

Abstract—we present an overview in the advances related to 

the learning of formal languages i.e. development in the 
grammatical inference research. The problem of learning 
correct grammars for the unknown languages is known as 
grammatical inference. It is considered a main subject of 
inductive inference, and grammars are important 
representations to be investigated in machine learning from 
both theoretical and practical points of view. Application area 
of grammatical inference is increasing day by day, and it is still 
required to find a task where grammatical inference models 
have done much better than other machine learning or pattern 
recognition programs. However, it is known that making 
research in this area is a computationally hard problem. This 
paper mainly explores the area, its applications, various 
learning paradigms, the case of context-free grammars, 
challenges, recent trends etc., and cites the important literature 
on these.

Index Terms— machine learning, grammatical inference, 
learning model, formal language, context-free grammars

I. INTRODUCTION

URING the last forty years there has been a growing 
interest in investigating formal learning models which 

can learn formally specified classes of grammars from 
particular kinds of inputs. The study of formal language 
learning models is at the very heart of computer science. In 
recent years a number of significant contributions in the field 
of learning formal grammars have been made, unfortunately
inductive learning of context-free grammars is found as 
computationally hard problem. These results have kindled 
considerable interest in the study of learning models and the 
area of machine learning of context-free grammars has 
blossomed into a field of intense interest.

As a broad subfield of artificial intelligence, machine 
learning is concerned with the design and development of 
learning models and techniques that allow computers to 
learn. At a general level, there are two types of learning: 
inductive, and deductive. Inductive machine learning 
methods extract rules and patterns out of massive data sets, 
whereas deductive reasoning applies general principles to 
reach specific conclusions.

Machine learning has a wide spectrum of applications 
including natural language processing, syntactic pattern 
recognition, search engines, medical diagnosis, 
bioinformatics, detecting credit card fraud, stock market
analysis, classifying DNA sequences, speech and 
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handwriting recognition, object recognition in computer 
vision, game playing and robot locomotion. Moreover, 
within the machine learning research field grammatical 
inference has been investigated, more or less independently.

In the area of artificial intelligence, one classical problem 
is to obtain the rules or patterns that model the structure of a 
set. When the objects are represented by elements of a 
formal language, the patterns determine the rules of a 
grammar which are able to generate the language. The
problem of searching these rules belongs to the area of
grammatical inference (or grammar induction). Thus the 
general problem of learning formal grammars is an inductive 
inference problem where target domain is a formal language 
and the representation class is a family of grammars. The 
learning objective is to determine a correct grammar for the 
(unknown) target language, given finite set of examples of 
the language.

Increasing number of practical applications based on 
grammatical inference ideas or techniques enable the 
investigation of new and better grammatical inference 
models. Hence, it would be useful to know the advancement 
and important literature in this area.

II. MAJOR LEARNING MODELS

There are many somewhat arbitrary choices of learning 
model. The research activities on grammatical inference 
have been stimulated by the three major established formal 
models for learning from examples or inductive inference
proposed within computational learning theory framework: 
Gold’s model of identification in the limit [38], Angluin’s
query learning model [10], and the probably approximately 
correct learning model by Valiant, addressed PAC learning 
model, in short [101]. The main concentration of these 
models is on the computational efficiency of the learning
algorithm. Each model provides a learning protocol and a 
criterion for the success of learning.

A. The Model of Identification in the Limit

An early study in the field of Inductive inference can be 
seen in [93]. A first convincing model for the case of 
grammatical inference is identification in the limit 
introduced by Gold in 1967 [38]. The setting of this model is 
that of on-line, incremental learning. It views learning as an 
infinite process and provides a learning model where an 
infinite sequence of examples of the unknown grammar is 
presented to the inference algorithm (learner) and the 
limiting behavior is used as the criterion of its success. After 
each new example the learner must return some hypothesis
(guess). Identification is achieved when the learner returns a 
correct guess and does not change its mind afterwards, then 
learner is said to identify the unknown grammar in the limit 
for the target language.
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B. The Query Learning Model

Angluin considers a learning situation in which a teacher 
is available to answer specific kind of queries on the 
unknown grammar of the target language and presents an 
elegant formulation of such a teacher and learner paradigm
[10]. In the query learning model, there is a fixed set of 
oracles, known as Minimal Adequate Teacher (MAT) that 
can answer specific kinds of queries made by the inference 
algorithm on the unknown grammar. For example, the 
following types of queries are typical:
1) Membership. The input is a string and the output is 

“yes” if the string belongs to the target language and 
“no” otherwise.

