
 

  
Abstract — Effective methods for increasing the efficiency of 

transportation management system is a use of dynamic multi-
zone dispatching problem. This problem concentrates on the 
quantities of inbound and outbound in each area and it is 
modified from the multi-zone dispatching. The factors of the 
rearrangement penalty of the area, in each zone, including time 
periods are also included. In this research there are various 
levels of areas, zones, inbound, outbound and time periods. The 
objective of this research is to manage zones with minimal 
imbalance scenario via an application of the Bees algorithm. 
Bees algorithm is an optimisation algorithm inspired by the 
natural foraging behaviour of honey bees. However, the 
performance of the algorithm depends on its parameters levels 
and need to be determined and analysed before its 
implementation. BEES parameters are determined through the 
Steepest Descent method based on the statistically significant 
regression analysis. Experimental results were analysed in 
terms of best solutions found so far, mean and standard 
deviation on both the imbalance and execution time to 
converge to the optimum. Finally a recommendation of proper 
level settings of BEES parameters for some selected problem 
sizes that can be used as a guideline for future applications of 
the BEES. This is to promote ease of use of the BEES in real 
life problems. This study also found that number of zones 
affect iterations toward the optimum. Number of areas affects 
the imbalance. The parameters of zone and area are then the 
important variables for these multi-zone dispatching systems.  
 

Index Terms — Meta-Heuristic, Bees Algorithm, Steepest 
Descent Algorithm, Dynamic Multi-Zone Dispatching 

I. INTRODUCTION 

Nowadays transportation systems have a significant role 
toward business systems and organisations; especially in the 
companies that operate a transportation business. They may 
not only operate it by themselves, but also need support 
from other transportation companies. This support with a 
proper management system could reduce the cost for 
business organisations abundantly. Besides, most big 
companies use specific operators to liberate the burden of 
transportation cost. Meanwhile, it is important to have 
further research for this matter in order to generate a 
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procedure to bring about great efficiency in transportation 
and the objective of business, to gain profits [1].  

 
Multi-Zone Dispatching (MZD)  

The prior transportation system uses a general approach 
which is a single zone transportation approach from point to 
point. The single zone approach is found to spend more time 
with the long distance part of each journey and has lots of 
available space to travel back. Later on, Taylor and Meinert 
[2] conducted research to increase the efficiency of 
transportation. They mentioned the zone dispatching or zone 
expedition approach that will be easier to manage and 
control. Furthermore, Taylor and teams [3] proposed a 
multi-zone dispatching approach endeavoring to enhance the 
efficiency of the transportation system by adjusting the same 
point of products in and out to find the proper point of 
transportation to minimise the imbalance scenario.  
 In the multi-zone dispatching management, it consists of 
two main principles in transportation management, i.e. area 
and zone. Taylor and teams proposes the notion called 
Minimal Imbalance Scenario approach in terms of load 
which contains two parts; in-bound and out-bound goods in 
each area within each zone to find out the harmonious 
balance between inbound goods and outbound goods. 
Among previous studies the minimal imbalance scenario is 
the most effective when compared to others. Then, minimal 
imbalance of load transferring between zones becomes an 
important issue for the multi-zone dispatching system [4]. 
  
Dynamic Multi-Zone Dispatching (DMZD)  

In fact, business conditions are constantly changing. 
The need of new quantity of orders, product lines, and 
technological advance or a dynamic nature of the multi-zone 
dispatching problems is proposed. There are a series of data 
in a static problem with its own “in-bound and out-bound 
freight” matrix for given finite discrete time periods. A 
period can be given in terms of months, quarters, or years. 
An additional rearrangement penalty in the objective 
function ties the static problems together whenever any area 
moves to the different zone in a consecutive time period.
 The multi-zone dispatching model can be extended to the 
dynamic nature of this problem with the following 
mathematical integer programming: 
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 0≥jtZP       ; tj ,∀         (4) 

 0≤jtZN        ; tj ,∀         (5) 

 integer=, jtjt ZNZP    ; tj ,∀         (6) 

 ( )integer 1,0binary=ijtX  ; tj ,∀         (7) 
 Rijkt = the rearrangement penalty for area i moved from 
zone j to k in the consecutive time period. 
 

