
 
 

 

  
Abstract—In this paper, optimal multi-objective Pareto 

design of robust state feedback controllers for an inverted 
pendulum with parameters probabilistic uncertainty is 
presented. The objective functions that have been considered 
are, namely, the probabilities of failure of summation of rising 
time and overshoot of cart (SRO-C) and the probabilities of 
failure of summation of rising time and overshoot of pendulum 
(SRO-P). It is also shown that multi-objective reliability Pareto 
optimization of the robust state feedback controllers using a 
new multi-objective uniform-diversity genetic algorithm 
(MUGA) with fuzzy threshold values includes those may be 
obtained by various crisp threshold values of probability of 
failure and, thus, remove the difficulty of selecting suitable crisp 
values defining the robustness of the stochastic performance of 
the controller. Besides the multi-objective Pareto optimization 
of such robust feedback controllers using MUGA unveils some 
very important and informative trade-offs among those 
objective functions. 
 

Index Terms—Pareto, Robust control, Reliability, 
Uncertainty.  
 

I. INTRODUCTION 
  The synthesis of control policies can be regarded as 
optimization problems of certain performance measures of a 
controlled system. A very effective means of solving such 
optimum controller design problems is genetic algorithms 
(GAs) and other evolutionary algorithms (EAs). Some early 
application of GAs in optimum design of controllers are 
reported in [1] [2]. In addition to the most applications of 
EAs in the design of controllers for certain systems, there are 
also much research efforts in robust design of controllers for 
uncertain systems in which both structured or unstructured 
uncertainties may exist [3]. Most of the robust design 
methods such as analysis−μ , 

2H  or 
∞H  design are based on 

different norm-bounded uncertainty [4]. As each norm has its 
particular features addressing different types of performance 
objectives, it may not be possible to achieve all the 
robustness issues and loop performance goals 
simultaneously. Recently, GAs have also been deployed for 
multi-objective robust control design considering the robust 
stability and the mixed 2H  and ∞H  norms, simultaneously 
[5]. Indeed the designing robust control method for uncertain 
systems is a computationally complex problem. Recently, 
there have been many efforts for designing robust control 
methods. In these robust design methods, probabilistic 
uncertainty propagates through the uncertain parameter of 
plants. These methods reduce the conservatism involved with 
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such robust design methods or to account more for the most 
likely plants with respect to uncertainties, the probabilistic 
uncertainty, as a weighting factor, must be considered 
accordingly. In fact, probabilistic uncertainty specifies set of 
plants as the actual dynamic system to each of which a 
probability density function (PDF) is assigned [6]. Therefore, 
such additional information regarding the likelihood of each 
plant allows a reliability-based design in which probability is 
incorporated in the robust design. The notion of stochastic 
robustness and probability of instability have been first 
mentioned by Stengel [7] and Stengel and Ryan [8]. The 
analysis of Monte Carlo Simulation (MCS) has also been 
introduced by Stengel to evaluate stochastic stability and 
performance of probabilistic uncertain systems.  

 In this paper, fuzzy threshold values have been used for 
optimal reliability-based multi-objective Pareto design of 
state feedback controller for an inverted pendulum with 
probabilistic uncertain parameters. It is shown that a small 
change in the crisp threshold values causes to have very 
different Pareto fronts and, therefore it is very difficult to 
select a suitable crisp threshold values which is needed to 
compute the probability of failure in RBDO design. 
Moreover, it is also shown that the Pareto optimal design 
points that are obtained using fuzzy threshold values include 
the best Pareto design points which are obtained when a wide 
range of  crisp threshold values are instead used. A 
multi-objective uniform-diversity genetic algorithm 
(MUGA) that has been proposed by authors [9], [10] is used 
for multi-objective optimization. The objective functions that 
have been considered are, namely, the probabilities of failure 
of summation of rising time and overshoot of cart (SRO-C) 
and the probabilities of failure of summation of rising time 
and overshoot of pendulum (SRO-P). Therefore, optimum 
robust state feedback controllers are found in a Pareto sense 
using the probabilistic measures of those objective functions 
including their probability of failure by hybrid use of MCS 
and MUGA 

 

