
 

  

Abstract—We propose a constructive heuristic for the well 

known NP-hard problem of no-wait flow shop scheduling. It is 

based on the assumption that the priority of a job in the 

sequence is given by the sum of its processing times on the 

bottleneck machine(s) for selecting the initial sequence of jobs. 

The computational experimentations show that there is a 

significant improvement in solution quality over the existing 

heuristic, especially for large problem sizes while not affecting 

its time complexity. Statistical tests are used to substantiate the 

significance of the results by the proposed method. 

 
Index Terms— No-wait flow shop scheduling, heuristics, 

total flow time, combinatorial optimization 

 

I. INTRODUCTION 

 no-wait flow shop is a manufacturing system where 

each job is processed until completion without 

interruption either on or between any two consecutive 

machines; that is, once a job is started on the first machine, it 

has to be continuously processed through machines without 

interruption. In addition, we assume that each machine can 

handle no more than one job at a time and each job has to 

visit each machine exactly once without preemption. 

Therefore, when needed, the start of a job on the first 

machine must be delayed in order to meet the no-wait 

requirement. A detailed survey of the methods and 

applications of these scheduling problems is given by Hall 

and Sriskandarajah [1].  

 The no-wait flow shop scheduling problems with more 

than two machines belong to the class of NP-hard [2], [3]. 

Various researchers have developed the constructive 

heuristics as well as metaheuristics for solving these 

problems for different criterion such as makespan and total 

flow time. For no-wait flow shop scheduling problems, 

noteworthy constructive heuristics with the total flow time 

objective have been studied by Rajendran and Chaudhuri 

[4], Bertolissi [5], Aldowaisan and Allahverdi [6], and 

Framinan, Nagano, and Moccellin [7]. 

Rajendran and Chaudhuri [4] proposed two constructive 

heuristics considering two heuristic preference relations as 

the basis for selecting the seed sequence of jobs. The seed 

sequence of jobs thus generated is then improved further by 
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using the job insertion method of Nawaz-Enscore-Ham 

(NEH) [8] in the remaining parts of the heuristics. Their 

heuristics, especially heuristic 1 perform significantly better 

than those of Bonney and Gundry [9], and King and Spachis 

[10].  

Bertolissi [5] presented a heuristic based on calculating 

the minimum apparent flow time of each pair of jobs and 

then finding the number of times (here,  marks) of the 

starting jobs of the pairs as a basis for selecting the seed 

sequence of  jobs. The seed sequence thus generated is then 

improved further using the job insertion algorithm in the 

same manner as done by Rajendran and Chaudhuri [4]. The 

computational results reveal that the heuristic of Bertolissi 

performs better than those given by the heuristic of 

Rajendran and Chaudhuri [4], and Bonney and Gundry [9]. 

The heuristics of Aldowaisan and Allahverdi [6] and 

Framinan, Nagano, and Moccellin [7] have shown superior 

performance compared to the existing heuristics. However, 

these heuristics take much larger computational times 

compared to those given by the existing heuristics. 

Therefore, these heuristics are not considered here for 

comparison of the heuristics for the total flow time 

minimization problem. 

In this paper, we present a constructive heuristic for 

minimizing the total flow time which is based on the 

assumption that the priority of a job in the sequence is given 

by the sum of its processing times on the bottleneck 

machine(s). We show, through computational 

experimentation that the proposed heuristic performs 

significantly well compared to the Bertolissi heuristic [5] 

which has shown better than the heuristics of Rajendran and 

Chaudhuri [4], and Bonney and Gundry [9]. Also, the mean 

CPU time used by the proposed method is found to be less 

compared to the Bertolissi heuristic.  

II. THE PROPOSED HEURISTIC ALGORITHM 

 Given the processing time p(i, j) of job i on machine j in 

the no-wait flow shop scheduling, each of n jobs is 

processed on m machines in the same technological order 

without preemption and interruption on or between any two 

consecutive  machines. The problem is to determine a 

sequence of n jobs that minimizes the total flow time 

criterion. Let σ = {σ1, σ2, …, σn} represent the sequence of n 

jobs to be processed on m machines, and d(i, k) the 

minimum delay on the first machine between the start of job 

i and the start of job k (required because of the no-wait 

restriction). Also, let p(σi, j) represent the processing time on 

machine j of the job in the ith position of a given sequence, 

and let d(σi-1, σi) denote the minimum delay on the first 

machine between the start of two consecutive jobs found in 
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the (i-1)th and ith position of the sequence. The total flow 

time (TFT) of the sequence of n jobs in the no-wait flow 

shop scheduling is given by,  

1
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where, the delay matrix D, of the d(i, k) values are calculated 

as in Fink and Voß [11]. It may be noted that since the 

release times of the jobs are all zeros, the total completion 

time criterion is equivalent to the TFT criterion.  