2) Equivalence. The input is a grammar and the output is 
“yes” if the hypothesis is equivalent to the target, and 
“no” otherwise. If the answer is “no”, a string called 
counter-example is returned.

In this set-up, an inference algorithm runs with oracles for 
queries for the unknown grammar, and eventually halts and 
outputs a correct grammar in a certain finite time.

This is no longer a limiting criterion of learning. A 
membership query returns one bit of information, but it often 
plays a vital role in efficient exact identification. For 
example, the class of deterministic finite automata (DFA)
can be identified in polynomial time using equivalence 
queries and membership queries while it cannot efficiently 
be identified from equivalence queries only [9], [11].

C. The PAC Learning Model

Exact learning has always been considered a hard to
achieve goal. Valiant gives the distribution independent 
probabilistic approach of learning from random examples. 
This formulation is popularly known as PAC learning
model [101], which has also been studied in the context of 
grammar learning ([65], with also a discussion about these 
issues and special interest to DFA learning).

III. LEARNING FINITE AUTOMATA

Learning regular grammars or DFA has been strongly 
considered in the area of grammar induction. Efficient 
algorithms have been presented dealing with learning such
grammars in a variety of learning paradigms such as when 
both examples and counter-examples are provided or when 
the learning algorithm is allowed to question some teacher.

The possible reasons explaining that most attention has 
been focused on this class of grammars are that this 
problem may seem simple enough as it is less general as 
compared with the next levels of the Chomsky hierarchy, 
and because of the availability of learning methodologies. 
As an example, Angluin has investigated the active 
learning paradigm (i.e., learning with queries asked to an 
oracle) [7] where efficient DFA learning is possible. The 
positive results are also seen in the learning from 
polynomial time and data. But the positive results do not
seem to hold for learning context-free grammars in any 
setting.

The study of the learnability of DFA is a good mean for 
studying a number of interesting approaches in inductive 
inference and grammatical inference [68]. In this section, 

we will see some important results and useful techniques
related to DFA learning. A complete information that 
include early work, learning from good examples, and a 
survey related with DFA learning can be found in [99], 
[105], and [68].

A deterministic finite (state) automaton (a DFA) is a 5-
tuple A = (Q,, q0, δ, F), where Q is a finite set of states, 
 is an alphabet of input symbols, δ is the state transition 
function δ: Q    Q, q0  Q is the initial state, and F 
Q is a set of final states. The language accepted by a DFA 
A is denoted by L(A).

A. Learning from Representative Samples

For learning an unknown (hidden) DFA A = (Q,, q0,
δ, F) from examples, a useful information about A is a 
representative sample S of A, that is, a finite subset of L(A)
that exercises every live transition in A. It has been shown 
that the class of DFA can be learned in polynomial time 
from a representative sample and using membership 
queries [7].

B. Learning with Teachers

A learning protocol which is based on MAT is 
considered in [9]. This teacher can answer membership 
queries and equivalence queries about the unknown DFA
A made by an inference algorithm. Angluin has shown that 
equivalence queries compensate for the lack of
representative samples, and presented an efficient 
inference algorithm for learning DFA using equivalence 
and membership queries [9]. The positive result is that the 
class of DFA can be learned in polynomial time using 
equivalence queries and membership queries.

Yokomori presents an efficient learning of 
nondeterministic finite automata (NFA) in polynomial 
time from MAT [107]. This provides an alternative 
algorithm for learning regular languages in polynomial 
time from MAT.

C. Learning from Positive Data

Learning formal languages from positive presentation is 
one interesting and important subject in the field of 
grammatical inference, and also on the Gold’s model of 
identification in the limit. A positive presentation of a
unknown DFA A is any infinite sequence of examples such 
that the sequence contains all and only the strings in the 
language L(A). Gold demonstrates that there is a 
fundamental difference in what could be learned from 
positive versus complete presentations, and shows a 
negative result on identification in the limit from positive 
presentation of superfinite class of languages, e.g., context-
free languages [38]. Since the class of regular languages is
also superfinite, it is useful to restrict DFA somehow to 
subclasses in order to obtain learnability results from 
positive presentation. Angluin takes this path [8].