II.  STOCHASTIC ROBUST ANALYSIS 

In real control engineering practice, there exist a variety of 
typical sources of uncertainty which have to be compensated 
through robust control design approach [9]. Those 
uncertainties include plant parameter variations due to 
environmental condition, incomplete knowledge of the 
parameters, age, unmodeled high frequency dynamics, and 
etc. Two categorical types of uncertainty, namely, structured 
uncertainty and unstructured uncertainty are generally used 
in classification. The structured uncertainty concerns about 
the model uncertainty due to unknown values of parameters 
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in a known structure. In conventional optimum control 
system design, uncertainties are not addressed and the 
optimization process is accomplished deterministically. In 
fact, it has been shown that optimization without considering 
uncertainty generally leads to non-optimal and potentially 
high risk solution [11]. Therefore, it is very desirable to find 
robust design whose performance variation in the presence of 
uncertainties is not high. Generally, there exist two 
approaches addressing the stochastic robustness issue, 
namely, robust design optimization (RDO) and 
reliability-based design optimization (RBDO), [12]. With the 
aid of ever increasing computational power, there have been 
a great amount of research activities in the field of robust 
analysis and design devoted to the use of Monte Carlo 
simulation [13]. In fact, Monte Carlo simulation (MCS) has 
also been used to verify the results of other methods in RDO 
or RBDO problems when sufficient number of sampling is 
adopted [14]. Monte Carlo simulation (MCS) is a direct and 
simple numerical method but can be computationally 
expensive. In this method, random samples are generated 
assuming pre-defined probabilistic distributions for uncertain 
parameters. The system is then simulated with each of these 
randomly generated samples and the percentage of cases 
produced in failure region defined by a limit state function 
approximately reflects the probability of failure. 

Let X be a random variable, then the prevailing model for 
uncertainties in stochastic randomness is the probability 
density function (PDF), )(xf X  or equivalently by the 

cumulative distribution function (CDF), )(xFX , where the 
subscript X refers to the random variable. This can be given 
by 

( ) ( ) ( )∫
∞−

=≤=
x

XX dxxfxXxF Pr           (1) 

where ( ).Pr  is the probability that an event ( xX ≤ ) will 
occur. Some statistical moments such as the first and the 
second moment, generally known as mean value (also 
referred to as expected value) denoted by ( )XE  and 

variance denoted by ( )X2σ , respectively, are of the most 
important ones. They can also be computed by 

( ) ( )∫∫
∞

∞−

∞

∞−

== dxxxfxxdFXE XX          (2) 

and 

( ) ( ) ( )( ) ( ) ( )( ) ( )∫∫
∞

∞−

∞
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−=−== dxxfXExxdFXExXVarX XX
222σ .   (3) 

In the robust design approach, it is desired to minimize the 
variability of a stochastic response as a function of w (w 
represents time or frequency) due to the uncertain 
probabilistic parameters about a deterministic behavior. In 
this approach, let ( )wh ,p  be the random response of an 

uncertain plant due to uncertain parameters p, and let ( )wĥ  
be the response of the certain deterministic plant [15] The 

variability is then obtained by defining the error between 
each stochastic response of uncertain probabilistic plant and 
the response of the certain deterministic plant. Therefore, the 
sum of squared error (SSE) can be used for obtaining 
variability about deterministic behavior as follows 

( ) ( )( )∑∑
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where ih  with Ni K,2,1= is a random response, and jw  

with wNj K,2,1=  is time or frequency sample. 

In the reliability-based design approach, it is required to 
define reliability-based metrics via some inequality 
constraints. Therefore, in the presence of uncertain 
parameters of plant (p) whose PDF or CDF can be given by 

( )ppf  or ( )ppF , respectively, the reliability requirements 

can be given as 

( )( ) ( )kigP i
i
f ,,2,10Pr K==≤= εp       (5) 

In (5), i
fP  denotes the probability of failure 

(i.e., ( ) 0≤pig ) of the ith reliability measure and k is the 
number of inequality constraints (i.e. limit state functions) 
and ε  is the highest value of desired admissible probability 
of failure. It is clear that the desired value of each i

fP  is zero. 

