

Abstract—SWRL is designed for enhancing inferential

power on OWL ontologies by introducing rules to the

language. With SWRL, rules are allowed to combine with

OWL ontologies in order to support deduction on the semantic

web ontologies. Earlier we have developed a meta-logical

approach for reasoning with Semantic Web ontologies

expressed in OWL [5] and OWL 2 [7]; with the advent of

SWRL, in this paper we shall extend our framework to

support OWL with rules, and hence to support SWRL. Meta-

languages together with a meta-interpreter, defined by

demo(.) predicate, are proposed and used for reasoning

with Semantic Web ontologies with rules.

Index Terms—Logic Programming, Meta-logic, Ontology,

Rules, Semantic Web.

I. INTRODUCTION

ntology is an essential part of the Semantic Web (or

shortly „SW‟) as it forms vocabularies and statements

for representing knowledge shared across the web. For an

ontology to be processed automatically or reasoned logically

by computers, it needs to be specified formally and

declaratively. Several XML-based markup languages have

been developed for expressing an ontology, they were

influenced by different formalisms such as object-oriented

approaches, first order logic, and Description Logic [1]. For

instance, a core data representation language for SW is

RDF [2]; RDF is used to represent resources in a form of

subject-predicate-object triples, whereas RDF Schema

(RDFS), is used to describe classes, properties and their

relationships in the domain discourse, and the RDFS uses

them to create a lightweight ontology; Web Ontology

Language (OWL) [3] is a language derived from

description logic, and offers more constructs over RDFS.

OWL is used to create a more meaningful ontology, so that

we can infer further information from that ontology.

However, OWL still suffers from limitations due to the fact

that while the language includes a relatively rich set of

class constructors, its ability to describe properties is rather

weak. Particularly, in OWL DL, which is based on DL

SHOIN, there is no composition constructor, so it is

Visit Hirankitti is with the School of Computer Engineering, Faculty of

Engineering, King Mongkut‟s Institute of Technology Ladkrabang,

Ladkrabang Dist., Bangkok 10520, Thailand (phone: 668-0454-9990; e-

mail: v_hirankitti@yahoo.com).

Trang Xuan Mai is with the International College, King Mongkut‟s

Institute of Technology Ladkrabang, Bangkok 10520, Thailand (phone: 668-

7679-7235, e-mail: trangmx@gmail.com).

impossible to describe relationships between a composite

property and another property. For instance, the

composition of the “parent” and “brother” properties cannot

be used to define “uncle” property in OWL DL. Therefore,

to overcome this limitation the OWL DL needs to be

extended. One way to do that is to move from OWL to

OWL 2 which is an extension of OWL and is based on the

more expressive Description Logic—DL SROIQ. Another

alternative is to extend OWL with a rule language, and

SWRL (Semantic Web Rule Language) [4] was proposed

for this purpose. SWRL provides Horn clause rule extension

to OWL DL, so that an OWL ontology can now be

combined with rules. Therefore, SWRL allows deduction to

perform on the Semantic Web ontologies.

In our previous work [5], we have developed a meta-

logical approach for reasoning with SW ontologies

described in RDF, RDFS and OWL. To extend this in order

to support rules in the SW ontologies, in this paper we

improve our previous framework to support reasoning with

SWRL ontologies.

The rest of the paper is organized as follows. In the next

section we first give an overview on OWL and SWRL. Next

we extend our previous framework to reason with rules in

section III, and in section IV we demonstrate how our

framework can reason with ontologies with rules. Later we

discuss some related work in section V, and finally we

conclude our work in section VI.

II. ONTOLOGY LANGUAGES

A. OWL

The Semantic Web has been designed to support

automated processes and intelligent agents, so that they can

access and process semantic information automatically.

Semantic information, in the form of ontologies, is defined

as well-formed constructs to represent concepts in a certain

domain, so that intelligent agents can interpret their

meaning logically. To serve for this purpose, many

ontology languages such as RDF, RDFS and OWL were

developed. RDF (Resource Description Framework)

provides a basis data model for SW. However, RDF itself

does not support a data schema. This led to the

development of RDFS which provides facilities to define

simple taxonomies among concepts and relations. Whilst

RDFS is used to represent a simple ontology, a more

expressive language for ontology representation, namely

„OWL‟ was later developed.

