

Abstract—We propose a constructive heuristic for the well

known NP-hard problem of no-wait flow shop scheduling. It is

based on the assumption that the priority of a job in the

sequence is given by the sum of its processing times on the

bottleneck machine(s) for selecting the initial sequence of jobs.

The computational experimentations show that there is a

significant improvement in solution quality over the existing

heuristic, especially for large problem sizes while not affecting

its time complexity. Statistical tests are used to substantiate the

significance of the results by the proposed method.

Index Terms— No-wait flow shop scheduling, heuristics,

total flow time, combinatorial optimization

I. INTRODUCTION

 no-wait flow shop is a manufacturing system where

each job is processed until completion without

interruption either on or between any two consecutive

machines; that is, once a job is started on the first machine, it

has to be continuously processed through machines without

interruption. In addition, we assume that each machine can

handle no more than one job at a time and each job has to

visit each machine exactly once without preemption.

Therefore, when needed, the start of a job on the first

machine must be delayed in order to meet the no-wait

requirement. A detailed survey of the methods and

applications of these scheduling problems is given by Hall

and Sriskandarajah [1].

 The no-wait flow shop scheduling problems with more

than two machines belong to the class of NP-hard [2], [3].

Various researchers have developed the constructive

heuristics as well as metaheuristics for solving these

problems for different criterion such as makespan and total

flow time. For no-wait flow shop scheduling problems,

noteworthy constructive heuristics with the total flow time

objective have been studied by Rajendran and Chaudhuri

[4], Bertolissi [5], Aldowaisan and Allahverdi [6], and

Framinan, Nagano, and Moccellin [7].

Rajendran and Chaudhuri [4] proposed two constructive

heuristics considering two heuristic preference relations as

the basis for selecting the seed sequence of jobs. The seed

sequence of jobs thus generated is then improved further by

Manuscript received January 03, 2011.

Dipak Laha, Reader, Mechanical Engineering Department, Jadavpur

University, Kolkata 700032, India. (e-mail: dipaklaha_jume@yahoo.com,

dlaha@mech.jdvu.ac.in).

Sagar U. Sapkal, Research Scholar, Mechanical Engineering

Department, Jadavpur University, Kolkata 700032, India. (corresponding

author, phone: +9133-2414-6890; fax: +9133-2414-6890; e-mail:

sagar_us@indiatimes.com).

using the job insertion method of Nawaz-Enscore-Ham

(NEH) [8] in the remaining parts of the heuristics. Their

heuristics, especially heuristic 1 perform significantly better

than those of Bonney and Gundry [9], and King and Spachis

[10].

Bertolissi [5] presented a heuristic based on calculating

the minimum apparent flow time of each pair of jobs and

then finding the number of times (here, marks) of the

starting jobs of the pairs as a basis for selecting the seed

sequence of jobs. The seed sequence thus generated is then

improved further using the job insertion algorithm in the

same manner as done by Rajendran and Chaudhuri [4]. The

computational results reveal that the heuristic of Bertolissi

performs better than those given by the heuristic of

Rajendran and Chaudhuri [4], and Bonney and Gundry [9].

The heuristics of Aldowaisan and Allahverdi [6] and

Framinan, Nagano, and Moccellin [7] have shown superior

performance compared to the existing heuristics. However,

these heuristics take much larger computational times

compared to those given by the existing heuristics.

Therefore, these heuristics are not considered here for

comparison of the heuristics for the total flow time

minimization problem.

In this paper, we present a constructive heuristic for

minimizing the total flow time which is based on the

assumption that the priority of a job in the sequence is given

by the sum of its processing times on the bottleneck

machine(s). We show, through computational

experimentation that the proposed heuristic performs

significantly well compared to the Bertolissi heuristic [5]

which has shown better than the heuristics of Rajendran and

Chaudhuri [4], and Bonney and Gundry [9]. Also, the mean

CPU time used by the proposed method is found to be less

compared to the Bertolissi heuristic.