 The shortest processing time (SPT) rule optimizes the 

mean flow time of a set of jobs processing on single machine 

[12], [13] and also it has been shown to be effective in m-

machine flow shop scheduling [14]. Based on this idea, we 

make a similar attempt to obtain a sequence of jobs 

considering bottleneck machine(s) [15], [16], which is used 

as a starting sequence of the proposed method. The proposed 

method is based on the assumption that the priority of a job 

in the sequence is given by the sum of its processing times 

on the bottleneck machines. The seed sequence of jobs thus 

obtained is then applied to the remaining parts of the 

heuristic following a job insertion algorithm as described in 

the work of Rajendran and Chaudhuri [4]. 

The proposed heuristic algorithm is given as follows: 

• Step 1: Set z = 1. Consider single bottleneck 
machine among m machines with the largest sum of 

the processing times of n jobs and determine the 
sequence of jobs by arranging them in ascending 
order of their processing times on it. 

• Step 2: For z = 2 to m, consider z adjacent machines 

as bottlenecks with largest sum of the processing 
times of jobs on these machines and obtain the 
sequence of jobs in ascending order of the sum of the 
processing times of the individual jobs on these 
machines. 

• Step 3: A total of m sequences of jobs are generated 
from steps 1 – 2 and the best one is selected as the 
initial sequence of jobs for the rest part of the 
heuristic. 

• Step 4: Set k = 1. Select the first job in the initial 
sequence and insert it in the first position of the 

partial sequence σ and call this partial sequence as 

the current partial sequence σ. 

• Step 5: Update k = k+1. Select the k-th job from the 

initial sequence and insert it in the r-th possible 

position of the current partial sequence σ where r is 
the integer varying k/2 ≤ r ≤ k to produce r 
sequences. Among these r sequences, select the one 

as the new partial sequence σ with the minimum 

value of the expression: 
12
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and make it the current partial sequence σ. 

• Step 6: If k = n, go to Step 7, else go to step 5.  

• Step 7: The sequence σ is the final sequence.  

 The algorithmic complexity of the proposed heuristic is as 

follows: Step 1 finds a sum of n terms for each of m 

machines with complexity O(nm), and then gives sorting of 

n items using the bubble sort technique [17] with an average 

– case complexity of O(n
2
). The complexity of a schedule of 

n jobs on m machines is O(nm). Thus, the total complexity 

of step 1 is O(2nm + n2) or O(n2). Step 2 actually dictates 

the complexity of the proposed method. In the first part of 

step 2, the total number of comparisons (varying the number 

of adjacent machines from 2 to m) is equal to m(m – 1)/2 and 

its complexity is O(m2). In the next part of step 2, (m – 1) 

schedules of n jobs on m machines are generated, thereby 

resulting in total complexity of O(m
2
 + nm). Hence, the 

overall complexity of the proposed method is O(2nm + 2n + 

m
2
 + nm) or O(n

2
 + 3nm). 

III. BERTOLISSI HEURISTIC [5] 

 The main idea of the Bertolissi heuristic [5] is to obtain an 

initial schedule as a starting point which is used for 

generating the job seed and defining the order in which jobs 

will be selected for the job insertion as described by 

Rajendran and Chaudhuri [4]. The principle for the selection 

of the seed job and the order of insertion of jobs in the 

available partial schedule is based on the work of Chan and 

Bedworth [18].  

The heuristic consists of the following steps: 

• Step 1: Compute the flow times for each pair of jobs 
i, k by using the equation 

( )2
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m
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• Step 2: Compare each pair of flow times (F(i,k) and 

F(k,i)) and select the smallest one, and mark the 

starting job of the pair. 

• Step 3: perform step 2 for all the pairs of flow times. 

• Step 4: Count the number of marks of each job and 
order the jobs in decreasing number of marks and 
use this ordering as the initial sequence of jobs. 

• Step 5: Set k = 1. Select first job from this initial 
sequence and insert it in the first position of the 
partial sequence σ. Call it as current sequence σ. 