In each time (t) period the equations above are used to 
find out the number of Minimal Imbalance from the sum of 
the remainder between ZPjt and ZNjt in each zone with an 
additional of the rearrangement penalty in consecutive time 
periods. ZPjt in each zone is the positive valued imbalance 
(in loads) if the sum of in-bound goods in each zone is 
greater than the sum of out-bound freight. ZNjt in each zone 
and time period is the negative valued imbalance if the sum 
of out-bound goods in that zone is greater than the sum of 
in-bound goods in that zone. ZNjt equals zero when in-bound 
goods in that zone equal the sum of out-bound goods in that 
zone. Besides, Iit is imbalance value of area i which came 
from in-bound goods of area i to minus with out-bound 
goods of area i. Ijt is imbalance value of zone j that came 
from in-bound goods of zone j minus with out-bound goods 
of zone j. Fit is a set of feasible zones for area i. Fjt is a set of 
feasible areas for zone j. Finally, Xijt is an integer that has 2 
values; 1 and 0. The result comes to 1 when area i is in zone 
j and it equals 0 when area i is not in zone j.   
 Bring data in each period of time (t) to be continuously, 
the alteration of zone will reflect Minimal Imbalance as seen 
in the previous testimony. A direction in searching a 
solution of the DMZD model has applied a method in 
solving problems of statistical multi-zone dispatching. 
Firstly considering the imbalance proposed in a form of 
statistical multi-zone dispatching at interval and then 
considering a rearrangement penalty generated from time 
alteration in such period by finding a series of any solutions 
through all intervals. The objective of this approach is to 
minimise an imbalance with some penalty in zone 
dispatching planning over all the periods of time. 

The difficulties associated with using mathematical 
optimisation on large-scale engineering problems as above 
have contributed researchers to seek the alternatives, based 
on simulations, learning, adaptation, and evolution, to solve 
these problems. Natural intelligence-inspired approximation 
optimisation techniques called meta-heuristics are then 
introduced. Moreover, meta-heuristics have been used to 
avoid being trapped in local optima with a poor value. The 
common factor in meta-heuristics is that they combine rules 
and randomness to imitate natural phenomena. They widely 
grow and apply to solve many types of problems. The major 
reason is that meta-heuristic approaches can guide the 
stochastic search process to iteratively seek near optimal 
solutions in practical and desirable computational time.  

These algorithms are then received more attention in the 
last few decades. They can be categorised into three groups: 
biologically-based inspiration, e.g. Genetic Algorithm or 
GA [5], Neural Network or NN [6], Ant Colony 
Optimisation or ACO [7], Memetics Algorithm or MAs [8], 
Evolutionary Programming or EP [9], Differential Evolution 
or DE [10], Particle Swarm Optimisation or PSO [11] 
Shuffled Frog Leaping Algorithm or SFLA [8]; socially-
based inspiration, e.g. Tabu Search or TS [12]; and 

physically-based inspiration such as Simulated Annealing or 
SA [13].  
 Generally, meta-heuristics work as follows: a 
population of individuals is randomly initialised where each 
individual represents a potential solution to the problem 
[14]. The quality of each solution is then evaluated via a 
fitness function. A selection process is applied during the 
iteration of meta-heuristics in order to form a new 
population. The searching process is biased toward the 
better individuals to increase their chances of being included 
in the new population. This procedure is repeated until 
convergence rules are reached. 

The objective of this paper is to investigate the 
performance of the algorithmic approach on the 
conventional and dynamic natures of the MZD model. A 
simulation study is based on the data from Thai local 
transportation firms. It aims to enhance the efficiency of 
transportation and pay more attention to the harmonious 
balance between cost and quantity. The algorithm to be 
applied to these problems could respond to the complication 
of a change of internal structure. Conclusions are drawn, and 
practical recommendations are made. 

