

A WDNS quality model simulates how the concentration
of chlorine decay varies with time throughout the network
under a known set of hydraulic conditions and source input
patterns.

The principles of conservation of mass and appropriate
reaction kinetics for the constituent being modeled are used
in formulating the WDNS quality model. The water flow of
WDNS is assumed as one dimension incompressible liquid.
Water quality of constituents transported along the ith pipe is
given by the following classical advection equation:
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where C; = concentration (mg/L) of chlorine in pipe 7 as a
function of distance x and time ¢; u; = flow velocity (m/s) in
pipe i; 7(C;) = reaction rate relationship. The reaction rate
relationship #(C;) for chlorine is adopted from work by
Rossman (2000).

EPANET?2, which combines the hydraulic and water
quality modules, is employed in this study to simulate the
chlorine concentration of WDNS. The water quality is
numerically solved using a Lagrangian time-driven method
(LTDM) [19]. A more detailed review of EPANET2 is
presented by [20].

In general terms, a water quality optimization problem
aims to minimize chlorine mass injection dosage and
maintain the chlorine concentration profiles at monitoring
nodes within the specified bounds. The optimal design
formulation used in this study is given by (2)-(4) [8]

AC; =0.06BC; (@)
n, 24

Minimize DAC = z Z [AC,- ], (3)
i=1 1=0

subject to

Cmin < Cm < Cmax’ m= 1”"’”"1 (4)

where AC; = hourly added chlorine (g/hour); BC; = chlorine
added (booster chlorination) for an hour at a node with a
booster station in mg/min (obtained from EPANET2 Toolkit
functions); DAC = daily added chlorine (g/day); n, = number
of booster stations (injection points), ¢ = time (hour), C,, =
disinfectant concentration at monitoring location m (mg/L),
C,in and C,,,, are specified minimum and maximum chlorine
concentrations (mg/L), respectively, and n,, = number of
monitoring locations.

III. GENETIC IMMUNE ALGORITHMS

In addition to IA model, a novel GIA, which adopts a GA
as a pre-processor to screen briefly the initial antibody
repertoires, was also developed in this study. GAs, developed
by Holland and coworkers at the University of Michigan
[21]-[22], are heuristic optimization methods that search for
solutions of complex problems using an analogy between
optimization and natural selection. Unlike gradient-based
methods, GAs utilize random search procedures inspired by
biological evolution and cross-breeding trial designs, and
allows only the “fittest” designs to survive and propagate to
successive generations. When using GAs to solve
optimization problems, decision variable are encoded as
substrings of binary digits or real numbers. These substrings
are concatenated to form “chromosomes” representing a
particular design or solution. A population of randomly
generated chromosomes (trial solutions) breeds the
subsequent offspring via crossover, mutation and selection
processes. Theoretically, trial solutions are optimized
through generations until a termination criterion is satisfied.

IA is a set of computational systems inspired by theoretical
immunology and observed immune functions, principles, and
mechanisms. It has been applied for solving various
complicated optimization problems [10]-[13], [15], [17]. The
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aims of the immune system are to protect the body from
disease-causing  agents (pathogens) and eliminate
malfunctioning cells [11]. The complex immune system
discriminates between “self” cells and foreign “non-self”
pathogens. Each cell in an organism is comprised of
molecules characterized as self genes. Conversely, molecules
constituting alien organisms are characterized as non-self
genes. Immune responses can rapidly eliminate foreign
non-self pathogens, while adaptive immunity targets
particular pathogens. The immune system, which is the first
line of defense against foreign pathogens, includes
anatomical barriers (skin and mucous membrane),
physiological barriers (temperature and pH), and endocytic
and phagocytic barriers (macrophages). Humoral immunity
and cell-mediated immunity are the second line of defense,
and they comprise the immune response of
immunocompetent cells that include B lymphocytes (or B
cells) and T lymphocytes (or T cell) [23]. Both cell types
have surface receptor molecules (the B cell receptor molecule
is also called an antibody). When foreign pathogens (antigens)
invade an organism, an immune response is stimulated,
generating immune cells that recognize the antigens. Once
the antigens are recognized by the immune cell receptors, a
“clone selection” process causes the immune cells that
recognize the antigens to proliferate and secrete antibodies
[24]. Some proliferated immune cells become plasma cells,
while others are maintained as memory cells [25]. Memory
cells circulate through the blood, lymphatic system, and
tissues. When exposed to a second antigenic stimulus, the
memory cells begin differentiating into plasma cells capable
of producing high-affinity antibodies. Affinity is the degree
of binding between an antibody receptor and antigen. As
affinity increases, binding increases; thus, the immune
recognition and response increase [11]. For a detailed review
of immunology and IA, see [11].

