
 

 

Abstract—SWRL is designed for enhancing inferential 

power on OWL ontologies by introducing rules to the 

language. With SWRL, rules are allowed to combine with 

OWL ontologies in order to support deduction on the semantic 

web ontologies. Earlier we have developed a meta-logical 

approach for reasoning with Semantic Web ontologies 

expressed in OWL [5] and OWL 2 [7]; with the advent of 

SWRL, in this paper we shall extend our framework to 

support OWL with rules, and hence to support SWRL. Meta-

languages together with a meta-interpreter, defined by 

demo(.) predicate, are proposed and used for reasoning 

with Semantic Web ontologies with rules. 

 

 

Index Terms—Logic Programming, Meta-logic, Ontology, 

Rules, Semantic Web. 

 

I. INTRODUCTION 

ntology is an essential part of the Semantic Web (or 

shortly „SW‟) as it forms vocabularies and statements 

for representing knowledge shared across the web. For an 

ontology to be processed automatically or reasoned logically 

by computers, it needs to be specified formally and 

declaratively. Several XML-based markup languages have 

been developed for expressing an ontology, they were 

influenced by different formalisms such as object-oriented 

approaches, first order logic, and Description Logic [1]. For 

instance, a core data representation language for SW is 

RDF [2]; RDF is used to represent resources in a form of 

subject-predicate-object triples, whereas RDF Schema 

(RDFS), is used to describe classes, properties and their 

relationships in the domain discourse, and the RDFS uses 

them to create a lightweight ontology; Web Ontology 

Language (OWL) [3] is a language derived from 

description logic, and offers more constructs over RDFS. 

OWL is used to create a more meaningful ontology, so that 

we can infer further information from that ontology. 

However, OWL still suffers from limitations due to the fact 

that while the language includes a relatively rich set of 

class constructors, its ability to describe properties is rather 

weak. Particularly, in OWL DL, which is based on DL 

SHOIN, there is no composition constructor, so it is 
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impossible to describe relationships between a composite 

property and another property. For instance, the 

composition of the “parent” and “brother” properties cannot 

be used to define “uncle” property in OWL DL. Therefore, 

to overcome this limitation the OWL DL needs to be 

extended. One way to do that is to move from OWL to 

OWL 2 which is an extension of OWL and is based on the 

more expressive Description Logic—DL SROIQ. Another 

alternative is to extend OWL with a rule language, and 

SWRL (Semantic Web Rule Language) [4] was proposed 

for this purpose. SWRL provides Horn clause rule extension 

to OWL DL, so that an OWL ontology can now be 

combined with rules. Therefore, SWRL allows deduction to 

perform on the Semantic Web ontologies.  

In our previous work [5], we have developed a meta-

logical approach for reasoning with SW ontologies 

described in RDF, RDFS and OWL. To extend this in order 

to support rules in the SW ontologies, in this paper we 

improve our previous framework to support reasoning with 

SWRL ontologies. 

The rest of the paper is organized as follows. In the next 

section we first give an overview on OWL and SWRL. Next 

we extend our previous framework to reason with rules in 

section III, and in section IV we demonstrate how our 

framework can reason with ontologies with rules. Later we 

discuss some related work in section V, and finally we 

conclude our work in section VI.  

II. ONTOLOGY LANGUAGES 

A. OWL 

The Semantic Web has been designed to support 

automated processes and intelligent agents, so that they can 

access and process semantic information automatically. 

Semantic information, in the form of ontologies, is defined 

as well-formed constructs to represent concepts in a certain 

domain, so that intelligent agents can interpret their 

meaning logically. To serve for this purpose, many 

ontology languages such as RDF, RDFS and OWL were 

developed. RDF (Resource Description Framework) 

provides a basis data model for SW. However, RDF itself 

does not support a data schema. This led to the 

development of RDFS which provides facilities to define 

simple taxonomies among concepts and relations. Whilst 

RDFS is used to represent a simple ontology, a more 

expressive language for ontology representation, namely 

„OWL‟ was later developed. 

OWL has become a standard language for expressing an 
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ontology. It supports several features beyond the simple 

definition of the hierarchies of RDFS (using 

rdfs:subProperty, rdfs:subClassof); in OWL we can define 

relations between properties and classes. More expressively, 

OWL allows properties to be transitive, symmetric, inverse, 

functional, and inversely functional. OWL also supports an 

ability to define complex classes in terms of logical 

combinations (e.g. union) of other classes. Furthermore, in 

OWL we can state which objects (individuals) belong to 

which class, and what the property values are for the 

specific individuals. Equivalence properties can be asserted 

on classes and properties, disjoint properties can be asserted 

on classes, as well as equality and inequality properties can 

be asserted between individuals. 