II. THE PROPOSED HEURISTIC ALGORITHM

 Given the processing time p(i, j) of job i on machine j in

the no-wait flow shop scheduling, each of n jobs is

processed on m machines in the same technological order

without preemption and interruption on or between any two

consecutive machines. The problem is to determine a

sequence of n jobs that minimizes the total flow time

criterion. Let σ = {σ1, σ2, …, σn} represent the sequence of n

jobs to be processed on m machines, and d(i, k) the

minimum delay on the first machine between the start of job

i and the start of job k (required because of the no-wait

restriction). Also, let p(σi, j) represent the processing time on

machine j of the job in the ith position of a given sequence,

and let d(σi-1, σi) denote the minimum delay on the first

machine between the start of two consecutive jobs found in

An Efficient Heuristic Algorithm for m-

Machine No-Wait Flow Shops

Dipak Laha and Sagar U. Sapkal

A

the (i-1)th and ith position of the sequence. The total flow

time (TFT) of the sequence of n jobs in the no-wait flow

shop scheduling is given by,

1

2 1 1

(1) (,) (,)
n n m

i i

i i j

TFT n i d p i jσ σ
−

= = =

= + − +∑ ∑∑

where, the delay matrix D, of the d(i, k) values are calculated

as in Fink and Voß [11]. It may be noted that since the

release times of the jobs are all zeros, the total completion

time criterion is equivalent to the TFT criterion.

 The shortest processing time (SPT) rule optimizes the

mean flow time of a set of jobs processing on single machine

[12], [13] and also it has been shown to be effective in m-

machine flow shop scheduling [14]. Based on this idea, we

make a similar attempt to obtain a sequence of jobs

considering bottleneck machine(s) [15], [16], which is used

as a starting sequence of the proposed method. The proposed

method is based on the assumption that the priority of a job

in the sequence is given by the sum of its processing times

on the bottleneck machines. The seed sequence of jobs thus

obtained is then applied to the remaining parts of the

heuristic following a job insertion algorithm as described in

the work of Rajendran and Chaudhuri [4].

The proposed heuristic algorithm is given as follows:

• Step 1: Set z = 1. Consider single bottleneck
machine among m machines with the largest sum of

the processing times of n jobs and determine the
sequence of jobs by arranging them in ascending
order of their processing times on it.

• Step 2: For z = 2 to m, consider z adjacent machines

as bottlenecks with largest sum of the processing
times of jobs on these machines and obtain the
sequence of jobs in ascending order of the sum of the
processing times of the individual jobs on these
machines.

• Step 3: A total of m sequences of jobs are generated
from steps 1 – 2 and the best one is selected as the
initial sequence of jobs for the rest part of the
heuristic.

• Step 4: Set k = 1. Select the first job in the initial
sequence and insert it in the first position of the

partial sequence σ and call this partial sequence as

the current partial sequence σ.

• Step 5: Update k = k+1. Select the k-th job from the

initial sequence and insert it in the r-th possible

position of the current partial sequence σ where r is
the integer varying k/2 ≤ r ≤ k to produce r
sequences. Among these r sequences, select the one

as the new partial sequence σ with the minimum

value of the expression:
12

(1) (,)
k

i ii
k i d σ σ

−=

+ −∑

and make it the current partial sequence σ.

• Step 6: If k = n, go to Step 7, else go to step 5.

• Step 7: The sequence σ is the final sequence.

 The algorithmic complexity of the proposed heuristic is as

follows: Step 1 finds a sum of n terms for each of m

machines with complexity O(nm), and then gives sorting of

n items using the bubble sort technique [17] with an average

– case complexity of O(n
2
). The complexity of a schedule of

n jobs on m machines is O(nm). Thus, the total complexity

of step 1 is O(2nm + n2) or O(n2). Step 2 actually dictates

the complexity of the proposed method. In the first part of

step 2, the total number of comparisons (varying the number

of adjacent machines from 2 to m) is equal to m(m – 1)/2 and

its complexity is O(m2). In the next part of step 2, (m – 1)

schedules of n jobs on m machines are generated, thereby

resulting in total complexity of O(m
2
 + nm). Hence, the

overall complexity of the proposed method is O(2nm + 2n +

m
2
 + nm) or O(n

2
 + 3nm).