Therefore, when solving the scheduling of booster
disinfection optimization problems using GIA, the antibodies
and antigen can be regarded as trial solutions and the optimal
solution, respectively. GIA achieves the optimal solution by
iteratively searching for the antibody with the highest affinity.
The computational procedure of the proposed GIA for
solving the scheduling of booster disinfection optimization
problems is as follows:

Step 1: Define antigen.

When applying GIA to solve optimization problems, the
objective function and constraints are represented by antigens
[25]. Antigens in the immune system are recognized by
antibody receptors in a manner similar to the relationship
between a lock and key [11]. The antigen represents the
configuration of variables in the optimal solution of the
optimization problem, while the corresponding segment of
the antibody represents a trial solution for the variable.
Therefore, the antigen in this study is defined as the WDNS
with minimum daily added chlorine.

Step 2: Generate an initial repertoire of antibodies.

Since GA has good global search capability, this study
employed a simple GA to concisely and comprehensively
examine the solution space and locate high-quality trial
solutions to enhance the affinities of the initial IA repertoire.
The number of generations, population size, and number of
offspring generated in each generation for the simple GA
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were 200, 50 and 10, respectively. The variables used in the
GA were real-number coded for consistency with those in TA.
Step 3: Evaluate the affinity of antibodies to the antigen.

The affinity Ag; of each antibody to antigen (called
“antibody-antigen affinity” in this study) in the current
repertoire is calculated based on its objective function value
and potential constraint violations. In evaluating the affinity
of the individual antibodies, constraint requirements are also
examined. When a constraint is violated, the degree of
violation is weighted to penalize the antibody’s affinity.
Antibodies with high affinity represent good individuals. In
solving the minimum added chlorine problem for a WDNS,
the Ag; of antibody i is calculated by

1
48 vio; + DAC, ©)
where DAC; is the daily added chlorine dosage of the WDNS
identified by antibody i, as indicated in (3), and vio; is the
weighted penalty for constraint violations.
Step 4: Select the n best antibodies in the current repertoires
based on their affinities.
Step 5: Generate clone set C.

If the procedure follows Step 4, then these n best antibodies
are cloned to generate a temporary repertoire of clone set C.
If the procedure follows Step 9, then C is generated by
cloning the antibodies in the memory set M, which is
described in Step 8. Clone set C has possession of the better
antibodies, thereby increasing the affinities to the antigen.
Step 6: Generate new antibodies.

According to [26], genetic operations can enhance the A
in producing solutions and perturbations for selected
solutions to avoid the local optimum. In this step, genetic
operations such as crossovers and mutations — resembling
those in GA — are performed by the clone set C to generate
new and generally improved antibodies. The crossover
operation generates new antibodies by mixing genetic
material in the chromosomes of the original antibodies in the
current repertoires. Since the variables are real-number coded
in this study, arithmetical crossover is applied to interpolate
the values of two elements at selected crossover points
instead of exchanging them. This approach can maintain the
elements of newly generated vectors within the original
domain, and it can be expressed as [27]:

k+1
u

x, =c-x +(1—c)~xllf

(6)

X

k
v
o exfr-c)-x*

where xf and x! are the two decision variables to be

k+1 1

k+
. and x;

crossed, x are the newly generated variables,

and c is a constant between 0 and 1.

Conversely, mutation randomly changes the antibody
elements, but it introduces diversities so that the algorithm
does not get stuck at the local optima. For an antibody V;=
(x7, ..., X, ..., X,), €ach decision variable x,,, 1 <m < n has the
same probability of mutation. Let V;' = (x,,..., X', ..., X,,) be
the mutated antibody ¥}, then the mutated element x’,, can be
defined as
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x'm _ Xy + A(kabm - xm) (7)
Xm — A(kaxm - am)
-y
Ak, y)=y-|1-y T (®)

where y is a random number uniformly distributed on [0, 1], &
is the evaluation number, T'is the maximal evaluation number,
and b is a system parameter determining the degree of
dependency on the evaluation number.

The two expressions in (7) have an equal chance to be
selected. The perturbation function A(%, y) returns a value in
the range [0, y], so that the probability of A(k, y) close to 0
increases as k increases. The computational results from (7)
and (8) are dependent upon the antibody repertoire age.
Equation (8) causes the search to cover the decision space
uniformly during the early search stages (small k) and locally
during the late stages (large k). In other words, mutation
performs a global search of the solution space at the
beginning of the iterative process; when the regions likely
containing the global optimum are located, fine local tuning
is performed.

Step 7: Survey newly generated antibodies.