Therefore, taking into consideration the stochastic 
distribution of uncertain parameters ( p ) as ( )ppf , equation 

(5) can now be evaluated for each probability function as 

( )( ) ( )
( )
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≤
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p ppp
ig

i
i
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This integral is, in fact, very complicated particularly for 
systems with complex ( )pg  [16] and Monte Carlo 
simulation is alternatively used to approximate (6). In this 
case, a binary indicator function ( )pgI  is defined such that it 

has the value of 1 in the case of failure ( ( ) 0≤pg ) and the 
value of zero otherwise, 

( )
( )
( )⎩

⎨
⎧

≤
>

=
01
00

p
p

i

i
pg g

g
I

i
             (7) 

Consequently, the integral of (6) can be rewritten as 

( ) ( ) ( )( ) ( )∫
∞

∞−

= ppkp pp dfCGIP
ig

i
f ,         (8) 

where ( )pG  is the uncertain plant model and ( )kC  is the 
controller to be designed in the case of control system design 
problems. Based on Monte Carlo simulation, the probability 
using sampling technique can be estimated using 
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In other words, the probability of failure is equal to the 
number of samples in the failure region divided by the total 
number of samples. Evidently, such estimation of fP  

approaches to the actual value in the limit as ∞→N  [13]. 
In this paper, Hammersley Sequence Sampling (HSS) has 
been used to generate samples for probability estimation of 
failures. The binary crisp indicator function  )( pgi

I  of (1) 

that has been adopted in many research works to compute the 
occurrence of failure is, however, very prone sensitive to the 
definition of the limit state functions )( pgi . Consequently, 
the optimum design of controllers could significantly lead to 
different optimum results based on the boundary definition of 
those limits state functions for the objective functions. In 
fact, some robust non-dominated optimum designs may be 
eliminated from the Pareto front for such specified crisp 
indicator function )( pgi

I .  Therefore, a Gaussian fuzzy 

membership indicator function [9] is rather used in this work 
to circumvent to difficulty of selecting the suitable crisp 
indicator function. In this case, equation (7) is replaced by 
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where the Gaussian error function is defined by 

( ) ∫ −=
y t dteyerf

0

22
π

             (11) 

In (10) iμ  and iσ  stand for mean and variance of the 

limit state function )( pgi  of each objective function 
respectively. Thus, the use of the Gaussian degree of 
membership )( pgi

I  given by (10) ensures gradual variation 

of the probability of failure based on selected admissible 
mean and variance of each limit state function in 
reliability-based design 

 

III. MULTI-OBJECTIVE PARETO OPTIMIZATION 

Multi-objective optimization which is also called multi-
criteria optimization or vector optimization has been defined 
as finding a vector of decision variables satisfying 
constraints to give optimal values to all objective functions 
[17] . In general, it can be mathematically defined as: 

find the vector [ ]T
nxxxX **

2
*
1

* ,...,,= to optimize 

[ ]T
k XfXfXfXF )(),...,(),()( 21=         (12) 

subject to m inequality constraints 

mtoiXli 1,0)( =≤             (13) 

and p equality constraints 

p    to1j     ,     0)( ==Xhj            (14) 

Where, nX ℜ∈*  is the vector of decision or design 
variables, and kXF ℜ∈)(  is the vector of objective 
functions. Without loss of generality, it is assumed that all 
objective functions are to be minimized. Such multi-
objective minimization based on the Pareto approach can be 
conducted using some definitions: 

Definition of Pareto Dominance: A vector 
[ ] k

kuuuU ℜ∈= ,...,, 21  dominates to vector 

[ ] k
kvvvV ℜ∈= ,...,, 21  (denoted by VU p  ) if and only 

if }{ ki ,...,2,1∈∀ , ii vu ≤  ∧ }{ kj ,...,2,1∈∃  : ju < jv . 

It means that there is at least one ju  which is smaller than 

jv  whilst the rest u ’s are either smaller or equal to 

corresponding v ’s. 

Definition of Pareto front: For a given MOP, the Pareto 
front ƤŦ ٭is a set of vectors of objective functions which 
are obtained using the vectors of decision variables in the 
Pareto set Ƥ٭, that is, 
ƤŦ٭ ∈== XXfXfXfXF k :))(....,),(),(()({ 21 Ƥ٭}. 
Therefore, the Pareto front ƤŦ ٭is a set of the vectors of 
objective functions mapped from Ƥ٭.  