III. BERTOLISSI HEURISTIC [5]

 The main idea of the Bertolissi heuristic [5] is to obtain an

initial schedule as a starting point which is used for

generating the job seed and defining the order in which jobs

will be selected for the job insertion as described by

Rajendran and Chaudhuri [4]. The principle for the selection

of the seed job and the order of insertion of jobs in the

available partial schedule is based on the work of Chan and

Bedworth [18].

The heuristic consists of the following steps:

• Step 1: Compute the flow times for each pair of jobs
i, k by using the equation

()2
(,) 2 (,1) (,)

m

m ikj
F i k p i p i j R

=

= + +∑ , where
()m ikR

is recursively computed as

() 1() 2
(,) max(, (,)),

m

m ik m ik r
R p k m R p i r

− =

= + ∑ and

1() (,1)ikR p k= .

• Step 2: Compare each pair of flow times (F(i,k) and

F(k,i)) and select the smallest one, and mark the

starting job of the pair.

• Step 3: perform step 2 for all the pairs of flow times.

• Step 4: Count the number of marks of each job and
order the jobs in decreasing number of marks and
use this ordering as the initial sequence of jobs.

• Step 5: Set k = 1. Select first job from this initial
sequence and insert it in the first position of the
partial sequence σ. Call it as current sequence σ.

• Step 6: Increment k, k = k+1. Select the k-th job
from the sorted array of step 1 and insert it in the r
possible positions of the current sequence σ, where

k/2 ≤ r ≤ k. Select the best one among r sequences
with the minimum value of

12
(1) (,)

k

i ii
k i d σ σ

−=

+ −∑ and set it as current

sequence σ.

• Step 7: If k = n, go to step 8, else go to step 6.

• Step 8: The sequence σ is the final solution of the

heuristic.

The algorithmic complexity of Bertolissi heuristic is as

follows: Step 1 involves the generation of n(n – 1)/2

schedules of 2 jobs. Also, the complexity of each flow time

calculation for each schedule of a pair of jobs on m

machines is O(2m). Thus, the complexity of step 1 is O(n(n

– 1)2m) or O(n2
m). In step 2, the number of comparison

between two flow times is n(n – 1)/2 and its complexity is

O(n(n – 1)/2) or O(n
2
). Step 4 gives sorting n items and

using bubble sort technique [17], an average – case

complexity is O(n
2
). Hence, the overall complexity of steps

1 – 4 of the Bertolissi heuristic is O(n
2
m), which is more

than that of the proposed method with the complexity of

O(n2 + 3nm).

 It has been shown, through the exhaustive computational

experimentation, that the Bertolissi heuristic produces near –

optimal solutions, which generally gives better results than

the ones provided by Rajendran and Chaudhuri [4] heuristic

and Bonney and Gundry [9] for both small and large

problem sizes. However, Bertolissi heuristic requires more

computational times compared to those given by the existing

heuristics. Based on this evaluation, the method proposed by

Bertolissi is considered as the best existing heuristic for the

minimization of total flow time in no-wait flow shop

scheduling.

IV. COMPUTATIONAL EXPERIENCE

The proposed heuristic, and the heuristic of Bertolissi [5]

were coded in C and run on an Intel Core

2 Duo, 2 GB

RAM, 2.93 GHz PC. To compare the proposed heuristic

with the existing heuristic, we carried out the

experimentation in two phases. In the first phase, we

considered small problem sizes with number of jobs (n) = 5,

6, 7, 8, and 9 and number of machines (m) = 5, 10, 15, 20,

and 25. The second phase was formed taking the large

problem sizes with n = 10, 20, 30, 40, 50, 60, and 70 and m

= 5, 10, 15, 20, and 25. Thirty independent problem

instances were considered for each problem size. Each

problem instance corresponds to a new processing time

matrix where each processing time was generated from a

uniform random discrete u(1, 99) distribution, commonly

used by researchers [19], [20].

 The following two performance measures, popular in the

scheduling literature [4], [6], [7] are used in the present

experimentation: average relative percentage deviation

(ARPD), and percent of optimal solutions (for small problem

sizes) or percent of best heuristic solutions (for large

problem sizes).