OWL has become a standard language for expressing an

A Meta-reasoning Approach for Reasoning with

SWRL Ontologies

Visit Hirankitti, and Trang Mai Xuan

O

ontology. It supports several features beyond the simple

definition of the hierarchies of RDFS (using

rdfs:subProperty, rdfs:subClassof); in OWL we can define

relations between properties and classes. More expressively,

OWL allows properties to be transitive, symmetric, inverse,

functional, and inversely functional. OWL also supports an

ability to define complex classes in terms of logical

combinations (e.g. union) of other classes. Furthermore, in

OWL we can state which objects (individuals) belong to

which class, and what the property values are for the

specific individuals. Equivalence properties can be asserted

on classes and properties, disjoint properties can be asserted

on classes, as well as equality and inequality properties can

be asserted between individuals.

Although OWL seems to be a very expressive language

for describing an SW ontology, it needs however to

embrace rules to allow deduction to perform on the

ontology.

B. SWRL

Whist OWL provides rich vocabulary needed for

expressing an ontology, but this ontology has limitation on

inferential power related to composite properties as

mentioned earlier. Therefore, adding rules to OWL will

make it a more viable language for ontology representation.

The basic idea for OWL rules is to extend OWL with a

form of rules while maintaining maximum backward

compatibility with OWL‟s existing syntax and semantics;

and RuleML (Rule Markup Language) [8] was adopted as

the language to express such a rule. Later, a new language

SWRL, which is the result of combining OWL DL—the

sublanguage of OWL—and RuleML, was introduced.

SWRL rules are in the form of implication consisting of

an antecedent and a consequent, where description-logic

expressions can occur in both. The intended interpretation

of the rule corresponds to that in the classical first-order

logic, that is to assert the rule, whenever the conditions

specified in the antecedent hold, then the conditions

specified in the consequent must also hold; so an SWRL

rule is in this form:

Antecedent Consequent.

Both antecedent and consequent of a rule consist of one

or more atoms. With homogeneous combination of OWL

and RuleML, the atoms can be in the form of either C(x),

P(x,y), Q(x,z), sameAs(x,y), differentFrom(x,y), or

builtIn(pred,z1,…,zn), where C is an OWL DL description,

P is an OWL DL individual-valued property, Q is an OWL

DL data-valued property, pred is built-in relation, x and y

are either individual-valued variables or OWL individuals,

and z, z1, …, zn are either data-valued variables or OWL

data literals.

For example, a rule for expressing “uncle” relation can

be written as follows:

hasParent(x,y) hasBrother(y,z) hasUncle(x,z).

A rule with multiple atoms in consequent can be

transformed into multiple rules. That is, let the multiple

atoms in the antecedent form a conjunction B, and multiple

atoms in consequent form a conjunction H1 H2. We can

equivalently express one rule of the form of B H1 H2

by the two rules B H1 and B H2 (due to B H1 H2 ≡

B H1 B H2).

SWRL abstract syntax was defined by adding axioms to

OWL semantics and its abstract syntax [9] in order to allow

the rule axioms, and the syntax of the rule axiom is:

axiom ::=rule

rule ::=’Implies(’{annotation} antecedent consequent)’

antecedent ::= ‘Antecedent(’{atom}’)’

consequent ::= ‘Consequent(’{atom}’)’.

For example, the rule “uncle” can be included to an

ontology by adding the following rule axiom to that

ontology.

Implies(Antecedent(hasParent(x,y) hasBrother(y,z))

 Consequent(hasUncle(x,z))).

SWRL provides a rule extension to OWL, and this allows

rules to be represented with OWL ontologies, and these are

to be reasoned by our framework in the next section.

III. OUR FRAMEWORK

A. A Meta-logical approach

In our approach we applied logic programming in the

context of meta-logic [11] to SW. Our framework forms a

logical system consisting of meta-programs and an

inference engine. The former is in the form of logical

sentences representing a SWRL ontology at the meta-level.