Although OWL seems to be a very expressive language 

for describing an SW ontology, it needs however to 

embrace rules to allow deduction to perform on the 

ontology. 

B. SWRL 

Whist OWL provides rich vocabulary needed for 

expressing an ontology, but this ontology has limitation on 

inferential power related to composite properties as 

mentioned earlier. Therefore, adding rules to OWL will 

make it a more viable language for ontology representation. 

The basic idea for OWL rules is to extend OWL with a 

form of rules while maintaining maximum backward 

compatibility with OWL‟s existing syntax and semantics; 

and RuleML (Rule Markup Language) [8] was adopted as 

the language to express such a rule. Later, a new language 

SWRL, which is the result of combining OWL DL—the 

sublanguage of OWL—and RuleML, was introduced. 

SWRL rules are in the form of implication consisting of 

an antecedent and a consequent, where description-logic 

expressions can occur in both. The intended interpretation 

of the rule corresponds to that in the classical first-order 

logic, that is to assert the rule, whenever the conditions 

specified in the antecedent hold, then the conditions 

specified in the consequent must also hold; so an SWRL 

rule is in this form: 

Antecedent   Consequent. 

Both antecedent and consequent of a rule consist of one 

or more atoms. With homogeneous combination of OWL 

and RuleML, the atoms can be in the form of either C(x), 

P(x,y), Q(x,z), sameAs(x,y), differentFrom(x,y), or 

builtIn(pred,z1,…,zn), where C is an OWL DL description, 

P is an OWL DL individual-valued property, Q is an OWL 

DL data-valued property, pred is built-in relation, x and y 

are either individual-valued variables or OWL individuals, 

and z, z1, …, zn are either data-valued variables or OWL 

data literals. 

For example, a rule for expressing “uncle” relation can 

be written as follows: 

hasParent(x,y)   hasBrother(y,z)   hasUncle(x,z). 

A rule with multiple atoms in consequent can be 

transformed into multiple rules. That is, let the multiple 

atoms in the antecedent form a conjunction B, and multiple 

atoms in consequent form a conjunction H1   H2. We can 

equivalently express one rule of the form of B  H1   H2 

by the two rules B   H1 and B   H2 (due to B  H1   H2 ≡ 

B   H1    B   H2). 

SWRL abstract syntax was defined by adding axioms to 

OWL semantics and its abstract syntax [9] in order to allow 

the rule axioms, and the syntax of the rule axiom is: 

axiom ::=rule 

rule ::=’Implies(’{annotation} antecedent consequent)’ 

antecedent ::= ‘Antecedent(’{atom}’)’ 

consequent ::= ‘Consequent(’{atom}’)’. 

For example, the rule “uncle” can be included to an 

ontology by adding the following rule axiom to that 

ontology. 

Implies(Antecedent(hasParent(x,y) hasBrother(y,z)) 

     Consequent(hasUncle(x,z))). 

SWRL provides a rule extension to OWL, and this allows 

rules to be represented with OWL ontologies, and these are 

to be reasoned by our framework in the next section. 

III. OUR FRAMEWORK 

A. A Meta-logical approach 

In our approach we applied logic programming in the 

context of meta-logic [11] to SW. Our framework forms a 

logical system consisting of meta-programs and an 

inference engine. The former is in the form of logical 

sentences representing a SWRL ontology at the meta-level. 

That is, an ontology with rules is transformed into a meta-

logical representation. The later is a meta-interpreter, in the 

form of a demo (meta-)program, which is used to infer 

explicit and implicit information, or in other words draw 

conclusions, from the former. The meta-interpreter can be 

extended to communicate to the Internet to obtain SW 

ontologies and rules from a web site, communicate with 

other agents to exchange SW information [6], and draw 

inference consequences from SW ontologies for the user.  
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Fig. 1 Our meta-logical system 

 

 To explain our framework, in the following sub-sections 

we first introduce our meta-language used for formulating 

the meta-programs of SWRL ontologies, and then describe 

the meta-programs in details. Finally we describe our meta-

interpreter. 