II. BEES ALGORITHM (BEES) 
A colony of honey bees can be seen as a diffuse creature 

which can extend itself over long distances in various 
directions in order to simultaneously exploit a large number 
of food sources [15, 16]. In principle, flower patches with 
plentiful amounts of nectar or pollen that can be collected 
with less effort should be visited by more bees, whereas 
patches with less nectar or pollen should receive fewer bees. 

The foraging process begins in a colony by scout bees 
being sent to survey for promising flower patches. Scout 
bees search randomly from one patch to another. A colony 
of honey bees can extend itself over long distances in 
multiple directions of a search space. During the harvesting 
season, a colony continues its exploration, keeping a 
percentage of the population as scout bees. When they 
return to the hive, those scout bees that found a patch which 
is rated above a certain threshold (measured as a 
combination of some constituents, such as sugar content) 
deposit their nectar or pollen and go to the “dance floor” to 
perform a dance known as the “waggle dance”.  

This dance is essential for colony communication, and 
contains three vital pieces of information regarding a flower 
patch: the direction in which it will be found, its distance 
from the hive or energy usage and its nectar quality rating 
(or fitness). This information helps the bees to find the 
flower patches precisely, without using guides or maps. 

Each individual’s knowledge of the outside environment 
is gleaned solely from the waggle dance. This dance enables 
the colony to evaluate the relative merit of different patches 
according to both the quality of the food they provide and 
the amount of energy needed to harvest it. After waggle 
dancing on the dance floor, the dancer bee (i.e. the scout 
bee) goes back to the flower patch with follower bees that 
were waiting inside the hive. The number of follower bees 
assigned to a patch depends on the overall quality of the 
patch.  

This allows the colony to gather food quickly and 
efficiently. While harvesting from a patch, the bees monitor 
its food level. This is necessary to decide upon the next 
waggle dance when they return to the hive. If the patch is 
still good enough as a food source, then it will be advertised 



 

in the waggle dance and more bees will be recruited to that 
source. 

Bees Algorithm is an optimisation algorithm inspired by 
the natural foraging behaviour of honey bees [17, 18]. Fig. 1 
shows the pseudo code for the algorithm in its simplest 
form. The algorithm requires various influential parameters 
to be preset, namely: the number of scout bees (n), the 
number of patches selected out of n visited points (m), the 
number of elite patches out of m selected patches (e), the 
number of bees recruited for the best e patches (nep) and the 
number of bees recruited for the other (m-e) selected patches 
(nsp) including the preset values of the iterations (i).  

The algorithm starts with the n scout bees being randomly 
placed in the search space of feasible solutions. The 
fitnesses of the points visited by the scout bees are evaluated 
in the second step. Step 3, the scout bees are classified into 
various groups. In step 4, bees that have the highest fitnesses 
are designated as “selected bees” and sites visited by them 
are chosen for neighbourhood search. Then, in steps 5 and 6, 
the algorithm conducts searches in the neighbourhood of the 
selected bees, assigning more bees to search near to the best 
e bees.  

The bees can be chosen directly according to the fitnesses 
associated with the points they are visiting. Alternatively, 
the fitness values are used to determine the probability of 
the bees being selected. Searches in the neighbourhood of 
the best e bees which represent more promising solutions are 
made more detailed by recruiting more bees to follow them 
than the other selected bees. Together with scouting, this 
differential recruitment is a key operation of the Bees 
Algorithm. In step 6, for each site only the bee with the 
highest fitness will be selected to form the next bee 
population. In nature, there is no such a restriction. This 
constraint is introduced here to reduce the number of points 
to be explored. In step 7, the remaining bees in the 
population are assigned randomly around the search space 
scouting for new potential solutions.  

These steps are repeated until a stopping criterion is met. 
At the end in each iteration, the colony will have two parts 
to its new population – representatives from each selected 
patch and other scout bees assigned to conduct random 
searches. The algorithm has been successfully applied to 
different problems including of neural network 
optimisations, training pattern recognition, scheduled jobs 
for a machine, data clustering and tuning the fuzzy logic 
controller. Fig. 1 shows the pseudo code for the BEES in its 
simplest form. 
 