That is, an ontology with rules is transformed into a meta-

logical representation. The later is a meta-interpreter, in the

form of a demo (meta-)program, which is used to infer

explicit and implicit information, or in other words draw

conclusions, from the former. The meta-interpreter can be

extended to communicate to the Internet to obtain SW

ontologies and rules from a web site, communicate with

other agents to exchange SW information [6], and draw

inference consequences from SW ontologies for the user.

User
Internet

SW ontologies

and rules

Meta-interpreter

Meta-programs transformed

from a SW ontology

Fig. 1 Our meta-logical system

 To explain our framework, in the following sub-sections

we first introduce our meta-language used for formulating

the meta-programs of SWRL ontologies, and then describe

the meta-programs in details. Finally we describe our meta-

interpreter.

B. Meta-language for an SWRL Ontology

The language elements of an SW ontology are classes,

properties, instances, and relationships between/among

them described in the object level and the meta-level as

depicted in Fig. 2. At the object level, an instance can be an

individual or a literal of a domain, e.g. ‘john’, and

property is a relationship between individuals, or is an

individual‟s attribute, e.g. ‘hasSon’, ‘type’. At the

meta-level, a meta-instance can be an individual, a

property, a class, or an object-level statement. A meta-

property is a property to describe a meta-instance‟s attribute

or a relationship between/among meta-instances, e.g.

‘reflexive’, ‘disjointWith’. Notice that

according to the SW convention, to make a name appearing

in an ontology unique, we qualify it with a namespace like

<namespace>:<name>, such as ‘f’:‘son’,

‘f’:‘hasSon’, ‘owl’:‘reflexive’, etc.

Henceforth this qualified name will be used throughout.

object level statement meta statement

subject predicateobject subject predicateobject

instance property meta-instance Meta-property

class

Used inInstance of

Is aOntology element

Object level Meta level

Fig. 2. Object level and Meta level of ontology elements.

According to our framework, in an SW ontology we

distinguish between its object and meta information, and

similarly its object and meta languages. The object

language specifies objects and their relationships in the real

world. The meta-language describes the syntactic form of

the object language. Since both object-information and

meta-information are to be reasoned (and probably

manipulated) by a meta-interpreter, only syntactic forms are

processed by it. Therefore, a meta-representation of the two

kinds of meta-statements is required by the meta-interpreter

in order to reason with them. This is the reason why both

object-information and meta-information statements have to

be expressed in yet another meta-program.

Object level information and meta-level information of

an SWRL ontology are expressed in our meta-languages.

According to these two levels, we classify meta-language

elements into two groups: one discussing mainly about

objects, their relationships, and SWRL rules, we call it

“meta-language for the object level (ML)”, and the other

we call “meta-language for the meta-level (MML),” which

discusses mainly about classes, instances, properties and

their relationships.

 Meta-language for the object level (ML)

Objects and their relationships at the object level are

specified in an SW ontology and this information is

expressed by the elements of ML below.

Meta-constant specifies a name of an object and a literal,

e.g. ‘son’, including a reference, e.g. a namespace, the

latter is a meta-constant of MML. This means that ML and

MML are not totally separated.

Meta-variable stands for a different meta-constant at a

different time, e.g. Person.

Meta-function symbol stands for a name of a relation

between objects, or a name of an object‟s property—i.e. an

object-level predicate name, such as ‘hasSon’, ‘name’.

It also stands for other meta-level function symbol, e.g.

‘ ’, ‘ ’, ‘:’.

Meta-term is either a meta-constant or a meta-variable or

meta-function symbol applied to a tuple of meta-terms, e.g.

‘f’:‘hasSon’, ‘owl’:‘reflexive’. To express object-level

predicate it has the form: P(S, O), where P is an object-level

predicate name, S and O are meta-constants or meta

variable, e.g. ‘f’:‘hasSon’(‘f’:‘fa’,‘f’:‘son’). The

meta-term expressing an object-level sentence is a term

P(S, O) or a logical-connective function symbol applied to

the tuple of these terms. We presume all meta-variable

appearing in the object-level sentence are universally

quantified. One form of this sentence is a Horn-clause, e.g.

‘f’:‘hasFather’(Ch,F)‘ ’‘f’:‘hasParent’(Ch,F)‘ ’

 ‘rdf’:‘type’(F,‘f’:‘Man’).