B. Meta-language for an SWRL Ontology 

The language elements of an SW ontology are classes, 

properties, instances, and relationships between/among 

them described in the object level and the meta-level as 

depicted in Fig. 2. At the object level, an instance can be an 

individual or a literal of a domain, e.g. ‘john’, and 

property is a relationship between individuals, or is an 

individual‟s attribute, e.g. ‘hasSon’, ‘type’. At the 



 

meta-level, a meta-instance can be an individual, a 

property, a class, or an object-level statement. A meta-

property is a property to describe a meta-instance‟s attribute 

or a relationship between/among meta-instances, e.g. 

‘reflexive’, ‘disjointWith’. Notice that 

according to the SW convention, to make a name appearing 

in an ontology unique, we qualify it with a namespace like 

<namespace>:<name>, such as ‘f’:‘son’, 

‘f’:‘hasSon’, ‘owl’:‘reflexive’, etc. 

Henceforth this qualified name will be used throughout. 
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Fig. 2. Object level and Meta level of ontology elements. 

 

According to our framework, in an SW ontology we 

distinguish between its object and meta information, and 

similarly its object and meta languages. The object 

language specifies objects and their relationships in the real 

world. The meta-language describes the syntactic form of 

the object language. Since both object-information and 

meta-information are to be reasoned (and probably 

manipulated) by a meta-interpreter, only syntactic forms are 

processed by it. Therefore, a meta-representation of the two 

kinds of meta-statements is required by the meta-interpreter 

in order to reason with them. This is the reason why both 

object-information and meta-information statements have to 

be expressed in yet another meta-program. 

Object level information and meta-level information of 

an SWRL ontology are expressed in our meta-languages. 

According to these two levels, we classify meta-language 

elements into two groups: one discussing mainly about 

objects, their relationships, and SWRL rules, we call it 

“meta-language for the object level (ML)”, and the other 

we call “meta-language for the meta-level (MML),” which 

discusses mainly about classes, instances, properties and 

their relationships. 

 Meta-language for the object level (ML) 

Objects and their relationships at the object level are 

specified in an SW ontology and this information is 

expressed by the elements of ML below. 

Meta-constant specifies a name of an object and a literal, 

e.g. ‘son’, including a reference, e.g. a namespace, the 

latter is a meta-constant of MML. This means that ML and 

MML are not totally separated. 

Meta-variable stands for a different meta-constant at a 

different time, e.g. Person. 

Meta-function symbol stands for a name of a relation 

between objects, or a name of an object‟s property—i.e. an 

object-level predicate name, such as ‘hasSon’, ‘name’. 

It also stands for other meta-level function symbol, e.g. 

‘ ’, ‘  ’, ‘:’. 

Meta-term is either a meta-constant or a meta-variable or 

meta-function symbol applied to a tuple of meta-terms, e.g. 

‘f’:‘hasSon’, ‘owl’:‘reflexive’.  To express object-level 

predicate it has the form: P(S, O), where P is an object-level 

predicate name, S and O are meta-constants or meta 

variable, e.g. ‘f’:‘hasSon’(‘f’:‘fa’,‘f’:‘son’). The 

meta-term expressing an object-level sentence is a term 

P(S, O) or a logical-connective function symbol applied to 

the tuple of these terms. We presume all meta-variable 

appearing in the object-level sentence are universally 

quantified. One form of this sentence is a Horn-clause, e.g.  

‘f’:‘hasFather’(Ch,F)‘ ’‘f’:‘hasParent’(Ch,F)‘  ’  

         ‘rdf’:‘type’(F,‘f’:‘Man’). 

The meta-term, expressing an object-level predicate, is 

equivalent to a form of Horn-clause with an empty body. 

Thus, we can put true instead of the emptiness in its body, 

e.g. 

‘f’:‘hasSon’(‘f’:‘fa’,‘f’:‘son’) ‘ ’ true. 

Meta-statement for the object level reflects an object-

level sentence to its existence at the meta-level. It has a 

form statement(object-level-sentence), note that this 

statement is used to represent a Horn-clause rule translated 

from an SWRL rule, e.g. 

statement(‘f’:‘hasSon’ 

 (‘f’:‘fa’,‘f’:‘son’) ‘ ’ true). 

statement(‘f’:‘hasFather’(Ch,F) ‘ ’ 

‘f’:‘hasParent’(Ch,F)‘  ’ 

‘rdf’:‘type’(F,‘f’:‘Man’)). 