Procedure BEES Meta-heuristic() 
Begin; 

Initialise algorithm parameters:  
 i:   the number of iterations 
n:   the number of scout bees 

  m:  the number of sites selected out of n visited sites  
e:   the number of the best sites out of m selected sites 
nep: the number of bees recruited for the best e sites,  

   nsp: the number of bees recruited for the other m-e selected sites  
Randomly initialise the bee population; 
Evaluate fitnesses of the bee population; 
While (stopping criterion not met)  

Form the new bee population; 
Select sites for neighbourhood search; 
Recruit bees for selected sites with more bees for better e sites; 
Evaluate the fitnesses; 

End while; 
End procedure; 

 
Fig. 1. Pseudo Code of the BEES Meta-heuristic. 

III. STEEPEST DESCENT ALGORITHM (SDA) 
The procedure of SDA is that a hyperplane is fitted to the 

results from the initial 2k factorial designs. The data from 
these design points are analysed. If there is an evidence of 
main effect(s), at some chosen level of statistical 
significance and no evidence of curvature, at the same level 
of significance, the direction of steepest descent on the 
hyperplane is then determined by using principles of least 
squares and experimental designs. The next run is carried 
out at a point, which has some fixed distance in this 
direction, and further runs are carried out by continuing in 
this direction until no further decrease in yield is noted. 
When the response first increases and no improvement of 
two more verified yields, another 2k factorial design will be 
carried out, centered on the preceding design point. A new 
direction of steepest descent is estimated from this latest 
experiment. Provided at least one of the coefficients of the 
hyperplane is statistically significantly different from zero, 
the search continues in this new direction (Fig. 2). Once the 
first order model is determined to be inadequate, the area of 
optimum is identified via a second order model or a 
finishing strategy. 
 
Procedure of SDA () 
While (termination criterion not satisfied) – (line 1) 
    Schedule activities (when regression verification criteria not satisfy) 

Determine significant first order model from the factorial design 
points; 

     Schedule activities 
        Move along the steepest descent’s path with a step length (∆);  
    Compute imbalance values; 
         if new imbalance design point is smaller than the preceding then 
          move ahead with another ∆; 
         else 

Calculate two more imbalance design points to verify the 
descending trend; 

    if  
One of which imbalance design point turn out to be smaller 
than preceding design point’s imbalance  

then 
Use the smallest imbalance to continually move along the 
same path 

    else 
Use closest preceding design point as a centre for new 
26design; 

     end if; 
             end if; 
          end schedule activities; 
     end schedule activities; 
end while; 
end procedure; 
 

Fig. 2. Pseudo Code of SDA. 

IV. TESTED MODELS 
 In this paper, the study was conducted by applying the 
SDA to determine the proper levels of BEES parameters on 
the dynamic multi-zone dispatching systems. Areas are 
assigned into the proper zone for the conventional and 
dynamic multi-zone dispatching systems under the minimal 
imbalance scenario. Load transfer in and out data was taken 
from the previous study. Total data set includes load in and 
out data from 50 areas within three time periods. For the 
computational procedures described above a computer 
simulation was implemented in a Visual Basic program. 
There are three problem sizes as described in Table I. 
Experimental results in each run will show the effectiveness 
of the algorithm in terms of total imbalance and the multi-



 

zone pattern arrangement. There are five replicates in each 
case. 
 

TABLE I 
DMZD PROBLEM SIZES  

Problem 
Size 

Multi-zone Dispatching Problem Symbol 
Zone Area 

Small 3 10 S 
Medium 5 30 M1 

10 30 M2 
Large 5 50 L1 

10 50 L2 
 

Iterative strategy of SDA has the imbalance value as a 
moving trigger. Parameters are 26 unit6 of the volume of the 
factorial design; ±3 and ±5 of factorial design ranges; 1 and 
2 units of the step length; 5% and 10% of the significance 
levels (α) for tests of significance of slopes; n, m, e, nep, nsp 
and i. There are four scenarios to be tested in this study 
(Table II). The BEES parameters and their initial level from 
the literatures are given in Table III.  