The meta-term, expressing an object-level predicate, is

equivalent to a form of Horn-clause with an empty body.

Thus, we can put true instead of the emptiness in its body,

e.g.

‘f’:‘hasSon’(‘f’:‘fa’,‘f’:‘son’) ‘ ’ true.

Meta-statement for the object level reflects an object-

level sentence to its existence at the meta-level. It has a

form statement(object-level-sentence), note that this

statement is used to represent a Horn-clause rule translated

from an SWRL rule, e.g.

statement(‘f’:‘hasSon’

 (‘f’:‘fa’,‘f’:‘son’) ‘ ’ true).

statement(‘f’:‘hasFather’(Ch,F) ‘ ’

‘f’:‘hasParent’(Ch,F)‘ ’

‘rdf’:‘type’(F,‘f’:‘Man’)).

 Meta-language for the meta level (MML)

Apart from the object language, an SW ontology also

defines classes, properties, their relationships, as well as

class-instance relations, and we argue that this information

is meta-information of the object level. Here we express

this information by MML which includes:

Meta-constant specifying a name of an instance, a

property, a class, a literal, and a namespace.

Meta-variable standing for a different meta-constant at a

different time.

Meta-function symbol standing for a logical connective,

e.g. ‘ ’, ‘ ’; or ‘:’; or a set operator applied on

classes such as union; or a meta-predicate name being a

name of a relation between entities; or a name of

characteristic of a property, which may fall into one of the

following categories:
Class-class relations: equivalent class of, disjoint with, etc.
Class-instance relations: instance of, class of, etc.
Property-property relations: subproperty of, chain of, etc.
Class-property relations: keys, etc.
Relations between literals and instances/classes/properties:

we can take these relations as attributes of instances, of

classes, or of properties, e.g. comment, label.

Characteristics of properties: reflexive, asymmetric, etc.

Meta-term being either a meta-constant or a meta-

variable or meta-function symbol applied to a tuple of meta-

terms, e.g. ‘f’:‘fatherOf’, etc. When a meta-term

expresses a meta-level predicate stating a relation between

entities, it has the form Pred(Sub,Obj), and when it

expresses a meta-level predicate stating a characteristic of a

property, it has the form Pred(Prop), where Pred is a

meta-predicate name, Sub, Obj, and Prop (a property) are

meta-constants or meta-variables.

The meta-term expressing a meta-level sentence is a term

Pred(Sub,Obj) or Pred(Prop) or a logical-connective

function symbol applied to the tuple of these terms. Let all

meta-variables appearing in the meta-level sentence be

universally quantified. We treat the sentence as a Horn-

clause meta-rule, for the empty tuple in the body we put

true there instead, e.g.

‘rdf’:‘type’(‘f’:‘M02’,‘f’:‘Man’) ‘ ’ true.

‘owl’:‘propertyDisjointWith’(P,DP)
‘owl’:‘propertyDisjointWith’(DP,P).

Meta-statement being a meta-representation of a meta-

level sentence accessible by our meta-interpreter. It has two

forms meta_statement(meta-level-sentence) and

axiom(meta-level-sentence), the latter presents a rule for a

mathematical axiom, and a built-in atom in SWRL, e.g.

meta_statement(‘rdf’:‘type’
(‘f’:‘M02’,‘f’:‘Man’) ‘ ’ true).

axiom(‘owl’:‘propertyDisjointWith’(P,DP)
‘owl’:‘propertyDisjointWith’(DP,P)).

 axiom(‘swrlx’:‘builtinAtom’(‘lessThan’,x,y) ‘ ’

 builtin(x < y)).

C. Meta-programs of an SWRL Ontology

To formulate meta-programs from SW ontologies to use

in our framework, each SWRL ontology is transformed into

a meta-program containing a (sub-)meta-program

expressed in ML, called MP, and a (sub-)meta-program

expressed in MML, called MMP. Another meta-program

expresses some mathematical axioms for classes and

properties in MML called AMP is also needed for the

inference engine, i.e. our meta-interpreter, to reason with

MP and MMP.

 Meta-program for the object level (MP)

MP contains information about instances and their

relationships in terms of meta-statements for the object

level: statement(P(S,O) true), and

statement(P(S,O) Body), where Body is either single

object-level predicate or conjunction of object-level

predicates. The latter form expresses a Horn-clause rule.