ARPD for small number of jobs problems is given by,

1

100 k
i i

i i

Heuristic Optimal
ARPD

k Optimal
=

 −
=  

 
∑

ARPD for large number of jobs problems is given by,

1

100 k
i i

i i

Heuristic Best
ARPD

k Best
=

 −
=  

 
∑

where, Heuristici denotes the objective function value

obtained for i-th instance by a heuristic, Optimali is the

optimal solution value obtained for that instance, Besti is the

best solution value obtained for that instance, and k is the

number of problem instances for a problem size.

 Table I displays comparative evaluation of the proposed

method, and the heuristic of Bertolissi [5] based on ARPD,

and the percent of optimal solutions for the small problem

sizes (n = 5, 6, 7, 8, and 9). The results of Table I show that

the overall performance of the proposed heuristic with

respect to ARPD, and percent optimal solution is

comparable to that of Bertolissi heuristic for small job size

problems. The proposed method performs better than the

Bertolissi heuristic for 15 cases with respect to the ARPD,

and 15 cases with respect to the percent times optimal

solution found out of each 25 cases for small problem sizes.

 Table II presents comparative results based on ARPD, and

the percent of best heuristic solutions for the large problem

sizes (n = 10, 20, 30, 40, 50, 60, and 70). Table II indicates

that the proposed method also performs significantly better

than the Bertolissi heuristic for large job sizes. The proposed

method performs better than the Bertolissi heuristic for 26

cases with respect to the ARPD, and 23 cases with respect to

TABLE I

ARPD, AND PERCENT TIMES OPTIMAL SOLUTION OBTAINED FOR SMALL

PROBLEM SIZES

n m No. of

problem

instances

ARPD Percent optimal

Bertolissi

Heuristic

Proposed

Heuristic

Bertolissi

Heuristic

Proposed

Heuristic

5 5

10

15

20

25

30

30

30

30

30

0.2928

0.4158

0.0723

0.2428

0.3326

0.1409

0.3560

0.0485

0.1466

0.1079

73

60

90

77

83

73

73

93

83

90

6 5

10

15

20

25

30

30

30

30

30

0.6458

0.7408

0.1921

0.3801

0.3490

0.7016

0.6968

0.2568

0.3108

0.2417

60

47

77

53

67

63

43

77

60

73

7 5

10

15

20

25

30

30

30

30

30

1.0754

1.0386

0.3247

0.4922

0.5762

1.3380

1.0061

0.5015

0.5889

0.6903

57

33

63

47

40

50

40

53

50

43

8 5

10

15

20

25

30

30

30

30

30

1.3554

1.1104

0.4167

0.7958

0.6239

1.5647

1.0262

0.5670

0.5904

0.6552

43

20

50

30

33

40

27

43

40

33

9 5

10

15

20

25

30

30

30

30

30

1.7903

1.5373

0.5359

0.8441

0.9923

1.5634

1.3318

1.1005

0.7762

0.8494

13

17

40

17

27

17

20

30

30

27

Average 0.6869 0.6863 49 51

TABLE II

ARPD, AND PERCENT TIMES BEST SOLUTION OBTAINED FOR LARGE

PROBLEM SIZES

n m No. of

problem

instances

ARPD Percent best

Bertolissi

Heuristic

Proposed

Heuristic

Bertolissi

Heuristic

Proposed

Heuristic

10 5

10

15

20

25

30

30

30

30

30

0.63

0.39

0.12

0.45

0.35

0.41

0.33

0.83

0.38

0.40

60

67

83

63

67

60

63

50

63

63

20 5

10

15

20

25

30

30

30

30

30

0.58

0.66

0.50

0.81

0.41

0.42

1.17

0.75

0.53

0.63

43

60

53

37

53

57

40

50

63

47

30 5

10

15

20

25

30

30

30

30

30

0.79

0.61

1.08

1.01

0.49

0.56

0.65

0.44

0.81

0.58

40

57

37

40

43

60

43

63

60

57

40 5

10

15

20

25

30

30

30

30

30

0.93

0.74

0.87

0.56

0.58

0.67

0.43

0.26

0.73

0.68

50

47

40

50

50

50

53

60

50

50

50 5

10

15

20

25

30

30

30

30

30

1.21

0.64

0.97

1.07

0.80

0.19

0.55

0.44

0.21

0.28

27

33

40

27

27

73

67

60

73

73

60 5

10

15

20

25

30

30

30

30

30

1.12

0.78

0.80

0.93

0.93

0.29

0.65

0.29

0.34

0.13

27

33

33

30

20

73

67

67

70

80

70 5

10

15

20

25

30

30

30

30

30

1.31

0.83

0.96

0.85

0.78

0.41

0.33

0.22

0.29

0.24

27

37

33

40

27

73

63

67

60

73

Average 0.76 0.47 43 61

the percent times best solution found out of each 35 cases

for large problem sizes.