TABLE II 
FOUR SCENARIOS TO BE TESTED BASED ON  

THE INFLUENTIAL FACTORS OF THE SDA  
Scenario Design Range Step Length 

S1 ±5  2  
S2 ±5 1 
S3 ±3 2  
S4 ±3 1 

 
TABLE III 

BEES PARAMETERS AND THEIR INITIAL LEVELS 
Parameters Symbols Initial Values 

The number of scout bees n 40 
The number of sites selected out of 
n visited sites 

m 20 

The number of the best sites out of 
m selected sites 

e 10 

The number of bees recruited for 
the best e sites 

nep 40 

The number of bees recruited for 
the other m-e selected sites 

nsp 20 

The number of iterations i 20 
 

The iterations replicate until the termination criteria is at 
the satisfaction state. Whilst continually checking stopping 
criteria, following steps below would be carried out; 

Step 1: Perform a 26 design at an initial centre point. 
Step 2: Fit a regression plane to the imbalance so that the 
fitted model has the form,  

ŷ  = β0 + β1n+ β2m + β3e + β4nep + β5nsp + β6i. 
 
Step 3: Test whether there is evidence that either β1, β2, β3 
β4, β5 or β6 is different from zero at the α% level of 
significance.   
Step 4: If the result is significant, move one step along the 
path of steepest descent (the fitted regression line). 
 
Stopping Criteria for the BEES; 

• Parameter default rule – when the coordinates 
escape from the upper or lower limit of BEES 
parameters, or, 

• Second order rule – when the best imbalance 
deteriorates and, 

• Regression verification rule – when a significance 
level of the regression of SDA is more than α. 

V. COMPUTATIONAL RESULTS AND ANALYSES 
In this work, for the computational procedures described 

above a computer simulation program was implemented in a 
Visual C#2008 computer program. A Laptop computer 
ASUS with Microsoft Windows version 5.1 (Build 
2600.xpsp_sp2_gdr.070227-2254: service pack 2) was used 
for computational experiments throughout.  

Based on SDA, if P-value exceeds the 5% preset value of 
significance level (α), there is no effect of parameters. On 
the L1 problem (5 Zones and 50 areas), number of elite 
patches out of m selected patches (e), the number of bees 
recruited for the other m-e selected sites (nsp) and the 
number of iterations (i) were statistically significant (Fig. 3). 

The first order model or a linear regression is then 
calculated to perform the path of steepest descent via the 
least square method. The suitable of the first order model 
was reviewed by looking at each of linear regression 
coefficient, β1, β2, β3 β4, β5 or β6. If none of linear regression 
coefficient is equal to zero, all factors are significant to the 
model (Table IV).  The next step is to move a center 
coordinate to a new coordinate by calculating a step size and 
scaling with a multiplication until an imbalance could not 
get a better value then termination. 
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Fig. 3. Normal Probability Plot of Effects on the L1 problem (5 Zones 
and 50 areas) with the ±5 Factorial Design Range. 

 
 

TABLE IV 
ANALYSIS OF VARIANCE (ANOVA) AND REGRESSION COEFFICIENTS AND 

THEIR SIGNIFICANCE FOR THE L1 PROBLEM (5 ZONES AND 50 AREAS)  
Source DF SS MS F P-value 

Regression 6 5191774 865296 11.47 0.000* 
Residual Error 57 4301825 75471   
Total 63 9493599    

 
Parameters Coef T-Stat P-value 

Constant    2709938 5865.72 0.000 
n         -10.159 -1.48 0.145 
m        3.803 0.55 0.582 
e          -15.934 -2.32 0.024* 
nep    -9.766 -1.42 0.161 
nsp           -15.141 -2.20 0.032* 
i           -50.484 -7.35 0.000* 

 
If P-value exceeds the preset value of significance level, 

there’s no effect of regression coefficients. The significant 
parameters which were measured by the P-value were 
summarised on Table V. If the algorithm does proceed to the 
next design and the only chosen one will be attributed to the 



 

prior-best- calculation. On the L2 problem and the 5% 
significance level, the proper levels of nep and i were 46 and 
22, respectively when the chosen step length was set at 1 
(Fig. 4). On the experimental results of the medium size 
problem (M1) with the range of the ±3 experimental design, 
1 and 2 step length and α of 0.05, the proper levels were 
determined by the best design point from the 2k factorial 
design.  