In this work, a new multi-objective uniform-diversity 
genetic algorithm method called MUGA that has been 
proposed by authors [9], [10] is used for multi-objective 
reliability-based optimization 

 

IV. THE SINGLE INVERTED PENDULUM AND STATE 
FEEDBACK CONTROLLER DESIGN METHOD 

One of the important benchmark of control problem is 
inverted pendulum that has been shown in Fig. (1). The linear 
steady state equations of inverted pendulum are given as 
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where 21 MMM += ,
2

10 )( slMIMI −= , and x1, x2, x3 

and x4 stand for the position of cart, the velocity of cart, the 
angle of pendulum with the vertical axis and the angular 
velocity of pendulum, respectively. And M1, M0,ls, fr, I and C 
are the mass of cart, the mass of pendulum, the length of arm, 
friction coefficient of cart, moment of inertia of pendulum 
and rotating friction coefficient of pendulum, respectively. In 
the case of stochastic robust design, parameters of the plant 
given by (15) vary according to a priori known probabilistic  



 
 

 

distribution functions around a nominal set of parameters. 
The nominal values of plant are given in Table (I). In this 
study, linear state-feedback controllers are used for control of 
the inverted pendulum. The equation of the state feedback 
controller is 

44332211 )2.0( xKxKxKxKu +++−=       (16) 

where the design vector ( )4321 ,,, KKKK=k  has to be 
optimally determined based on probabilistic uncertain values 
of those parameters in the Pareto multi-objective optimum 
approach. 

Table (I): the nominal values of single inverted pendulum 

M1 0.36kg 
M0 4kg 
ls 0.451m 
fr 10 
C 0.00145 

 

 

Fig. (1): Block diagram of SIP and state feedback controller. 

 
The performance of a controlled closed-loop system is 
usually evaluated by variety of goals. In this paper, a 

bi-objective optimum robust linear state feedback controller 
is considered whilst each of those objective function is the 
probability of failure of SRO-C and SRO-P based on the fuzzy 
membership definition of failure as described before. Such 
pre-defined fuzzy membership functions for the probability 
failure definition of overshoot and settling time of both cart 
and pendulum based on (10) and (11) are depicted in Fig. (2): 
The probability of failure of each function can now be 
computed using equation (11) using MCS approach with the 
Hammersly random distribution sampling. 
 
 
 
 
 
 
Table (II): Optimum values of objective functions and the 
corresponding gains of state feedback of Pareto front points 

Objective functions Gains of the controller 

 Prob. of 
failure 

of SSO-C 

Prob. of 
failure of 

SSO-P 
K1 K2 K3 K4 

A 1.23 0.01761 47.24 86.61 496.06 125.98 
B 1.13 0.0177 47.24 86.61 500 125.98 
C 1.021724 0.07173 62.99 86.61 362.20 129.92 
D 0.974335 0.072337 62.99 86.61 366.14 129.92 
E 0.954336 0.074546 62.99 86.61 370.07 129.92 
F 0.882893 0.081522 62.99 86.61 366.14 133.85 
G 0.863531 0.084496 62.99 86.61 370.07 133.85 
H 0.810603 0.088883 62.99 86.61 374.01 133.85 
I 0.591567 0.093727 59.05 78.74 334.64 114.17 
J 0.354947 0.096733 66.93 86.61 374.01 125.98 
K 0.26116 0.136599 94.49 114.17 500 153.54 
L 0.253011 0.141357 94.49 114.17 496.06 153.54 
M 0.174052 0.142995 94.49 110.23 500 153.54 
N 0.166823 0.247558 94.49 110.23 448.81 149.60 
O 0.162381 0.385868 66.93 78.74 334.64 98.42 
P 0.128591 0.451299 98.42 110.23 440.94 141.73 
Q 0.01 1 94.49 90.55 366.14 82.67 
 
 

Fig. (2): fuzzy threshold values for calculating the probability of failure 
 



 
 

 

 