• Step 6: Increment k, k = k+1. Select the k-th job 
from the sorted array of step 1 and insert it in the r 
possible positions of the current sequence σ, where 

k/2 ≤ r ≤ k. Select the best one among r sequences 
with the minimum value of 

12
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sequence σ.  

• Step 7: If k = n, go to step 8, else go to step 6. 

• Step 8: The sequence σ is the final solution of the 

heuristic. 

The algorithmic complexity of Bertolissi heuristic is as 

follows: Step 1 involves the generation of n(n – 1)/2 

schedules of 2 jobs. Also, the complexity of each flow time 

calculation for each schedule of a pair of jobs on m 

machines is O(2m). Thus, the complexity of step 1 is O(n(n 

– 1)2m) or O(n2
m). In step 2, the number of comparison 

between two flow times is n(n – 1)/2 and its complexity is 

O(n(n – 1)/2) or O(n
2
). Step 4 gives sorting n items and 

using bubble sort technique [17], an average – case 

complexity is O(n
2
). Hence, the overall complexity of steps 

1 – 4 of the Bertolissi heuristic is O(n
2
m), which is more 

than that of the proposed method with the complexity of 

O(n2 + 3nm). 

 It has been shown, through the exhaustive computational 

experimentation, that the Bertolissi heuristic produces near – 

optimal solutions, which generally gives better results than 



 

the ones provided by Rajendran and Chaudhuri [4] heuristic 

and Bonney and Gundry [9] for both small and large 

problem sizes. However, Bertolissi heuristic requires more 

computational times compared to those given by the existing 

heuristics. Based on this evaluation, the method proposed by 

Bertolissi is considered as the best existing heuristic for the 

minimization of total flow time in no-wait flow shop 

scheduling.  

IV. COMPUTATIONAL EXPERIENCE 

The proposed heuristic, and the heuristic of Bertolissi [5] 

were coded in C and run on an Intel Core
 
2 Duo, 2 GB 

RAM, 2.93 GHz PC. To compare the proposed heuristic 

with the existing heuristic, we carried out the 

experimentation in two phases. In the first phase, we 

considered small problem sizes with number of jobs (n) = 5, 

6, 7, 8, and 9 and number of machines (m) = 5, 10, 15, 20, 

and 25. The second phase was formed taking the large 

problem sizes with n = 10, 20, 30, 40, 50, 60, and 70 and m 

= 5, 10, 15, 20, and 25. Thirty independent problem 

instances were considered for each problem size. Each 

problem instance corresponds to a new processing time 

matrix where each processing time was generated from a 

uniform random discrete u(1, 99) distribution, commonly 

used by researchers [19], [20]. 

 The following two performance measures, popular in the 

scheduling literature [4], [6], [7] are used in the present 

experimentation: average relative percentage deviation 

(ARPD), and percent of optimal solutions (for small problem 

sizes) or percent of best heuristic solutions (for large 

problem sizes).  

ARPD for small number of jobs problems is given by, 

1

100 k
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k Optimal
=
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ARPD for large number of jobs problems is given by, 

1

100 k
i i
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Heuristic Best
ARPD

k Best
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where, Heuristici denotes the objective function value 

obtained for i-th instance by a heuristic, Optimali is the 

optimal solution value obtained for that instance, Besti is the 

best solution value obtained for that instance, and k is the 

number of problem instances for a problem size. 

 Table I displays comparative evaluation of the proposed 

method, and the heuristic of Bertolissi [5] based on ARPD, 

and the percent of optimal solutions for the small problem 

sizes (n = 5, 6, 7, 8, and 9). The results of Table I show that 

the overall performance of the proposed heuristic with 

respect to ARPD, and percent optimal solution is 

comparable to that of Bertolissi heuristic for small job size 

problems. The proposed method performs better than the 

Bertolissi heuristic for 15 cases with respect to the ARPD, 

and 15 cases with respect to the percent times optimal 

solution found out of each 25 cases for small problem sizes.  