In order to correct identification in the limit from 
positive data, we must avoid the problem of
“overgeneralization”, which means guessing a language 
that is a strict superset of the unknown language. Angluin 
presents a series of subclasses of DFA, called k-reversible 
automata for k = 0, 1, 2, . . ., and shows that the existence 



of characteristic samples is sufficient (to avoid the 
problem of overgeneralization) for identification from 
positive presentation for k-reversible automata and there 
exist such characteristic samples for the class of k-
reversible automata [8].

A characteristic sample of a k-reversible automaton A is 
a finite sample S  L(A) such that L(A) is the “smallest” k-
reversible language that contains S. If we can determine a 
characteristic sample for the unknown language among the 
input examples, then we are confirmed that a guess of the 
target language will not be an overgeneralization. 
Therefore, it seems to be true that any characteristic 
sample is a representative sample for k-reversible 
automata.

The main conclusion of Angluin’s research in the paper 
[8] is: the class of k-reversible automata, for k = 0, 1, 2, . . 
. , can be learned in the limit from positive presentation.

Some more results on identification from positive 
presentation which may not be directly related with DFA 
can be seen in [6], [52], [92], and [67].

D. Hardness Results

Even we have several positive results for learning DFA, 
there are also several computationally hardness results 
related to learnability of DFA. Gold proves that the 
problem of finding a DFA with a minimum number of 
states consistent with a given finite sample of positive and 
negative examples is NP-hard [39]. Moreover, even a very 
simple case of grammatical inference, learning DFA from 
positive and negative examples, is intractable. Further, a 
stronger result on the minimum consistent DFA is 
illustrated in [69].

Angluin has made significant contributions on learning 
regular languages or DFA. She also shows negative results 
for efficient learning of various classes of grammars from 
equivalence queries only [11], and develops the useful 
technique of approximate fingerprints to obtain negative 
results for learning from equivalence queries only. Using 
this technique, she shows that there is no polynomially 
bounded algorithm using only equivalence queries that 
learns the class of DFA, NFA, context-free grammars, or 
the disjunctive or conjunctive normal form boolean 
formulas.

E. Learning from Erroneous Examples

It may be the case when information provided to the 
learner is incomplete, e.g., some of the membership 
queries may be answered by “I don’t know.” It is natural to 
assume that the examples may contain some noise, or 
incomplete information on membership queries. For the 
standard noise-free model proper exact identification is 
required. There are fewer tasks to do in the Valiant’s
probabilistic PAC learning model to deal with the presence 
of noise. Sakakibara illustrates a model, where each 
membership query is erroneously answered independently 
at random, and one can defeat the noise by querying points 
many times and taking a majority vote until the confidence 
in the correct answer is high enough [81]. In the related 
field, Ron and Rubinfeld also consider a model of 
persistent noise in membership queries [78].

IV. THE CASE OF CONTEXT-FREE GRAMMARS

Context-free grammars are more expressive as 
compared with regular grammars. In the previous sections,
we have seen that there has been huge research into the 
problem of learning DFA from examples. Here we see 
whether there are analogous results for learning context-
free grammars.

Angluin has shown that there is no polynomial time
algorithm using only equivalence queries that exactly 
identifies context-free grammars [11]. Furthermore, 
Angluin and Kharitonov have shown that the problem of 
learning context-free grammars from membership and
equivalence queries is computationally as hard as the 
cryptographic problems, or boolean formulas problems for 
which there is currently no known polynomial time 
algorithm [12].

Learning the entire class of the context-free grammars 
seems to be intractable whichever learning model we 
choose. The important question as to whether the class can 
be learned with a polynomial number of queries is still an 
open question, but widely believed to be also intractable
[13]. One hurdle is that of determinism, and the other that
of linearity, motivating early studies for the class of linear
languages [18]. But in the paradigm of learning from 
polynomial time and data this class is still not learnable in 
the limit [41].

Despite above negative results, we will see in the
following sections several positive results for learning
context-free grammars with additional information or 
learning subclasses of context-free grammars efficiently.

