Proceedings of the International MultiConference of Engineers and Computer Scientists 2011 Vol II,
IMECS 2011, March 16 - 18,2011, Hong Kong
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Abstract—This paper focuses on a new Stackelberg location  In the above studies of CFLPs, the demands of customers
problem on a tree network with demands whose quantities are for facilities are represented as definite values. We consider
given uncertainly and vaguely. By representing their quantities - g5 e yncertainty and vagueness with demand for facilities.
as fuzzy random variables on the tree network, the optimal lo- For the uncertainty, facility location model with random
cation problem can be formulated as a fuzzy random program- . ! ” . . g
ming problem for finding Stackelberg equilibrium. By using demands in a noncompetitive environment is considered by
both their a-level sets for fuzziness and their satisfaction level Wagnera et al. [20]; for the details of location models with
for a given probability for randomness, it can be reformulated  random demands, the reader can refer to the study of Berman
as a version of conventional Stackelberg location problem on 5.4 krass [2]. For CFLPs with random demands, Shiode and
the tree network. Theorems for its complexity are shown based Drezner [15] considered an SLP on a tree network, and Uno
upon the characteristics of the facility location. X !

et al. [17] considered a CFLP on a plane. On the other hand,
for the vagueness, facility location model with fuzziness
in a noncompetitive environment is considered by Moreno
Pérez et al. [12], which represented the demands as fuzzy
. INTRODUCTION numbers proposed by Dubois and Prade [4]. Recently, the
. ) decision-making problems in environments including both
A. Former Studies of Stackelberg Location Problems ncertainty and vagueness are studied. Kwakernaak [10] pro-
OMPETITIVE facility location problem (CFLP) is one posed the fuzzy random variable representing both fuzziness
of optimal location problems for commercial facilitiesand randomness. For the details of fuzzy random variable,
e.g. shops and stores, and an objective of most CFLPsthe reader can refer to the book of Kruse and Meyer [9].
to obtain as many buying powers (BPs) from customers B§zzy random programming and its distribution problems are
possible. Mathematical studies on the CFLPs were origionsidered by Wang and Qiao [21] and Qiao and Wang [14].
nated by Hotelling [7]. He considered the CFLP under theor the recent studies of fuzzy random programming prob-
conditions that (i) customers are uniformly distributed on l&ms, Katagiri et al. [8] considered multiobjective fuzzy
line segment, (ii) each of decision makers (DMs) will locateandom linear programming, and Ammar [1] considered
her/his own facility on the line segment that there are rfozzy random multiobjective quadratic programming. Uno
facilities, and (iii) all customers only use the nearest facilitgt al. [18] considered CFLPs with fuzzy random demands,
Then, his CFLP can be represented as an optimal locatiwhose quantities are represented as fuzzy random numbers.
problem for finding Nash equilibrium, called Nash locatiodJno et al. [19] considered SLPs with fuzzy random demands
problem (NLP). As an extension of Hotelling’s NLP, Wendelbn a tree network, whose sites are represented as fuzzy
and McKelvey [22] assumed that there exist customers orfandom variables.
finite number of points, called demand points (DPs), and
considered an NLP on a tree network whose vertices e
DPs. ’

On the other hand, based upon the NLP by Wendell andIn this paper, we propose a new SLP on a tree network
McKelvey [22], Hakimi [5] considered the CFLP with twoDby introducing the above fuzzy random quantities demanded.
types of DMs; the upper DM, who first locates her/his facilWe represent their quantities as fuzzy random variables on
ities, and the lower DM, who next locates her/his facilities/ertices in the tree network. Then, we can formulate the
Then, his CFLP for the upper DM can be represented &P by representing the randomness as scenarios for each
an optimal location problem for finding Stackelberg equilibdemand. For solving the SLP, we first transform it to an
rium, called Stackelberg location problem (SLP). For detaifsLP with random quantities demands by using the definition
of Hakimi’s SLP and their applications, the readers can reféf a-level sets for fuzziness. Next, we use the satisfaction
to the book of Miller et al. [11]. As an extension of Hakimi'slevel for a given probability for randomness. Then, we can
SLP, SLPs on a plane are considered by Drezner [3], Unoreformulate it to a version of conventional SLP on a tree
al. [17], [18], etc. Another type of SLP based on maximdletwork, and can show theorems for its complexity based

covering is considered by Plastria and Vanhaverbeke [13]upon the characteristics of the facility location.
The remaining structure of this article is organized as
Manuscript received December XX, 2010; revised January XX, 20XX.fgllows: The next section devotes to introducing the defi-
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Fig. 1. An Example of Fuzzy Numbers and iisLevel Set Fig. 3. An Example of Tree Networks for SLP
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IIl. FORMULATION OF SLPWITH FuzzY RANDOM

QUANTITY DEMANDED

-{Ooudy(go%) NFine (50%) } We gonsidgr the SLP on a weighted trége= (V, E),
1 7N which is a simple graph, wher& and F are the sets of
/
/|

UExampIe: BP per day for weather

wz)

vertices and edges, respectively. For each vettex V
\ and edgee € E, we associate weighta(v),l(e) > 0,
respectively, wherev(v) means the BP of the demand on
= . v for facilities andi(e) the length ofe. Fig. 3 illustrates an
] x
mquanmy of BP) example of tree networks for the SLP.