 Next, we show the statistical significance [21] of the

results obtained by the proposed method over those

produced by the Bertolissi heuristic. The number of problem

instances for each problem size is taken as 30. We test the

null hypothesis, H0 : µ = 0 against alternative hypothesis, H1

: µ > 0; i.e., if H0 holds true, then, statistically, the

difference between the two methods is not significant. At 5

% level of significance, the critical value, t0.05,ν is obtained

from the relation Probability (t ≥ t0.05,ν) = α = 0.05. Using the

standard tables of t-distribution, we obtain, t0.05,ν = 1.699 for

ν = N-1 = 29 degrees of freedom. We also compare the level

of significance with the p-value. The results are presented in

Table III.

 The average computational times (in seconds) required for

solving each problem instance by the heuristics are given in

Table IV. The results show that the proposed method takes

less computational time than that of the Bertolissi heuristic.

Overall, the results of the proposed method are better by

38% in ARPD and 42% in percent times best found

especially for large problem size instances while taking

about 15% less CPU time than required by the Bertolissi

heuristic.

V. CONCLUSION

In this paper, we have presented a constructive heuristic for

the no-wait flow shop scheduling with the objective of

minimizing total flow time criterion. The method is based on

the principle of the sum of processing times of individual

jobs on the bottleneck machines to determine the initial

sequence of jobs. Based on the computational

experimentation, the proposed method gives comparable

performance as that of the Bertolissi heuristic for small

problem sizes, whereas, there is significant improvement in

solution quality for large problem sizes. Also, it has been

shown that the CPU time required by the proposed method is

less.

REFERENCES

[1] N. G. Hall and C. Sriskandarajah, “A survey of machine scheduling
problems with blocking and no-wait in process,” Opeations
Research, vol. 44, pp. 510-525, 1996.

[2] C. H. Papadimitriou and P. C. Kanellakis, “Flowshop scheduling
with limited temporary storage,” Journal of Associate Computer
Machinery, vol. 31, pp. 343-357, 1980.

[3] H. R¨ock, “The three-machine no-wait flow shop is NP-complete,”
Journal of Associate Computer Machinery, vol. 31, pp. 336–345,
1984.

[4] C. Rajendran and D. Chaudhuri, “Heuristic algorithms for continuous
flow-shop problem,” Naval Research Logistic Quarterly, vol. 37, pp.
695-705, 1990.

[5] E. Bertolissi, “Heuristic algorithm for scheduling in the no-wait flow-
shop,” Journal of Materials Processing Technology, vol. 107,
pp.459–465, 2000.

[6] T. Aldowiasan and A. Allahverdi, “New heuristics for m-machine no-
wait flowshop to minimize total completion time,” Omega, vol. 32,
pp. 345–352, 2004.

[7] J. M. Framinan, M. S. Nagano, and J. V. Moccellin, “An efficient
heuristic for total flowtime minimization in no-wait flowshops,”
International Journal of Advanced Manufacturing Technology, vol.
46, pp. 1049-1057, 2010.

[8] M. Nawaz, E. E. Jr. Enscore, and I. Ham, “A heuristic algorithm for
the m machine, n job flowshop sequencing problem,” Omega, vol.
11, pp. 91–95, 1983.

[9] M. C. Bonney and S. W. Gundry, “Solutions to the constrainted
flowshop sequencing problem,” Operational Research Quarterly,
vol. 27, pp. 869-883, 1976.

TABLE III

RESULTS OF STATISTICAL TEST

n m No. of

problem

instances

Bertolissi heuristic versus proposed

heuristic

TFT difference t p-value

Mean Std. dev.