A. Learning from Structural Information

We discuss a learning problem for context-free 
grammars where, besides given examples, some additional 
information is available for the learning algorithm. A 
useful (and may be reasonable) information would be 
information on the grammatical structure of the unknown 
context-free grammar, i.e., example presentations in the 
form of strings with grammatical structure. Levy and Joshi 
have already suggested the possibility of efficient 
grammatical inferences in terms of strings with 
grammatical structure [57]. Sakakibara has shown in [80]
by extending Angluin’s inference algorithm [9] for DFA to 
tree automata that the class of context-free grammars can 
be learned in polynomial time using structural membership 
queries and structural equivalence queries.

Theorem 1. ([80]). The class of context-free grammars 
can be learned in polynomial time with the help of 
structural equivalence queries and structural membership 
queries.

A structural membership query is a membership query 
for a structured string to ask whether it is generated by the 
unknown context-free grammar G, and a structural 
equivalence query returns “yes” if a queried context-free 
grammar G' is structurally equivalent to the unknown 
context-free grammar G and returns “no” with a counter-
example otherwise. The counter-example is a structured 
string in the symmetric difference of the set of unlabelled 
derivation trees (structured strings) of G and the set of 
unlabelled derivation trees (structured strings) of G'.



Since the class of context-free grammars is superfinite, 
it cannot be identified in the limit because of negative 
result in [38] from positive presentation. Sakakibara has 
shown a class of context-free grammars, called reversible
context-free grammars, which can be identified in the limit 
from positive presentations of structured strings [82].

Theorem 2. ([82]). The class of reversible context-free 
grammars can be identified in the limit from positive 
presentation of structured strings (structural examples)
provided that the structured strings are generated with 
respect to a reversible context-free grammar for the 
hidden (unknown) context-free language.

Since the learning algorithm for reversible context-free 
grammars is an extension of Angluin’s learning algorithm 
which learns zero-reversible automata ([8]), the algorithm 
learns in time polynomial in the size of the input examples. 
It is to be noticed that the above result does not imply that 
the whole class of context-free grammars can be learned 
from positive presentation of structured strings.

The work in the related paradigm is to learning context-
free grammars from positive presentation of structured
strings is Crespi-Reghizzi’s, where he has described a 
constructive method for learning a subclass of context-free 
grammars, which is a different class from reversible 
context-free grammars [25]. His class of context-free 
grammars defines only a subclass of context-free 
languages, called noncounting context-free languages. A
subclass of reversible context-free grammars, called type 
invertible grammars, is also investigated in [60].

B. Typical Artificial Intelligence Approaches

The harder question of learning context-free grammars 
has given rise to different approaches over the past few 
years. Typical artificial intelligence techniques have been 
used to search for a small consistent context-free grammar. 
For instance, Sakakibara and Kondo have used genetic 
algorithms (GAs) to search for a context-free grammar in 
Chomsky normal form, consistent with the given examples 
[85]. Experiments suggest that the knowledge of part of 
the structure (some parenthesis) may help and reduce the 
number of generations needed to identify the correct 
grammar and thus contribute to improving the efficiency of 
the learning algorithm [86], [88].

C. Reduction to Finite Automata Learning Problems

It is quite natural to solve one problem with the help of 
some other problem whose solution is known.  In 
grammatical inference, a well-known technique often used 
to establish learnability results is a reduction technique 
that reduces a learning problem to some other learning
problem. Takada has shown that the learning problem for 
even linear grammars can be solved by reducing it to the 
one for learning DFA [95].

An even linear grammar is a context-free grammar that 
has productions only of the form A  uBv or A  w such 
that u and v have the same length, where A and B are 
nonterminals and u, v and w are strings over.

Theorem 3. ([95]). The problem of learning the class of 
even linear grammars is reduced to the problem of 
learning the class of DFA.

The class of even linear languages properly contains the 
class of regular languages and is a proper subclass of 
context-free languages. Takada has further developed an 
infinite hierarchy of families of languages whose learning
problems are reduced to the learning problem of DFA
[96].

D. Learning Subclasses of Context-Free Grammars

Since the identification of context-free grammars seems 
to be hard without any additional information, the 
grammatical inference scientists have always put their 
interest in designing efficient algorithms for identifying 
subclasses of context-free grammars from examples.

Ishizaka has investigated a subclass of context-free 
grammars, called simple deterministic grammars, and 
produced a polynomial time algorithm based on the theory 
of model inference given by Shapiro, for exactly 
identifying it using membership queries and extended 
equivalence queries in terms of general context-free 
grammars [44]. It should be noticed that these grammars 
are not linear.