In the treeT, we consider the case that eactw), v € V

is given as the following fuzzy random variable:

Fig. 2.  An Example of Fuzzy Random Variables
« Its randomness is given by scenarios, whose proba-
bilities are denoted by, p2,...,py > 0.
version of conventional SLP on a tree network in Section 4.« For each scenarie=1,2,...,, its fuzziness is given
Section 5 shows theorems for its complexity based upon the as fuzzy numbenv,(v) € F(R) whose membership
characteristics of the facility location. We extend the SLP to  function is denoted by, (,(z), wheres,, ,)(z) =0
that on a general network in Section 6. Finally, conclusions for any z < 0 and its a-level set is closed for any

and future studies are summarized in Section 7. a € (0,1].
An example of fuzzy random quantities demanded is shown
in Fig. 2.
Il. Fuzzy RANDOM VARIABLE Let ¢ andr be the given numbers of facilities located by
Let 4 be fuzzy number andi; : R — [0,1] be the upper and lower DMs, respectively. L&, z, ..., 24 €

T be the sites of the upper DM’s facilities andl, =
{x1,22,...,2,}. Similarly, let y1,y2,...,y» € T be the
sites of the lower DM’s facilities an®, = {y1,vy2,..., 4}
We assume that each of demands only use the nearest facility,
and the facility used by a demand oran obtainsv(v) from
v € V. If two or more facilities are the same distances to a
demand, one of the upper DM’s facilities can obtain its BP.
Let Wpgr(X,,Y,) be the sum of obtaining BPs of
the upper DM’s facilities from the demands. Note that
yWFR(Xq,YT) is represented as a fuzzy random number.
The objective of each DM is defined to maximize her/his
Definition 2.1: Let (2, B, P) be a probability space, obtaining BPs. Since the sum of obtaining BPs of all facilities
where Q, B, and P are a sample space;-algebra, and is constant, the objective of the lower DM can be represented
a probability measure function, respectively. LE{R) be as minimizing the sum of the upper DM’s obtaining BPs.
the set of fuzzy numbers with compact supports, &d For given locationX, € 79 = T x --- x T, the optimal
measurable mapping — F(R). ThenZ is a fuzzy random location problem for the lower DM, calle@X,|r)-medianoid
variable if and only if givenw € €, its a-level set=,(w) is problem, can be formulated as follows:
a random interval for any € (0, 1].

membership function of4, where R is the set of real
numbers. Forx € (0, 1], the a-level set ofA is represented
as the following equation:

Ao ={al pi(2) = ) )

Fig. 1 illustrates an example of fuzzy numbers andidgvel
set.

In this paper, we use the following definition of fuzz
random variable, suggested by Kruse and Meyer [9]:

minimize  Weg(X,,Y) } @)

Fig. 2 illustrates an example of fuzzy random variables for subjectto Y, € T".
representing BP per day for weather, whose randomness is

represented by weather and whose fuzziness is included.gt Y;*(X,) be the optimal solution ofX,|r)-medianoid
the BP for each case of weather. problem. Then, the proposed SLP, cal(ett)-centroid prob-
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lem, can be formulated as follows: V. COMPLEXITY AND SOLUTION METHOD OF THESLP

3) For cases that the tree network does not include any fuzzy
random quality demanded, (2) and (3) can be reduced to
conventional medianoid and centroid problems, respectively,

IV. REFORMULATION TO A VERSION OF CONVENTIONAL which are NP-hard if > 2 proven by Hakimi [6] and

SLP Spoerhase and Wirth [16]. Therefore, the following theorems

For (2) and (3), their objective functions values are reprg-r e apparently satisfied:

sented as fuzzy random numbers. Then, we need to defingemma 5.1:For anyX, € T? with ¢ > 2, (8) is NP-hard.
an order between fuzzy random numbers. In this paper, . ]
we reformulate (2) and (3) to a version of conventional 1heorem S.2:For anyq > 2, (10) is NP-hard.