The antibody-antigen affinities Ag; of the antibodies
generated in Step 6 are evaluated. Moreover, to retain the
antibody diversity in the current repertoire, affinity A4b;
(antibody-antibody affinity hereafter) between the antibodies
7 and the best antibody in memory set M are also investigated.
The antibody-antibody affinity Ab; in this study can be
expressed as

Ab; = !
(1+D))

L . . ) ) .
D= Z 5, wheres, = 1 if anttbody.’]- # antibody},,
O 0 otherwise

)

(10)

where D;is the Hamming distance between the antibodies j
and the best antibody, antibody', is the ith element of antibody

J» and antibody},, is the ith element of the best antibody.

Step 8: Generate memory set M.

Memory set M, which is analogous to the memory cells in
biological immune systems, is a group of antibodies with
high antibody-antigen affinities. Memory set M is used to
provide-based on its experience memory-antibodies (trial
solutions) most likely to recognize antigens (optimal
solutions).

If the newly generated antibodies possess higher
antibody-antigen affinity 4Ag; than the current members of M,
the inferior antibodies in the current memory set M are
replaced [26]. However, the antibody-antibody affinities 4b;
of superior antibodies are also analyzed. Only the antibodies
with low A4b;, are included in memory set M to retain the
repertoire diversity.

Step 9: Examine the termination criterion.

If the termination criterion is satisfied, the computation
procedure stops. Otherwise, the procedure returns to Step 5.
The termination criterion in this work is the maximum
number of evaluations. Fig. 1 presents a flow chart of the
computational procedure of the proposed GIA.
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Define Antigen

Simple GA Model |

Search Stops

Fig. 1 Flowchart of genetic immune algorithm.

IV. CASE STUDY

The WDNS of the Cherry Hill-Brushy Plains portion of the
South Central Connecticut Regional Water Authority
(SCCRWA) has been the subject of numerous studies to
validate and test network water quality models. The network
configuration is adopted from the study of Boccelli et al.
(1998) that includes 34 consumer nodes, 1 source node
representing a pump station, 1 storage tank, and 47 pipes [3].
The 24-hour cycle of hydraulic analysis for the supply source
(pump station) and storage tank of the system was based on
four periods. During period 1 (0 to 6 h) and period 3 (12 to 18
h), the supply source controls the flow, while period 2 (6 to
12 h) and period 4 (18 to 24 h) the pump is off and the storage
tank controls the flow into network. The chlorine
concentrations of the WDNS need to be maintained between
0.2 mg/L and 4.0 mg/L to ensure pathogen control and avoid
producing DBPs. This study investigated three scenarios
published in the literature, and the results obtained by GIA
were compared with previous studies. The scenario I
considers the 6 booster stations A-F and the locations are

| adopted from the study of [6], as shown in Fig. 2.
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Fig. 2 Network sketch of scenario I

The first-order bulk and wall decay coefficients used in
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this case are 0.55 d”' and 0.36 m/d, respectively [6]. The
booster station numbers and locations of scenarios II and III
are adopted from the study of [3], as shown in Fig. 3. In
scenario II, the disinfectant can only be added at node A,
while all of the 6 booster stations are considered in scenario
III. The bulk decay coefficient of both scenarios II and III is
0.5 d”, and the wall decay is ignored.
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Fig. 3 Network sketch of scenarios II and III
In this study, network hydraulics and water quality are
simulated using EPANET 2.0 [20], and the optimization
problem is solved by GIA. The performances of three
different sets of GIA parameters in scenario I, as shown in
Table 1 and Table 2, were evaluated to obtain the optimal
parameter configuration.

Table 2 Parameter configurations of GIA used in this study

GIA parameters GIA runl GIArun2 | GIA run3
simple GA population 50
parameters sizes
Number of 200
Generations
Antibody repertoire sizes 100 150 200
Clone sizes 30 20 10
Probability of crossover 0.5 0.7 0.9
Probability of mutation 0.06 0.04 0.02

Fig. 4 shows the plot of the evolution of objective function
value solving by GIA with different parameter configurations.
Since the GIA run 2 possess the best performance in
comparison with the other runs, this study respectively
employed these two configurations for the parameters of GIA
to solve all the three scenarios.

It can be found that a medium size of antibody repertoire
150, clone size 20, crossover rate 0.7, and mutation rate 0.04
is the most suitable parameter configuration for GIA.

!

Ve of Objective Function

Fig. 4 Evolution of objective function value for scenario I
solving by GIA with different
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Tables 3 to 5 present the optimal schedules of the booster
disinfectant obtained by GIA for the three scenarios, and the
results obtained by LP and GA are also illustrated [3],[6].