A smaller class of simple deterministic grammars has 
been considered by Yokomori with the goal of finding a 
polynomial time algorithm to identify it in the limit from 
positive presentation [106]. He has shown the positive 
results regarding identification in the limit from positive 
presentations for the class of very simple grammars.

V. TREE AUTOMATA

Tree automata are the direct extension of DFA and NFA
for tree languages instead of string. They may be top-down 
(starting from the root), or bottom-up (starting from the 
leaves), and deterministic, or nondeterministic. Survey 
paper [34] provides sufficient details for learning tree
automata, and Kosala et al. present induction of ranked 
tree automata for information extraction from Web 
documents [51].

There is a very deep link between learning context-free
grammars from structural information and learning regular 
tree grammars [80]. Sakakibara has investigated the 
algorithm RT for learning reversible tree automata 
efficiently from positive samples, and using RT, he also 
demonstrated an algorithm RC for learning reversible 
context-free grammars from positive structural samples 
[82]. Also, an efficient scheme for incremental learning of 
context-free grammars in this paradigm is presented by 
Prajapati et al. in [71].

The recent studies here are mainly for variety of tree 
languages. The algorithm regular positive and negative 
inference, proposed by Oncina and García, is capable of 
generalizing and identifying DFA. An extension of this 
algorithm to deal with trees is provided in [35], and a 
generalization of the well-known algorithm for regular 
languages learning from stochastic samples to the learning 
of tree languages is given in [23]. A mathematical basis for 
the case of learning from positive structural data only, is 
found in [50]. Moreover, for identifying tree languages 
from positive data only, Fernau presents a generic 
inference algorithm with polynomial update time [31].



VI. LEARNING STOCHASTIC GRAMMARS

Now we deal with the stochastic grammars emphasizing 
more on stochastic context-free grammars (SCFGs). 
Another challenging research problem in grammatical 
inference is stochastic modeling and training of stochastic 
grammars. Stochastic grammars have become a tool of 
wide use in speech recognition, natural language 
processing, bioinformatics and computational biology. In a
stochastic grammar each production is assigned a 
probability, and therefore each string which it derives is 
also given a probability indirectly. Stochastic 
(probabilistic) automata are the probabilistic counterpart of
finite automata that are known as Hidden Markov Models
(HMMs) and are widely used in many applications
including speech recognition [15], [55], [73], [46], 
biological sequence modeling [28], [17], [70], information
extraction [91], optical character recognition [56], and
learning GA parameters [74]. The potentials of using 
HMM in extracting free-structure corpus have also been 
presented in the literature [100]. It finds that HMM is a 
superior tool for extracting free-structured unique target 
term. Any grammar in the Chomsky hierarchy can be used 
in stochastic form. The class of SCFGs extends the class of 
context-free grammars, and therefore it goes one step 
beyond HMMs in the Chomsky hierarchy because HMMs 
extend regular grammars.

The problem of learning stochastic grammars from 
examples reduces to two sub problems; the first is to learn
structure (topology) of the grammar and second is to 
determine probabilistic parameters in the grammar. There 
are two well-known efficient algorithms for automatic 
estimation of probabilities and distributions are available 
in the literature known as forward-backward algorithm
for HMMs [72] and inside-outside algorithm for SCFGs
[16], [54]. Recently [49] gives GA- based approach to the 
problem of inferring SCFGs from finite language samples. 
It shows the experiments for learning a range of formal 
languages and compares the results with those found using 
the inside-outside algorithm [16]. The results confirm that 
the learned grammars are compact and fit the corpus data 
efficiently.

A. Stochastic Context-Free Grammars

A stochastic context-free grammar (SCFG) G consists of 
a set of nonterminals N, a terminal alphabet , a set P of 
productions with associated probabilities, and start symbol 
S. A probability distribution exists over the set of 
productions which have the same nonterminal on the left
hand sides.

SCFGs have exploited in several applications including 
speech recognition [104] and computational biology [83].
Again, the question of learning probabilistic context-free 
grammars is hard. One elementary problem is to parsing 
with such a grammar [94]. Another basic problem that 
requires study is to check whether a given grammar is 
consistent with the input examples. This problem is 
considered in [19] with restrictions, and for guaranteeing 
the consistency for all SCFGs without restrictions, 
whenever the probability distributions are learned from the 
algorithms which are based on growth transformations 

such as the inside-outside algorithm is illustrated in [90]. 
Moreover, some other properties related to consistency are 
also given in [90]. The learning problem has the following 
possible levels.