 Table II presents comparative results based on ARPD, and 

the percent of best heuristic solutions for the large problem 

sizes (n = 10, 20, 30, 40, 50, 60, and 70). Table II indicates 

that the proposed method also performs significantly better 

than the Bertolissi heuristic for large job sizes. The proposed 

method performs better than the Bertolissi heuristic for 26 

cases with respect to the ARPD, and 23 cases with respect to 

TABLE I 

ARPD, AND PERCENT TIMES OPTIMAL SOLUTION OBTAINED FOR SMALL 

PROBLEM SIZES 

n m No. of 

problem 

instances 

ARPD Percent optimal 

Bertolissi 

Heuristic 

Proposed 

Heuristic 

Bertolissi 

Heuristic 

Proposed 

Heuristic 

5 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

0.2928 

0.4158 

0.0723 

0.2428 

0.3326 

0.1409 

0.3560 

0.0485 

0.1466 

0.1079 

73 

60 

90 

77 

83 

73 

73 

93 

83 

90 

6 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

0.6458 

0.7408 

0.1921 

0.3801 

0.3490 

0.7016 

0.6968 

0.2568 

0.3108 

0.2417 

60 

47 

77 

53 

67 

63 

43 

77 

60 

73 

7 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

1.0754 

1.0386 

0.3247 

0.4922 

0.5762 

1.3380 

1.0061 

0.5015 

0.5889 

0.6903 

57 

33 

63 

47 

40 

50 

40 

53 

50 

43 

8 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

1.3554 

1.1104 

0.4167 

0.7958 

0.6239 

1.5647 

1.0262 

0.5670 

0.5904 

0.6552 

43 

20 

50 

30 

33 

40 

27 

43 

40 

33 

9 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

1.7903 

1.5373 

0.5359 

0.8441 

0.9923 

1.5634 

1.3318 

1.1005 

0.7762 

0.8494 

13 

17 

40 

17 

27 

17 

20 

30 

30 

27 

Average 0.6869 0.6863 49 51 

 

TABLE II 

ARPD, AND PERCENT TIMES BEST SOLUTION OBTAINED FOR LARGE 

PROBLEM SIZES 

n m No. of 

problem 

instances 

ARPD Percent best 

Bertolissi 

Heuristic 

Proposed 

Heuristic 

Bertolissi 

Heuristic 

Proposed 

Heuristic 

10 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

0.63 

0.39 

0.12 

0.45 

0.35 

0.41 

0.33 

0.83 

0.38 

0.40 

60 

67 

83 

63 

67 

60 

63 

50 

63 

63 

20 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

0.58 

0.66 

0.50 

0.81 

0.41 

0.42 

1.17 

0.75 

0.53 

0.63 

43 

60 

53 

37 

53 

57 

40 

50 

63 

47 

30 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

0.79 

0.61 

1.08 

1.01 

0.49 

0.56 

0.65 

0.44 

0.81 

0.58 

40 

57 

37 

40 

43 

60 

43 

63 

60 

57 

40 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

0.93 

0.74 

0.87 

0.56 

0.58 

0.67 

0.43 

0.26 

0.73 

0.68 

50 

47 

40 

50 

50 

50 

53 

60 

50 

50 

50 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

1.21 

0.64 

0.97 

1.07 

0.80 

0.19 

0.55 

0.44 

0.21 

0.28 

27 

33 

40 

27 

27 

73 

67 

60 

73 

73 

60 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

1.12 

0.78 

0.80 

0.93 

0.93 

0.29 

0.65 

0.29 

0.34 

0.13 

27 

33 

33 

30 

20 

73 

67 

67 

70 

80 

70 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

1.31 

0.83 

0.96 

0.85 

0.78 

0.41 

0.33 

0.22 

0.29 

0.24 

27 

37 

33 

40 

27 

73 

63 

67 

60 

73 

Average 0.76 0.47 43 61 

 



 

the percent times best solution found out of each 35 cases 

for large problem sizes. 

 Next, we show the statistical significance [21] of the 

results obtained by the proposed method over those 

produced by the Bertolissi heuristic. The number of problem 

instances for each problem size is taken as 30. We test the 

null hypothesis, H0 : µ = 0 against alternative hypothesis, H1 

: µ > 0; i.e., if H0 holds true, then, statistically, the 

difference between the two methods is not significant. At 5 

% level of significance, the critical value, t0.05,ν is obtained 

from the relation Probability (t ≥ t0.05,ν) = α = 0.05. Using the 

standard tables of t-distribution, we obtain, t0.05,ν = 1.699 for 

ν = N-1 = 29 degrees of freedom. We also compare the level 

of significance with the p-value. The results are presented in 

Table III. 

 The average computational times (in seconds) required for 

solving each problem instance by the heuristics are given in 

Table IV. The results show that the proposed method takes 

less computational time than that of the Bertolissi heuristic. 