V. ILLUSTRATIVE EXAMPLE  

Multi-objective uniform-diversity genetic algorithm 
(MUGA) [9] [10] is used for Pareto multi-objective 
optimization of linear robust state feedback controllers of the 
probabilistic uncertainties single inverted pendulum whose 
parameters are varied with Gaussian distributions within the 
limits of %25±  of the nominal values of plant parameters. 
A population size of 70 has been chosen with crossover 
probability cP  and mutation probability mP  as 0.85 and 
0.09, respectively. Two objectives, namely, probability of 
failure of SRO-C and the probability of failure of SRO-P are 
considered simultaneously in a Pareto optimization process 
to obtain some important trade-offs among conflicting 
objectives. The optimization process of the robust linear 
statefeedback controller given by (16) is accomplished by 
200 Monte Carlo evaluations using Gaussian distribution for 
each candidate control law during the evolutionary process. 
Consequently, total number of 17 non-dominated optimum 
design points have been obtained and shown in Table (II). 

 

The optimum design point Q and A simply demonstrate the 
best values for SRO-C and SRO-P, respectively, whilst the 
optimum design point M is the trade-off design and may be 
compromisingly chosen from that table of Pareto front 
points. Evidently, the design point M exhibits a significant 
improvement in the probability of failure of either SRO-C or 
SRO-P. Comparing to the design points Q and A, respectively.  

However, in order to show the robustness behavior of the 
robust trade-off optimum point M, a MCS with 7000 
evaluations has been accomplished to measure the 
probability of failures of both SRO-C and SRO-P based of the 
fuzzy membership variations given in Fig. (2) It is now very 
evident from the values of the probabilities given in Table 
(II) that the robust trade-off optimum point M exhibits very 
good performance. Fig. (3) depicts the time step response of 
trade-off design point M in a MCS with 7000 evaluations. 
Such robust behavior of design point M is very clear from 
Fig. (3) for both cart and pendulum. 

In order to compare the results of probabilistic design 
using fuzzy membership definition with those using crisp 

Fig. (3): Probabilistic time response behaviors of optimum design point M (7000 samples). 



 
 

 

definition of thresholds, three different Pareto fronts are 
obtained corresponding to the crisp threshold values are 
given in Table (III). It should be noted that the order of sets 
(1), (2) and (3) is from large values of the crisp threshold to 
small ones. In fact, large values of crisp threshold increase 
the possibility of finding a design point satisfying all those 
thresholds for the particular Monte Carlo Simulation (MCS). 
This, in turn, leads to lower values of probability of failure 
for MCS as shown in set (3). It is now possible to translate  
back the optimum design point M obtained using fuzzy 
membership values of probabilities of failure into each Pareto 
front of crisp sets (1), (2) and (3), which are correspondingly 
shown in Table (III). It is now evident from this table that all 
non-dominated optimum design points obtained from those 
three different sets of crisp threshold values are almost 
inclusive in the optimum design points obtained by the 
approach of fuzzy threshold values. 
 
Table (III): The values of objective function of the best 
optimal points obtained by three different sets of crisp 
threshold values  
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1 2.1 0.24 3 0.04 0.01 0.01 0.01 0.03 
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5 

0.23
5 

2.8
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0.03
5 0.03 0.01 0.02 0.03 

3 1.8 0.23 2.7 0.03 0.09 0.42 0.1 0.42 

 

VI. CONCLUSION 
 

A multi-objective uniform-diversity genetic algorithm 
(MUGA) has been proposed and successfully used to 
optimally design linear state feedback controllers from a 
reliability-based point of view in a probabilistic approach 
with fuzzy threshold values. The objective functions 
which often conflict with each other were appropriately 
defined using some probabilistic metrics in time domain. 
The multi-objective optimization of robust linear state 
feedback controllers led to the discovering some important 
trade-offs among those objective functions. The 
framework of such hybrid application of multi-objective 
GAs and Monte Carlo Simulation of this work for the 
Pareto optimization of both robust and reliability-based 
approach using some non-commensurable stochastic 
objective functions is very promising and can be generally 
used in the optimum design of real-world complex control 
systems with probabilistic uncertainties. 
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