 Meta-language for the meta level (MML) 

Apart from the object language, an SW ontology also 

defines classes, properties, their relationships, as well as 

class-instance relations, and we argue that this information 

is meta-information of the object level. Here we express 

this information by MML which includes: 

Meta-constant specifying a name of an instance, a 

property, a class, a literal, and a namespace. 

Meta-variable standing for a different meta-constant at a 

different time. 

Meta-function symbol standing for a logical connective, 

e.g. ‘ ’, ‘  ’; or ‘:’; or a set operator applied on 

classes such as union; or a meta-predicate name being a 

name of a relation between entities; or a name of 

characteristic of a property, which may fall into one of the 

following categories: 
Class-class relations: equivalent class of, disjoint with, etc. 
Class-instance relations: instance of, class of, etc. 
Property-property relations: subproperty of, chain of, etc. 
Class-property relations: keys, etc. 
Relations between literals and instances/classes/properties: 

we can take these relations as attributes of instances, of 

classes, or of properties, e.g. comment, label. 

Characteristics of properties: reflexive, asymmetric, etc. 

Meta-term being either a meta-constant or a meta-

variable or meta-function symbol applied to a tuple of meta-

terms, e.g. ‘f’:‘fatherOf’, etc. When a meta-term 

expresses a meta-level predicate stating a relation between 

entities, it has the form Pred(Sub,Obj), and when it 



 

expresses a meta-level predicate stating a characteristic of a 

property, it has the form Pred(Prop), where Pred is a 

meta-predicate name, Sub,  Obj, and Prop (a property) are 

meta-constants or meta-variables. 

The meta-term expressing a meta-level sentence is a term 

Pred(Sub,Obj) or Pred(Prop) or a logical-connective 

function symbol applied to the tuple of these terms. Let all 

meta-variables appearing in the meta-level sentence be 

universally quantified. We treat the sentence as a Horn-

clause meta-rule, for the empty tuple in the body we put 

true there instead, e.g. 

‘rdf’:‘type’(‘f’:‘M02’,‘f’:‘Man’) ‘ ’ true. 

‘owl’:‘propertyDisjointWith’(P,DP)  
‘owl’:‘propertyDisjointWith’(DP,P). 

Meta-statement being a meta-representation of a meta-

level sentence accessible by our meta-interpreter. It has two 

forms meta_statement(meta-level-sentence) and 

axiom(meta-level-sentence), the latter presents a rule for a 

mathematical axiom, and a built-in atom in SWRL, e.g. 

meta_statement(‘rdf’:‘type’ 
(‘f’:‘M02’,‘f’:‘Man’) ‘ ’ true). 

axiom(‘owl’:‘propertyDisjointWith’(P,DP)  
‘owl’:‘propertyDisjointWith’(DP,P)). 

 axiom(‘swrlx’:‘builtinAtom’(‘lessThan’,x,y) ‘ ’ 

   builtin(x < y)). 

C.  Meta-programs of an SWRL Ontology 

To formulate meta-programs from SW ontologies to use 

in our framework, each SWRL ontology is transformed into 

a meta-program containing a (sub-)meta-program 

expressed in ML, called MP, and a (sub-)meta-program 

expressed in MML, called MMP. Another meta-program 

expresses some mathematical axioms for classes and 

properties in MML called AMP is also needed for the 

inference engine, i.e. our meta-interpreter, to reason with 

MP and MMP. 

 Meta-program for the object level (MP) 

MP contains information about instances and their 

relationships in terms of meta-statements for the object 

level: statement(P(S,O) true), and  

statement(P(S,O) Body), where Body is either single 

object-level predicate or conjunction of object-level 

predicates. The latter form expresses a Horn-clause rule. 

Here is an example of MP: 

statement(‘f’:‘hasParent’ 

(‘f’:‘fa’, ‘f’:‘son’) true). 

statement(‘f’:‘hasUncle’(X,Z)  

‘f’:‘hasParent’(X,Y)  ‘f’:‘hasBrother’(Y,Z)). 

 

 Meta-program for the meta level (MMP) 

MMP contains meta-statements for classes, properties, 

their relationships, and class-instance relations in terms of 

meta-rules. The MMP is represented in the following 

forms: 

meta_statement(P(S,O) true), 

meta_statement(P(S,Os) true), and 
meta_statement(C(Prop) true), 

where P, S, O are predicate, subject, and object of a triple 

(S, P, O) defined in the ontology. C is a characteristic of a 

property Prop. Os is a tuple composing of several objects. 