Overall, the results of the proposed method are better by 

38% in ARPD and 42% in percent times best found 

especially for large problem size instances while taking 

about 15% less CPU time than required by the Bertolissi 

heuristic. 

V. CONCLUSION 

In this paper, we have presented a constructive heuristic for 

the no-wait flow shop scheduling with the objective of 

minimizing total flow time criterion. The method is based on 

the principle of the sum of processing times of individual 

jobs on the bottleneck machines to determine the initial 

sequence of jobs. Based on the computational 

experimentation, the proposed method gives comparable 

performance as that of the Bertolissi heuristic for small 

problem sizes, whereas, there is significant improvement in 

solution quality for large problem sizes. Also, it has been 

shown that the CPU time required by the proposed method is 

less.  

 

 

REFERENCES 

[1] N. G. Hall and C. Sriskandarajah, “A survey of machine scheduling 
problems with blocking and no-wait in process,”  Opeations 
Research, vol. 44, pp. 510-525, 1996. 

[2] C. H. Papadimitriou and P. C. Kanellakis, “Flowshop scheduling 
with limited temporary storage,” Journal of Associate Computer 
Machinery, vol. 31, pp. 343-357, 1980. 

[3] H. R¨ock, “The three-machine no-wait flow shop is NP-complete,” 
Journal of Associate Computer Machinery, vol. 31, pp. 336–345, 
1984. 

[4] C. Rajendran and D. Chaudhuri, “Heuristic algorithms for continuous 
flow-shop problem,” Naval Research Logistic Quarterly, vol. 37, pp. 
695-705, 1990.  

[5] E. Bertolissi, “Heuristic algorithm for scheduling in the no-wait flow-
shop,” Journal of Materials Processing Technology, vol. 107, 
pp.459–465, 2000. 

[6] T. Aldowiasan and A. Allahverdi, “New heuristics for m-machine no-
wait flowshop to minimize total completion time,” Omega, vol. 32, 
pp. 345–352, 2004. 

[7] J. M. Framinan, M. S. Nagano, and J. V. Moccellin, “An efficient 
heuristic for total flowtime minimization in no-wait flowshops,” 
International Journal of Advanced Manufacturing Technology, vol. 
46, pp. 1049-1057, 2010. 

[8] M. Nawaz, E. E. Jr. Enscore, and I. Ham, “A heuristic algorithm for 
the m machine, n job flowshop sequencing problem,” Omega, vol. 
11, pp. 91–95, 1983. 

[9] M. C. Bonney and S. W. Gundry, “Solutions to the constrainted 
flowshop sequencing problem,” Operational Research Quarterly, 
vol. 27, pp. 869-883, 1976. 

TABLE III 

RESULTS OF STATISTICAL TEST 

n m No. of 

problem 

instances 

Bertolissi heuristic versus proposed 

heuristic 

TFT difference t p-value 

Mean Std. dev. 

40 

 

5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

144 

254 

612 

-203 

-124 

1106 

1226 

1409 

1797 

2173 

0.71 

1.13 

2.38 

-0.62 

-0.31 

0.241 

0.133 

0.012 

0.729 

0.622 

50 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

892 

119 

778 

1502 

1044 

1360 

1974 

2328 

2503 

2460 

3.59 

0.33 

1.83 

3.29 

2.32 

0.001 

0.372 

0.039 

0.001 

0.014 

60 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

999 

220 

1045 

1420 

2202 

1934 

3331 

2523 

3683 

3105 

2.83 

0.36 

2.27 

2.11 

3.88 

0.004 

0.360 

0.015 

0.022 

0.000 

70 5 

10 

15 

20 

25 

30 

30 

30 

30 

30 

1449 

1131 

2007 

1823 

1950 

3256 

3109 

3487 

4536 

4533 

2.44 

1.99 

3.15 

2.20 

2.36 

0.011 

0.028 

0.002 

0.018 

0.013 

 

TABLE IV 

MEAN CPU TIME (IN SECONDS) REQUIRED BY THE BERTOLISSI 

HEURISTIC AND THE PROPOSED HEURISTIC 

n m Bertolissi 

Heuristic 

Proposed 

Heuristic 

10 5 

10 

15 

20 

25 
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10 
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25 
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0.001 
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10 

15 

20 

25 
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0.000 
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0.002 

0.004 
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15 

20 

25 
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10 
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25 
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0.040 
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