mediaqoid and centroid problems, respective.ly. _ Then, we consider (8) and (10) for the case- 1. We
programming problems by using thelevel set (1). For a

given a € (0,1], we assume that the lower DM can decide Lemma 5.3:If X; is on any vertexo € V, then one of
the variable in each af-level sets for minimizing the upperYr(a’J)(Xﬂ can be given by locating alt facilities on the
DM'’s objective function value. Then, we can represent tr@pposite vertices of the edges adjacentto

maximize Wrgr(X,, Y,*(X,))
subject to X, € T9.

lower DM’s objective function value as Proof: Note that any tree can be cut to several trees by
N . removing any one non-leaf vertex or edge. A lower DM'’s
Wi(Xy, V) = min{(Wrr(Xy, Yr))a} (4)  facility can obtain all BPs on the tree that is cut at a point

BecauselWa(X,, Y,) is a random value, (2) can be transpetween her/his facility and the upper DM’s facility and

. : ; “includes her/his facility. The best location of the lower DM
formed as the following stochastic programming problem:. . o
is clearly so as not to put any nodes between her/his facilities

minimize  Wg(X,,Y) andwv. This means that one dt.(“’ﬁ) (X1) can be represented
subject to Y, € T". ®) by locating her/his- facilities on the set of the above points.
[
Let Y,*(X,) be the optimal solution of (5). Then, (3) can be ]
reformulated as follows: Similarly to the above proof, the following lemma can be
shown.

(6) Lemma 5.4:If X; is on pointz in any edgee € F, then
one of YT("’”)(Xl) is to locate facilities on both vertices
Next, by using the satisfaction level for a given probabilitgdjacent toe if » > 2, or either vertex ifr = 1.
for their randomness, we reformulate (5) and (6) to determin-
istic programming problems. For probability2 < 8 < 1 Next we consider (10) for the cage= 1.
given by the upper DM, we use the following constraint for
the lower DM suggested by Shiode and Drezner [15]:

maximize Wg(X,,Y,%(X,))
subject to X, € 7.

Theorem 5.5:The optimal solution for (10) witly = 1 is
to locate it on one of the vertices.

Pr{Wg(X,,Y,) <o} > B, @ Pr_oof: We shqw the proof of the theorem by the
reduction to absurdity. We assume the upper DM locates on
wheres means a satisfaction level for the upper DM. Therany edgee € E. If » < 2, the lower DM can reduce the
(5) can be reformulated as follows: objective function value of (10) to zero by locating her/his
o two facilities at both points adjacent & On the other hand,
minimize o if » = 1, the optimal location of the lower DM can be
subject to Pr{Wg(X,,Y,) <o} =B, (8)  found by Lemma 5.4 and its candidates are only two points.
Y. eYr. Whichever is optimal for the lower DM, the upper DM can

) _ _ obtain more BPs by locating at the vertex than thateon
Let Y,"7(X,) be the optimal solution of (8). Contrary (0rpeqe contradict the optimality of (10). n
(7), the upper DM would like to increase her/his satisfaction

level for a given probability3. Then, the constraint for the Note that we can show the proofs of Lemmas 5.3, 5.4, and

upper DM can be represented as Theorem 5.5 in a similar way of those of the conventional
(©.5) medianoid and centroid problems.
(03 «,
Pri{Wg(Xq, Y "7 (Xy)) 2 0} = B. (®)  Finally, we consider the complexity for (10) for the case

q = 1. From Theorem 5.5, we can find an optimal solution

Hence (6) can be reformulated as follows: of (10) by examining all vertices. For the case that the upper

maximize o DM locates her/his one facility on each vertexe V, we
subject to Pr{W,%(Xq,YT(a*m (X,) > o} 10 need to solve (8). From Lemma 5.3, (8) for each location
> B, (10)  can be solved by examining all the opposite vertices of the
X, €Te. edges adjacent to. Let |E| denote the number of edges.

Then, for all locations of the upper DM, the total number of
Because (10) include constraint (9), (10) is not a convethie examination i2|E|. This means that (10) can be solved
tional SLP but a version of conventional SLP. in polynomial time.
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VII. CONCLUSIONS AND FUTURE STUDIES

In this paper, we have proposed a new Stackelberg lo-
cation problem on a network with quantities demanded
which are given uncertainly and vaguely. For formulating
the Stackelberg location problem with the fuzzy random
variables, by using theik-level sets and satisfaction level, we
have reformulated as a version of conventional Stackelberg
location problem on a network. Its complexity have been
shown based upon the characteristics of the facility location.

This paper shows that (8), (10), (11), and (12) wjtkx 2
are NP-hard. To propose an efficient solution method for
these problems are an important future study.

[A given upper DM’s IocationJ

7

€

Optimal location for the lower DM

Fig. 4. A Difficulty of the SLP on the general network
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