Here is a typical example of MMP: 

//meta-statement about classes and their relationships 
meta_statement(‘rdfs’:‘subClassOf’(C,SC) true). 

meta_statement(‘owl’:‘disjoinwith’(C,DC) true). 

//meta-statements about properties and their relationships 
meta_statement(‘owl’:‘inverseOf’(P,IP) true). 

meta_statement(‘owl’:‘symetric’(P) true). 

… 

 Meta-program for the axioms (AMP) 

AMP contains axioms for classes and properties, they are 

expressed in the meta-rule forms. In addition, AMP also 

contains axioms for built-in atoms in SWRL, and the 

purpose of introducing these axioms is to provide a way to 

translate SWRL built-in atoms in into the corresponding 

Prolog atoms with matched built-in predicates. Here is a 

typical sample of AMP: 

axiom(‘owl’:‘equivalentClass’(C,EC)  (asec) 

‘owl’:‘equivalentClass’(EC,C)). 

axiom(‘owl’:’inverseOf’(P,IP)  (asip) 

‘owl’:‘inverseOf’(IP,P)). 

axiom(P(S,O)  (acip) 

‘owl’:‘inverseOf’(P,IP)  IP(O,S)). 

axiom(P(S,O) ‘owl’:‘symmetric’(P)  P(O,S)). (acsmp) 

axiom(‘swrlx’:‘builtinAtom’(‘lessThan’,x,y)  (albia) 

builtin(x < y)). 

axiom(‘swrlx’:‘builtinAtom’(‘equal’,x,y)  (aebia) 

builtin(x = y)). 

… 

D. The Meta-interpreter 

The meta-interpreter in our framework is used to reason 

with the meta-programs MPs, MMPs, and AMPs and can 

be used to develop an intelligent agent to reason with SW 

ontologies. It is defined by a demo predicate of the form 

demo(A). With this predicate the meta-interpreter can infer 

an answer A from the meta-programs. The interpreter is 

defined by adapting the Vanilla meta-interpreter [11] for 

reasoning with the meta-programs, which transformed from 

SWRL ontologies, where we have identified three kinds of 

meta-level statements: (1) statement(A B) for the object-

level of an ontology, (2) meta_statement(A B)for the 

meta-level of an ontology, and (3) axiom(A B)for a 

supporting mathematical axiom. The definition of demo/1 

is:  

demo(true). (true) 

demo(A‘  ’B) demo(A)  demo(B). (conj) 

demo(builtin(BI)) BI. (btin) 

demo(A) statement(A‘ ’B)  demo(B). (ost) 

demo(A) meta_statement(A‘ ’B)  demo(B). (mst) 

demo(A) axiom(A‘ ’B)  demo(B). (ast) 

The first clause (true) is the basic case for proving an 

atom true. The second clause (conj) is used for proving a 

conjunctive goal. The third clause (btin) is used for 



 

translating SWRL built-in atoms into its corresponding 

Prolog atoms with matched built-in predicates. The last 

three clauses (ost), (mst), and (ast) are used for proving 

three meta statements from the three meta-programs MP, 

MMP and AMP respectively. 

IV. QUERY ANSWERING WITH OUR FRAMEWORK 

With our framework, SWRL ontologies are transformed 

into meta-programs MP, MMP, and AMP. The meta-

programs are inputs to the meta-interpreter and they are all 

implemented in Prolog. Then the meta-interpreter is used to 

derive conclusions from the meta-programs.  

We use the family ontology taken from [10] for a 

demonstration purpose of our meta-interpreter. This is an 

SWRL ontology, and rules are expressed by the SWRL 

syntax. Firstly, the ontology is transformed into meta-

programs, here we show some parts of them: 

 The MP program 

statement(‘f’:‘hasParent’                (1) 

(‘f’:‘M02’,‘f’:‘M01’) true). 

statement(‘f’:‘hasParent’                (2) 
(‘f’:‘M02’,‘f’:‘F01’) true). 

statement(‘f’:‘hasParent’        (3) 
(‘f’: ‘M03’,‘f’:‘M02’)  true). 

statement(‘f’:‘hasParent’ (4) 