40

5

10

15

20

25

30

30

30

30

30

144

254

612

-203

-124

1106

1226

1409

1797

2173

0.71

1.13

2.38

-0.62

-0.31

0.241

0.133

0.012

0.729

0.622

50 5

10

15

20

25

30

30

30

30

30

892

119

778

1502

1044

1360

1974

2328

2503

2460

3.59

0.33

1.83

3.29

2.32

0.001

0.372

0.039

0.001

0.014

60 5

10

15

20

25

30

30

30

30

30

999

220

1045

1420

2202

1934

3331

2523

3683

3105

2.83

0.36

2.27

2.11

3.88

0.004

0.360

0.015

0.022

0.000

70 5

10

15

20

25

30

30

30

30

30

1449

1131

2007

1823

1950

3256

3109

3487

4536

4533

2.44

1.99

3.15

2.20

2.36

0.011

0.028

0.002

0.018

0.013

TABLE IV

MEAN CPU TIME (IN SECONDS) REQUIRED BY THE BERTOLISSI

HEURISTIC AND THE PROPOSED HEURISTIC

n m Bertolissi

Heuristic

Proposed

Heuristic

10 5

10

15

20

25

0.000

0.000

0.000

0.001

0.002

0.000

0.000

0.000

0.000

0.001

20 5

10

15

20

25

0.001

0.001

0.001

0.002

0.004

0.000

0.001

0.001

0.002

0.003

30 5

10

15

20

25

0.001

0.003

0.003

0.004

0.007

0.000

0.002

0.002

0.004

0.007

40 5

10

15

20

25

0.002

0.003

0.005

0.007

0.012

0.001

0.002

0.004

0.007

0.013

50 5

10

15

20

25

0.003

0.005

0.007

0.014

0.020

0.001

0.003

0.007

0.011

0.020

60 5

10

15

20

25

0.003

0.007

0.010

0.019

0.029

0.002

0.005

0.009

0.016

0.030

70 5

10

15

20

25

0.005

0.012

0.019

0.026

0.040

0.003

0.007

0.015

0.022

0.040

Average 0.0079 0.0069

[10] J. R. King and A. S. Spachis, “Heuristics for flowshop scheduling,”
International Journal of Production Research, vol. 18, pp. 343-357,
1980.

[11] A. Fink and S. Voß, “Solving the continuous flow-shop scheduling
problem by metaheuristics,” European Journal of Operational
Research, vol. 151, pp. 400–414, 2003.

[12] R. Haupt, “A survey of priority rule based scheduling,” OR
Spektrum, vol. 11, pp. 3-16, 1989.

[13] R. Ramasesh, “Dynamic jobshop scheduling: a survey of simulation
research,” Omega, vol. 18, pp. 43-57, 1990.

[14] C. Rajendran and O. Holthaus, “A comparative study of dispatching
rules in dynamic flowshops and jobshops,” European Journal of
Operational Research, vol. 115, pp. 156-170, 1999.

[15] A. A. Kalir and S. C. Sarin, “A near-optimal heuristic for the
sequencing problem in multiple-batch flow-shops with small equal
sublots,” Omega, vol. 29, pp. 577-584, 2001.

[16] C. Rajendran, K. Alicke, “Dispatching in flowshops with bottleneck
machines,” Computers and Industrial Engineering, vol. 52, pp. 89-
106, 2007.

[17] T. H. Cormen, C. E. Leiserson, and R.L. Rivert, Introduction to
algorithms, Cambridge MA, MIT press, 1990.

[18] D. Chan and D. D. Bedworth, “Design of a scheduling system for
flexible manufacturing cells,” International Journal of Production

Research, vol. 28, pp. 2037-2049, 1990.

[19] D. Laha and U. K. Chakraborty, “A constructive heuristic for
minimizing makespan in no-wait flow shop scheduling,”
International Journal of Advanced Manufacturing Technology, vol.
41, pp. 97-109, 2009.

[20] D. Laha and S. C. Sarin, “A heuristic to minimize total flow time in
permutation flow shop,” Omega, vol. 37, pp. 734-739, 2009.

[21] E. Kreyszig, Advanced engineering mathematics, Wiley, New York
1972.