As the results of scenario I (Table 3) indicate, the
minimum chlorine mass rate obtained by GIA (2,050 mg/day)
outperforms GA (2,145 mg/L). For scenario II (Table 4), GIA
(2,826 mg/day) still outperforms GA (2,980 mg/L) and
approximately equals to LP (2,824 mg/day). As the results of
scenario III indicate (Table 5), the mass rate obtained by
GIA(1,193 mg/day) is approximately better than GA (1,205
mg/day). However, they are both greater than LP (1,120
mg/day). It can be concluded that GIA is capable of finding
solutions better than GA. As for the comparisons with LP,
there is an important issue needed to be mentioned. The LP
solutions were obtained via EPANET 1.0 which applies the
Eulerian discrete volume element method in its water quality
module [3]. However, the solutions of GA [6] and this study
(GIA) were all obtained by EPANET 2.0 which applies the
Lagrangian time driven method to simulate the water quality.
Therefore, the difference between the LP solutions and others
may be due to the different numerical methods employed in
EPANET 1.0 and 2.0.

Table 3 Optimal injection rates of scenario I obtained by GA
and GIA

Booster Period Injection rate for GA® | Injection rate for GIA®
location (mg/min) (mg/min)

1 3.14 34.54

2 6.25 88.20

A 3 0.85 288.56

4 2.36 243.87

1 629.13 346.93

2 15.59 7.12

B 3 531.73 53.74

4 10.25 1.32

1 699.70 427.15

2 601.26 110.15

¢ 3 526.20 112.39

4 250.14 489.00

1 16.16 1.76

2 12.52 988.11

D 3 12.04 0.00

4 13.67 431.06

1 1,250.02 980.24

E 2 0.00 0.00

3 1,394.98 1,124.40

4 0.00 0.00

1 11.18 0.69

2 3.93 1.00

F 3 9.38 24.35

4 4.06 0.02

Total mass 2,145.20 2,050.06

rate (g/day)

*Munavalli and Mohan Kumar (2003), ®this study

The case study has found optimal booster chlorination
disinfection injection rates at both the source and disinfection
boosters in the WDNS. The evaluation results confirm the
potential of GIA in solving the scheduling of booster
disinfection optimization problems.
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Table 4 Optimal injection rates of scenario II obtained by LP,
GA, and GIA

Booster Period Injection rate for | Injection rate for| Injection rate for
location LP* (mg/min) | GA’ (mg/min) | GIA® (mg/min)
1 5,678.9 5,772.7 6,592.0
2 0.0 0.0 0.0
A 3 2,166.0 2,507.5 1,257.0
4 0.0 0.0 0.0
Total mass 2,824 2,980 2,825.6
rate (g/day)

“Boceelli et al. (1998), "Munavalli and Mohan Kumar (2003), ¢ this study

Table 5 Optimal injection rates of scenario III obtained by LP,
GA, IA, and GIA

Booster Period Injection rate for| Injection rate for |Injection rate for
location LP? (mg/min) GA" (mg/min) | GIA® (mg/min)

1 587.7 599.3 835.5

2 0.0 0.0 0.0

A 3 634.7 680.9 9164

4 0.0 0.0 0.0

1 4.4 9.8 0.0

2 0.0 0.7 5.0

B 3 4.5 4.3 0.0

4 0.0 0.0 0.0

1 354.0 473.6 22.0

2 0.0 0.0 0.1

¢ 3 4593 413.0 96.1

4 0.0 0.3 4.0

1 0.0 0.7 0.7

D 2 0.3 0.3 2.7

3 0.0 0.0 1.0

4 0.2 0.7 20.0

1 0.1 0.4 0.0

2 0.4 0.4 1.0

E 3 0.2 0.3 1.0

4 0.2 1.0 2.0

1 0.0 0.0 16.1

. 2 671.1 713.5 554.9

3 15.0 47.1 363.7

4 377.9 400.7 470.5

Total 1,120 1,205 1,192.6

mass rate
(g/day)

“Boceelli et al. (1998), "Munavalli and Mohan Kumar (2003), this study

V. CONCLUSION

This study provides the first experimental analysis using a

GIA to solve the optimal scheduling of booster disinfection
problems of a WDNS. The chlorine injection pattern was
formulated as a single objective problem. The results specify
that booster disinfection can significantly increase desired
residual concentration above the reasonable limit while
helping to reduce variability in monitoring nodal
concentrations. The results obtained from a benchmark case
study show that the GIA is able to obtain optimal solution
(chlorine injection dosage) more effectively and efficiently
than GA.. Application of the GIA to the WDNS quality
optimization problem remains in its infancy and further
improvements are necessary.
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