 (‘f’: ‘M05’,‘f’:‘M02’) true). 

statement(‘f’:‘hasParent’ (5) 
(‘f’:‘F02’,‘f’:‘M05’) true). 

statement(‘f’:‘hasAge’(‘f’:‘M02’,25) true). (6) 

//Statements expressing Horn-clause rules 
statement(‘f’:‘hasFather’(C,F)  (r1) 

‘f’:‘hasParent’(C,F)  ‘rdf’:‘type’(F,‘f’:‘Man’)). 

statement(‘f’:‘hasMother’(C,M)  (r2) 

‘f’:‘hasParent’(C,M)  ‘rdf’:‘type’(M,‘f’:‘Woman’)). 

statement(‘f’:‘hasSibling’(P1,P2)  (r3) 
‘f’:‘hasParent’(P1,P3)  ‘f’:‘hasParent’(P2,P3)   

‘owl’:‘differentFrom’(P1,P2)). 

statement(‘f’:‘hasBrother’(P,B)  (r4) 

‘f’:‘hasSibling’(P,B)  ‘rdf’:‘type’(B,‘f’:‘Man’)). 

statement(‘f’:‘hasUncle’(P1,P2)  (r5) 
‘f’:‘hasParent’(P1,P3)  ‘f’:‘hasBrother’(P3,P2)). 

statement(‘f’:‘hasSon’(P,C)  (r6) 

‘f’:‘hasChild’(P,C)  ‘rdf’:‘type’(C,‘f’:‘Man’)). 

statement(‘rdf’:‘type’(P,‘f’:‘Adult’)  (r7) 
‘f’:‘hasAge’(P,A)   

‘swrlx’:‘builtinAtom’(‘lessThan’,18,A)). 

… 

 The MMP program 

meta_statement(‘owl’:‘inverseOf’  (1') 
(‘f’:‘hasChild’,‘f’:‘hasParent’) true ). 

meta_statement(‘rdfs’:‘subPropertyOf’    (2') 
f’:‘hasFather’,‘f’:‘hasParent’) true). 

meta_statement(‘rdfs’:‘subPropertyOf’    (3') 
f’:‘hasMother’,‘f’:‘hasParent’) true). 

meta_statement(‘owl’:‘symmetric’         (4') 
(‘f’:‘hasSibling’) true). 

meta_statement(‘rdf’:‘type’ (5') 
 (‘f’:‘M01’,‘f’:‘Man’) true). 

meta_statement(‘rdf’:‘type’ (6') 
(‘f’:‘M02’,‘f’:‘Man’) true).  

meta_statement(‘rdf’:‘type’ (7') 
 (‘f’:‘M03’,‘f’:‘Man’) true). 

meta_statement(‘rdf’:‘type’ (8') 
 (‘f’:‘M05’,‘f’:‘Man’) true). 

meta_statement(‘rdf’:‘type’ (9') 
 (‘f’:‘F01’,‘f’:‘Woman’) true). 

 

We pose some queries to the meta-interpreter and get the 

answers as the following: 

?- demo(‘f’:‘hasChild’(‘f’:‘M01’,X)). 
X = ‘f’:‘M02’. 

//The adopted clauses are (acip), ( ast), (1'), (mst), (1), (ost), and (true). 

?- demo(‘f’:‘hasSon’(‘f’:‘F01’,X)). 
 X = ‘f’:‘M02’. 

//The adopted clauses are (r6), (ost), (conj), (acip), (ast) , (1 '),(mst), (2), (6'), 

and (true). 

?-demo(‘f’:‘hasFather’(‘f’:‘M02’,X)). 

 X = ‘f’:‘M01’. 

//The adopted clauses are (r1), (ost), (conj), (1), (5'), (mst) and (true). 

?-demo(‘f’:‘hasMother’(‘f’:‘M02’,X)). 

 X = ‘f’:‘F01’. 

//The adopted clauses are (r2), (ost), (conj), (2), (9'), (mst) and (true). 

?-demo(‘f’:‘hasBrother’(‘f’:‘M03’,X)). 

 X = ‘f’:‘M05’. 

//The adopted clauses are (r3), (r4), (ost), (conj) (3), (4), (8'), (mst) and 

(true). 

?-demo(‘f’:‘hasUncle’(‘f’:‘F02’,X)). 

 X = ‘f’:‘M03’. 