Here is an example of MP:

statement(‘f’:‘hasParent’

(‘f’:‘fa’, ‘f’:‘son’) true).

statement(‘f’:‘hasUncle’(X,Z)

‘f’:‘hasParent’(X,Y) ‘f’:‘hasBrother’(Y,Z)).

 Meta-program for the meta level (MMP)

MMP contains meta-statements for classes, properties,

their relationships, and class-instance relations in terms of

meta-rules. The MMP is represented in the following

forms:

meta_statement(P(S,O) true),

meta_statement(P(S,Os) true), and
meta_statement(C(Prop) true),

where P, S, O are predicate, subject, and object of a triple

(S, P, O) defined in the ontology. C is a characteristic of a

property Prop. Os is a tuple composing of several objects.

Here is a typical example of MMP:

//meta-statement about classes and their relationships
meta_statement(‘rdfs’:‘subClassOf’(C,SC) true).

meta_statement(‘owl’:‘disjoinwith’(C,DC) true).

//meta-statements about properties and their relationships
meta_statement(‘owl’:‘inverseOf’(P,IP) true).

meta_statement(‘owl’:‘symetric’(P) true).

…

 Meta-program for the axioms (AMP)

AMP contains axioms for classes and properties, they are

expressed in the meta-rule forms. In addition, AMP also

contains axioms for built-in atoms in SWRL, and the

purpose of introducing these axioms is to provide a way to

translate SWRL built-in atoms in into the corresponding

Prolog atoms with matched built-in predicates. Here is a

typical sample of AMP:

axiom(‘owl’:‘equivalentClass’(C,EC) (asec)

‘owl’:‘equivalentClass’(EC,C)).

axiom(‘owl’:’inverseOf’(P,IP) (asip)

‘owl’:‘inverseOf’(IP,P)).

axiom(P(S,O) (acip)

‘owl’:‘inverseOf’(P,IP) IP(O,S)).

axiom(P(S,O) ‘owl’:‘symmetric’(P) P(O,S)). (acsmp)

axiom(‘swrlx’:‘builtinAtom’(‘lessThan’,x,y) (albia)

builtin(x < y)).

axiom(‘swrlx’:‘builtinAtom’(‘equal’,x,y) (aebia)

builtin(x = y)).

…

D. The Meta-interpreter

The meta-interpreter in our framework is used to reason

with the meta-programs MPs, MMPs, and AMPs and can

be used to develop an intelligent agent to reason with SW

ontologies. It is defined by a demo predicate of the form

demo(A). With this predicate the meta-interpreter can infer

an answer A from the meta-programs. The interpreter is

defined by adapting the Vanilla meta-interpreter [11] for

reasoning with the meta-programs, which transformed from

SWRL ontologies, where we have identified three kinds of

meta-level statements: (1) statement(A B) for the object-

level of an ontology, (2) meta_statement(A B)for the

meta-level of an ontology, and (3) axiom(A B)for a

supporting mathematical axiom. The definition of demo/1

is:

demo(true). (true)

demo(A‘ ’B) demo(A) demo(B). (conj)

demo(builtin(BI)) BI. (btin)

demo(A) statement(A‘ ’B) demo(B). (ost)

demo(A) meta_statement(A‘ ’B) demo(B). (mst)

demo(A) axiom(A‘ ’B) demo(B). (ast)

The first clause (true) is the basic case for proving an

atom true. The second clause (conj) is used for proving a

conjunctive goal. The third clause (btin) is used for

translating SWRL built-in atoms into its corresponding

Prolog atoms with matched built-in predicates. The last

three clauses (ost), (mst), and (ast) are used for proving

three meta statements from the three meta-programs MP,

MMP and AMP respectively.

IV. QUERY ANSWERING WITH OUR FRAMEWORK

With our framework, SWRL ontologies are transformed

into meta-programs MP, MMP, and AMP. The meta-

programs are inputs to the meta-interpreter and they are all

implemented in Prolog. Then the meta-interpreter is used to

derive conclusions from the meta-programs.