If the grammar rules are available, we can try to 
estimate the probabilities that fit best. An efficient 
algorithm in this paradigm is demonstrated in [16], and 
Lari and Young present the estimation process using the 
well-known inside-outside algorithm in the paper [54].
Some other estimation techniques can also be seen in [83].

In other level of the learning problem, we can first learn 
the rules and then the probabilities. On having additional 
knowledge about the data, such as structural information, 
we can turn to learning rules using tree automata model
(this line is followed in [80], and [82]), on the other hand 
the approach such as described in [75] may be followed. It 
has already been proved in the literature that the direct 
approach (without any heuristics) of learning directly the 
context-free grammars is hard and seems to be achieved
only by some robust search techniques, like GAs [47].

VII. OTHER LANGUAGE REPRESENTATIONS

Type-3, type-2, type-1 and type-0 (from most restrictive 
to most general) are the four classes of grammars that 
Chomsky, in 1959, cataloged in a hierarchy of grammars 
according to the structure of their productions. Usually, 
formal grammars in Chomsky hierarchy are used for 
modeling languages. But other ways have also been 
applied for language representations. In the following, we 
discuss some of these.

A. About Pattern Languages

Angluin has originated the study of pattern languages
[5]. The sole reason to use pattern is to reflect 
characteristics of the target language. They can be formed 
as sequences of letters, variables and wild-cards. Strings 
belong to the language if they obey the pattern. An 
example of pattern is a regular expression, which defines a 
regular language. Some typical applications of pattern 
languages are in text processing, automated data entry 
tasks, and bioinformatics. Different people have explored
variants of pattern languages. A good picture of the 
situation, efficient robust (against noise) techniques and 
links to the field can be seen in [40]. The field is also 
covered in the prestigious forums ALT and COLT. There 
has been a lot of very specific research in the field. 
However, representative pattern problems have been found 
as hard. Some lines of research that have been followed to 
deal with the problem of inductive learning of pattern 
languages are described nicely in the literature [63], [52], 
[29], [45], and [79].

B. Categorial Grammars

The study of categorial grammars is mainly dates from 
1935. In this grammar only small number of rules is used, 
and remaining syntactic behaviors are derived from the 
lexical entries of specific strings.  A formal learning theory 
for the field within Gold’s view of identification in the 
limit on positive examples has been explored in [48], and
syntactic formalism based on Lambek categorial grammars 



(a different class of categorial grammars) and semantic 
representation with logical formulas can be seen in paper
[97]. The learnability results are different for different 
classes of grammars, e.g., the negative results have been 
presented for different classes of Lambek grammars, 
whereas positive results are seen for k-valued classical 
categorial grammars ([33]). Another example of hardness 
can also be seen in [32].

VIII. APPLICATIONS

There are number of problems where solutions based on 
grammatical inference ideas or techniques have been 
tested. However, it is still required to find a task where 
grammatical inference models have done much better than 
other machine learning or pattern recognition programs. In 
this section, we discuss some major applications of 
grammatical inference. The papers in pattern recognition 
[34], [62], Sakakibara’s articles [84], [87] and Higuera’s 
study in [42] are some places where survey work on the 
area along with its applications has taken place.

A. Robotics and Control Systems

Dean et al. consider an application of grammatical
inference in map learning [27] where robot may learn with 
some possibility of error. Related work can also be seen in 
[77]. Moreover, Rieger constructs a prefix tree from robot 
traces [76]. This tree is used to derive and estimate the 
parameters of a deterministic, as well as a probabilistic 
automaton model for further navigation. Luzeaux has also 
used grammar induction techniques in the field of control 
theory [59]. Here grammatical inference technique has 
been applied to model the numerical data with regular 
grammars in order to acquire a qualitative model.

B. Structural Pattern Recognition

Syntactic and structural methods use models and 
techniques of formal language theory. Structural 
representations are useful to define likelihood relationship 
from a candidate pattern to a model of a class to design 
efficient algorithms for recognition tasks.  Grammatical 
inference is a main example of syntactic and structural 
pattern analysis in machine learning. The articles [61], [62]
and [34] present details of some of the applications of 
grammatical inference in the area. The work by Lucas et 
al., where a most accurate method for character 
recognition, which process less than 1 character per second 
is seen in [58], and by Ney, for a general study in [66].