//The adopted clauses are (r3), (r4), (r5), (ost),(conj), (5), (3), (4), (7'), (mst), 

(true). 

?-demo(‘rdf’:‘type’(X,‘f’:‘Adult’)). 

 X = ‘f’:‘M02’. 

//The adopted clauses are (r7), (ost), (conj), (6), (albia), (ast), (btin), and 

(true). 

V. RELATED WORKS 

The SW research community has addressed similar issues and 

problems concerning SW ontologies and rules as that also happens 

in the area of logic programming. So the exchange of idea 

between these two research areas is inevitable. 

For instance, Laera et al. [12] proposed SweetProlog as a 

system for translating an OWL ontology and rules into a Prolog 

program. It is achieved by the translation of an OWL ontology 

described in Description Logic and rules expressed in 

OWLRuleML into a set of facts and a set of rules in Prolog 

respectively. Then any reasoning on these facts and rules can be 

performed by the Prolog interpreter. 

Comparing this with our work, according to their approach an 

OWL and RuleML ontology is entirely translated into Prolog facts 

and rules, where both object level and meta level knowledge of 

the ontology are mixed up and Laera et al. do not care to make the 

distinction between the two levels of knowledge, whilst our 

translation makes a careful separation between the two levels of 

knowledge. As a result, their SweetProlog can reason with any 

object level knowledge of an ontology as the way our approach 

does. 

For example, with the same ontology that we use for the query 

answering in Section 4, according to their approach, the ontology 

would be transformed to Prolog facts as follows: 

hasParent(‘f’:‘F02’,‘f’: ‘M01’). 

hasBrother(‘f’: ‘M01’, ‘f’: ‘M03’). 

… 

and the „uncle‟ rule would be expressed by the Prolog 

rule: 

hasUncle(X,Y):- hasParent(X,Z), hasBrother(Z,Y). 



 

Provided with this prolog program and a query like 

?-hasUncle(‘f’:‘F02’, X),  

their SweetProlog would give the answer X=‘f’:‘M03’, 

which is the same answer as that given earlier by our meta-

interpreter. 

 However, there could be queries, which ask about meta 

level information of this ontology, which their SweetProlog 

cannot give answers to, since there is some information that 

can be asked only at the meta level, but cannot do that at 

the object level.  

For example, a query asking what the relation between 

M02 and M03 is:  

?-P(‘f’:‘F02’,‘f’:‘M03’) 

So, in SweetProlog, the Prolog interpreter will signal a 

syntax error, since a variable is not allowed to be used as a 

predicate name in a query. Here a predicate name is a meta 

level information that cannot be asked at the object level. 

 However, with a careful treatment of a separation 

between the object level and the meta level knowledge in 

our approach, such a query can be asked via the demo 

predicate as follows. 

?-demo(P(‘f’:‘M02’,‘f’:‘M03’)). 

and our meta-interpreter can give the answer:  

P = hasUcle. 

In the same direction as Laera et al., Samuel et al. proposed 

SWORIER [13], which also translates an SWRL ontology into 

Prolog facts and rules, and derives answers from the Prolog 

program using the Prolog interpreter. SWORIER suffers the same 

problem as SweetProlog does due to the similar approach of 

making no distinction between the object and meta levels. 

Comparing our work with theirs, in SWORIER Samuel et al. 

defined a set of General Rules in Prolog in order to formulate the 

OWL primitives. Here their General Rules serve the same 

purpose as our AMP program. 

Another related work is a work on query answering for 

OWL-DL with rules [14]. In this work, OWL-DL was 

extended with DL-safe rules in order to provide deduction 

on an OWL-DL ontology. An undecidability problem of 

deduction on OWL-DL ontology with rules is solved by 

making some restrictions in DL-safe rules.  This approach 

provides query answering algorithm that can handle only 

partial OWL-DL, since some axioms of OWL-DL, such as 

the transitivity axioms, are taken out from OWL-DL in 

order to maintain the decidability of their query answering 

algorithm. This work proposed a deduction method by 

means of a specific algorithm whereas we adopt a general 

purpose inference engine based on metalogic. 

VI. CONCLUSION 

We have presented a meta-logical framework for 

reasoning with an SWRL ontology. In this paper, our 

previous framework that was designed to support OWL has 

been extended to accommodate SWRL rules by improving 

the meta-languages to express Horn-clause rules and 

modifying the meta-interpreter so that it can work with the 

newly revised meta-languages.  
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