We use the family ontology taken from [10] for a

demonstration purpose of our meta-interpreter. This is an

SWRL ontology, and rules are expressed by the SWRL

syntax. Firstly, the ontology is transformed into meta-

programs, here we show some parts of them:

 The MP program

statement(‘f’:‘hasParent’ (1)

(‘f’:‘M02’,‘f’:‘M01’) true).

statement(‘f’:‘hasParent’ (2)
(‘f’:‘M02’,‘f’:‘F01’) true).

statement(‘f’:‘hasParent’ (3)
(‘f’: ‘M03’,‘f’:‘M02’) true).

statement(‘f’:‘hasParent’ (4)

 (‘f’: ‘M05’,‘f’:‘M02’) true).

statement(‘f’:‘hasParent’ (5)
(‘f’:‘F02’,‘f’:‘M05’) true).

statement(‘f’:‘hasAge’(‘f’:‘M02’,25) true). (6)

//Statements expressing Horn-clause rules
statement(‘f’:‘hasFather’(C,F) (r1)

‘f’:‘hasParent’(C,F) ‘rdf’:‘type’(F,‘f’:‘Man’)).

statement(‘f’:‘hasMother’(C,M) (r2)

‘f’:‘hasParent’(C,M) ‘rdf’:‘type’(M,‘f’:‘Woman’)).

statement(‘f’:‘hasSibling’(P1,P2) (r3)
‘f’:‘hasParent’(P1,P3) ‘f’:‘hasParent’(P2,P3)

‘owl’:‘differentFrom’(P1,P2)).

statement(‘f’:‘hasBrother’(P,B) (r4)

‘f’:‘hasSibling’(P,B) ‘rdf’:‘type’(B,‘f’:‘Man’)).

statement(‘f’:‘hasUncle’(P1,P2) (r5)
‘f’:‘hasParent’(P1,P3) ‘f’:‘hasBrother’(P3,P2)).

statement(‘f’:‘hasSon’(P,C) (r6)

‘f’:‘hasChild’(P,C) ‘rdf’:‘type’(C,‘f’:‘Man’)).

statement(‘rdf’:‘type’(P,‘f’:‘Adult’) (r7)
‘f’:‘hasAge’(P,A)

‘swrlx’:‘builtinAtom’(‘lessThan’,18,A)).

…

 The MMP program

meta_statement(‘owl’:‘inverseOf’ (1')
(‘f’:‘hasChild’,‘f’:‘hasParent’) true).

meta_statement(‘rdfs’:‘subPropertyOf’ (2')
f’:‘hasFather’,‘f’:‘hasParent’) true).

meta_statement(‘rdfs’:‘subPropertyOf’ (3')
f’:‘hasMother’,‘f’:‘hasParent’) true).

meta_statement(‘owl’:‘symmetric’ (4')
(‘f’:‘hasSibling’) true).

meta_statement(‘rdf’:‘type’ (5')
 (‘f’:‘M01’,‘f’:‘Man’) true).

meta_statement(‘rdf’:‘type’ (6')
(‘f’:‘M02’,‘f’:‘Man’) true).

meta_statement(‘rdf’:‘type’ (7')
 (‘f’:‘M03’,‘f’:‘Man’) true).

meta_statement(‘rdf’:‘type’ (8')
 (‘f’:‘M05’,‘f’:‘Man’) true).

meta_statement(‘rdf’:‘type’ (9')
 (‘f’:‘F01’,‘f’:‘Woman’) true).

We pose some queries to the meta-interpreter and get the

answers as the following:

?- demo(‘f’:‘hasChild’(‘f’:‘M01’,X)).
X = ‘f’:‘M02’.

//The adopted clauses are (acip), (ast), (1'), (mst), (1), (ost), and (true).

?- demo(‘f’:‘hasSon’(‘f’:‘F01’,X)).
 X = ‘f’:‘M02’.

//The adopted clauses are (r6), (ost), (conj), (acip), (ast) , (1 '),(mst), (2), (6'),

and (true).

?-demo(‘f’:‘hasFather’(‘f’:‘M02’,X)).

 X = ‘f’:‘M01’.

//The adopted clauses are (r1), (ost), (conj), (1), (5'), (mst) and (true).