C. Computational Linguistics

Grammatical inference for natural languages is hard. 
However, it has always been in the interest of several 
scientists including Adriaans [2] to relate grammatical 
inference with natural language. The theoretical work of 
Adriaans is the basis of the Entity Modeling Intelligent 
Learning Engine prototype (i.e., EMILE 4.1 
implementation). This toolbox is useful to analyze the 
grammatical structure of free text.

D. Speech

In the field of speech recognition, obtaining the better 
language model is an important research goal in order to 

lower the error rate of the speech recognizer. Some typical 
language models are described in [46], [36], and [98]. A 
study for the construction of language model using 
grammatical inference techniques for language 
simplification task is illustrated in [4]. [103] achieves
satisfactory results on the airline travel information system 
task [104] by learning smaller size context-free grammars.

E. Applications in Computational Biology

In molecular biology, we need to deal with very large 
size sequences of DNA, RNA and protein, and therefore 
the problems in this area are generally computationally 
hard. In fact, there is still ample room to apply grammar 
induction techniques in this discipline, and to introduce 
approaches like HMMs [53] and other approaches [43].

Determining similarity among a family of sequences, 
producing a multiple sequence alignment, classifying the 
members in different families according to their 
evolutionary distances and discovering the right ancestor 
of a candidate member will continue to be some of the 
most important and fundamental computational tasks. 
Wang et al. describe techniques for DNA sequence 
classification tasks in [102]. Sakakibara et al. learn 
stochastic context-free grammars from tRNA sequences
[83]. The inferred grammar allows to discover and to 
model part of the secondary structure. The same line of
work can also be seen in [1]. The work in [89], which 
presents a combination of context-free grammars and bi-
gram models, obtains good results. Here, context-free 
grammars are used to represent relations of the structured 
part of RNA sequences and others that are not structured.

F. Other Applications

1) Inductive Logic Programming. As a subfield of machine 
learning, inductive logic programming [64] has also 
relation with grammatical inference. Boström’s system 
merlin compiles the data by the background information
in order to learn a DFA [21], or a HMM one [22].

2) Data Mining. Extraction of relevant information 
efficiently from large amounts of data is still a big issue 
in this field. Some of the places where grammar 
induction techniques have been tested for knowledge 
discovery include:
a) Borges and Levene describe learning user behaviors 

from their navigation patterns based on the theory of 
probabilistic grammars [20].

b) Chidlovskii et al. present a method for automatically 
generating wrappers for meta-search engines using 
incremental grammar induction algorithm for 
effective search on the World Wide Web [24].

3) Music. Other than the conventional application areas, 
e.g., pattern recognition and language modeling, music 
processing is also one of the interesting application 
areas of grammatical inference. As an example, 
stochastic automata have been used to model musical 
styles (Renaissance, Baroque, Ragtime, Bach, etc.) [26];
the learned automata can then be used in automatic 
composition (to synthesize new melodies) or in 
automatic musical style recognition (to classify test
melodies).



4) Time Series Prediction. Time series prediction is the use 
of a methodology to predict future behavior based on 
past experience. Giles et al.’s have used grammatical 
inference with recurrent neural networks for conversion 
into a symbolic representation [37]. Their method 
predicts the direction of change for the next day with an 
error rate of 47.1%.

5) Document Management. The job of writing, storing, 
and retrieving documents in electronic form has become 
popular now days. Context-free grammars are found as 
common means for describing the structure of a 
document. There are several possible applications of 
grammatical inference to deal with documents as data. 
Some typical applications can be seen in [3], and [108].

IX. CONCLUSION

We have found very few articles for learning context-
sensitive grammars and also for phrase structure grammars; 
reasons certainly include higher computational complexity 
of these classes. Levy and Joshi have suggested an open 
problem to extend the methods of skeletal structural 
descriptions to arbitrary phrase structure grammars [57]. 
Arikawa et al. describe elementary formal systems for
identification of context-sensitive languages [14]. Moreover, 
an approach for identification for subclasses of context-
sensitive languages can also be found in [30].

While producing the material in this paper, our 
fundamental goal was to provide detailed introduction about 
the active and challenging area of grammatical inference 
(mainly, for beginners or someone interested to get research 
related activities in this field and to find most appropriate 
ideas or techniques for their own research work).
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