?-demo(‘f’:‘hasMother’(‘f’:‘M02’,X)).

 X = ‘f’:‘F01’.

//The adopted clauses are (r2), (ost), (conj), (2), (9'), (mst) and (true).

?-demo(‘f’:‘hasBrother’(‘f’:‘M03’,X)).

 X = ‘f’:‘M05’.

//The adopted clauses are (r3), (r4), (ost), (conj) (3), (4), (8'), (mst) and

(true).

?-demo(‘f’:‘hasUncle’(‘f’:‘F02’,X)).

 X = ‘f’:‘M03’.

//The adopted clauses are (r3), (r4), (r5), (ost),(conj), (5), (3), (4), (7'), (mst),

(true).

?-demo(‘rdf’:‘type’(X,‘f’:‘Adult’)).

 X = ‘f’:‘M02’.

//The adopted clauses are (r7), (ost), (conj), (6), (albia), (ast), (btin), and

(true).

V. RELATED WORKS

The SW research community has addressed similar issues and

problems concerning SW ontologies and rules as that also happens

in the area of logic programming. So the exchange of idea

between these two research areas is inevitable.

For instance, Laera et al. [12] proposed SweetProlog as a

system for translating an OWL ontology and rules into a Prolog

program. It is achieved by the translation of an OWL ontology

described in Description Logic and rules expressed in

OWLRuleML into a set of facts and a set of rules in Prolog

respectively. Then any reasoning on these facts and rules can be

performed by the Prolog interpreter.

Comparing this with our work, according to their approach an

OWL and RuleML ontology is entirely translated into Prolog facts

and rules, where both object level and meta level knowledge of

the ontology are mixed up and Laera et al. do not care to make the

distinction between the two levels of knowledge, whilst our

translation makes a careful separation between the two levels of

knowledge. As a result, their SweetProlog can reason with any

object level knowledge of an ontology as the way our approach

does.

For example, with the same ontology that we use for the query

answering in Section 4, according to their approach, the ontology

would be transformed to Prolog facts as follows:

hasParent(‘f’:‘F02’,‘f’: ‘M01’).

hasBrother(‘f’: ‘M01’, ‘f’: ‘M03’).

…

and the „uncle‟ rule would be expressed by the Prolog

rule:

hasUncle(X,Y):- hasParent(X,Z), hasBrother(Z,Y).

Provided with this prolog program and a query like

?-hasUncle(‘f’:‘F02’, X),

their SweetProlog would give the answer X=‘f’:‘M03’,

which is the same answer as that given earlier by our meta-

interpreter.

 However, there could be queries, which ask about meta

level information of this ontology, which their SweetProlog

cannot give answers to, since there is some information that

can be asked only at the meta level, but cannot do that at

the object level.

For example, a query asking what the relation between

M02 and M03 is:

?-P(‘f’:‘F02’,‘f’:‘M03’)

So, in SweetProlog, the Prolog interpreter will signal a

syntax error, since a variable is not allowed to be used as a

predicate name in a query. Here a predicate name is a meta

level information that cannot be asked at the object level.

 However, with a careful treatment of a separation

between the object level and the meta level knowledge in

our approach, such a query can be asked via the demo

predicate as follows.

?-demo(P(‘f’:‘M02’,‘f’:‘M03’)).

and our meta-interpreter can give the answer:

P = hasUcle.

In the same direction as Laera et al., Samuel et al. proposed

SWORIER [13], which also translates an SWRL ontology into

Prolog facts and rules, and derives answers from the Prolog

program using the Prolog interpreter. SWORIER suffers the same

problem as SweetProlog does due to the similar approach of

making no distinction between the object and meta levels.

Comparing our work with theirs, in SWORIER Samuel et al.

defined a set of General Rules in Prolog in order to formulate the

OWL primitives. Here their General Rules serve the same

purpose as our AMP program.

Another related work is a work on query answering for

OWL-DL with rules [14]. In this work, OWL-DL was

extended with DL-safe rules in order to provide deduction

on an OWL-DL ontology. An undecidability problem of

deduction on OWL-DL ontology with rules is solved by

making some restrictions in DL-safe rules. This approach

provides query answering algorithm that can handle only

partial OWL-DL, since some axioms of OWL-DL, such as

the transitivity axioms, are taken out from OWL-DL in

order to maintain the decidability of their query answering

algorithm. This work proposed a deduction method by

means of a specific algorithm whereas we adopt a general

purpose inference engine based on metalogic.

VI. CONCLUSION

We have presented a meta-logical framework for

reasoning with an SWRL ontology. In this paper, our

previous framework that was designed to support OWL has

been extended to accommodate SWRL rules by improving

the meta-languages to express Horn-clause rules and

modifying the meta-interpreter so that it can work with the

newly revised meta-languages.

ACKNOWLEDGMENT

We gracefully acknowledge the financial support for this

research from the Japan International Corporation Agency

(JICA) under the AUN/SEED-Net Project.

REFERENCES

[1] F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. F. Patel

Schneider(Eds.). The Description Logic Hand book: Theory,

Implementation, and Applications. 2
nd

 ed. Cambridge, 2007.

[2] W3C. The Resource Description Framework. http://www.w3.org/RDF/.

[3] P. F. Patel-Schneider, P. Hayes, I. Horrocks, OWL Web Ontology

Language Semantics and Abstract Syntax, W3C Recommendation.

http://www.w3.org/tr/2004/rec-owl-semantics-20040210/.

[4] Boris Motik, Peter F. Patel-Schneider, and Bernardo Cuenca Grau.

SWRL: A semantic web rule language combining OWL and RuleML.

URL, 2009. http://www.w3.org/Submission/SWRL/.

[5] V. Hirankitti, and V. X. Tran. A Meta logical Approach for Reasoning

with Semantic Web Ontologies. In proc. of the 4th IEEE Int. Conf. on

Computer Sciences: Research, Innovation & Vision for the Future,

2006.

[6] V. Hirankitti, and V. X. Tran. A Meta-logical Approach for Multi-

agent Communication of the Semantic Web Information. In proc. of

the 16
th
 International Conference on Application of Declarative

Programming and Knowledge Management, Lecture Notes in Computer

Science; Vol. 4369, Springer-Verlag, pp. 215-228, 2006.

[7] V. Hirankitti, and M. X. Trang. A Meta-logical Approach for

Reasoning with an OWL 2 Ontologies. In proc. of the 2010 IEEE Int.

Conf. on Computer Sciences: Research, Innovation & Vision for the

Future, 2010.

[8] Rule Markup Language, URL, http://www.ruleml.org/.

[9] Masahiro Hori, Jerome Euzenat, and P. F. Pate-Schneider. OWL Web

Ontology Language XML Presentation Syntax. URL, 2003.

http://www.w3.org/TR/owl-xmlsyntax/.

[10] The family ontology, URL, http://protege.cim3.net/file/pub/ontologies/

family.swrl.owl/family.swrl.owl/.

[11] R. A. Kowalski, J. S. Kim. A Metalogic Programming Approach to

Multi-agent Knowledge and Belief. In AI and Mathematical Theory of

Computation, pp. 231-246, 1991.

[12] L. Laera, V. A. M. Tamma, and G. Semeraro. SweetProlog: A System

to Integrate Ontologies and Rules. In Proc. Of RuleML‟04, pp. 188-

193, Springer Verlag, 2004.

[13] K. Samuel, L. Obrst, S. Stoutenberg, K. Fox, P. Franklin, A. Johnson, K.

Laskey, D. Nichols, S. Lopez, and J. Peterson. Translating OWL and

Semantic Web rules in to Prolog: Moving toward description logic

programs. Journal Theory and Practice of Logic Programming, pp.

301-322, 2008.

[14] B. Motik, U. Sattler, and R. Studer Query Answering for OWL-DL with

Rules. In Proc. ISWC2004, pp. 549-563. Springer, November 2004.

http://www.w3.org/RDF/
http://www.w3.org/tr/2004/rec-owl-semantics-20040210/
http://www.w3.org/Submission/SWRL/
http://www.ruleml.org/
http://www.w3.org/TR/owl-xmlsyntax/
http://protege.cim3.net/file/pub/ontologies/family.swrl.owl/family.swrl.owl
http://protege.cim3.net/file/pub/ontologies/family.swrl.owl/family.swrl.owl