 
TABLE V 

SIGNIFICANT PARAMETERS CATEGORISED BY DESIGN RANGES  
Problem 

Size 
n m e nep nsp i 

S 0.094 0.356 0.588 0.052 0.453 0.000 
M1 0.201 0.463 0.801 0.819 0.440 0.000 
M2 0.454 0.267 0.297 0.021 0.332 0.000 
L1 0.145 0.582 0.024 0.161 0.032 0.000 
L2 0.276 0.873 0.360 0.000 0.914 0.000 

Note: Factorial Design Range of ±5 
 

Problem 
Size 

n m e nep nsp i 

S 0.700 0.767 0.496 0.882 0.722 0.010 
M1 0.997 0.063 0.443 0.122 0.253 0.056 
M2 0.644 0.932 0.072 0.665 0.999 0.000 
L1 0.674 0.107 0.071 0.738 0.300 0.005 
L2 0.910 0.249 0.695 0.001 0.224 0.000 

Note: Factorial Design Range of ±3 
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Fig. 4. Imbalance Improvement via the Path of Steepest Descent 
Categorised by the Levels of Step Length of 1 and 2 on the L2 Problem. 
 
It is also stated that BEES’ parameters have to only be 

positive integers. Consequently the process will confront 
with round-up error that would probably create a premature 
stop. When the problem sizes increase, computational time 
taken is also longer due to complexities of the BEES 
algorithm. The recommended levels of BEES parameters are 
summarised in Table VI.  

On the experimental results of all the problems, the range 
of the ±5 experimental design and the step length of one 
seem to work well to determine the proper levels of BEES’s 
parameters on both significance levels (α). This could be 
affected by the integer property of the parameters on the 
factorial experiments and also the restriction of stepping at 
longer step length on the response. Recommended levels of 
parameters found by the SDA are determined and are set to 
be suggested levels for BEES’ parameters, to promote an 
ease of use in all classes of problems. However, the SDA 
drifted at some problems and there is no directly 

recommended level from the path for a practical use. The 
best design points from the experimental design were 
selected as the proper levels. The summary on the imbalance 
were given in Table VII. 

Under a consideration of recommended levels of its 
parameters, those may bring the benefit to solve industrial 
processes via the BEES when the nature of the problems.  
An extension could be applied to enhance the performance 
of the SDA when computational processes exceed the upper 
or lower limit.  

Numerical results (Table VIII) revealed that the BEES 
with the proper levels on related parameters was able to 
obtain good solutions for all the tested cases when compared 
with the dynamic programming with Rosenblatt’s sub-
procedure, especially the speed of convergence. On the 
MZD the total imbalance from all problem sizes were at the 
optimum. The evolution via the imbalance values in each 
iteration was shown in Fig. 5 and 6. The convergence to the 
global optimum was quite rapid, 20 iterations on average.  

 
 

TABLE VI 
RECOMMENDED LEVELS OF PARAMETER SETTINGS  

5% of the Significance Level 
Problem 

Size 
Recommended Levels 
on (n, m, e, nep, nsp, i) 

S1 S2 S3 S4 

S (40, 20, 10, 40, 20, 22)   
M1 (40, 20, 10, 40, 20, 21)     
M2 (40, 20, 10, 44, 20, 21)     
L1 (40, 20, 16, 46, 26, 22)     
L2 (40, 20, 10, 46, 20, 22)     

10% of the Significance Level 
Problem 

Size 
Recommended Levels 
on (n, m, e, nep, nsp, i) 

S1 S2 S3 S4 

S (46, 20, 10, 46, 20, 22)     
M1 (46, 20, 10, 46, 20, 20)     
M2 (40, 20, 10, 48, 20, 22) 

(40, 20, 12, 44, 20, 22) 
  

 
  

 
L1 (40, 20, 16, 40, 26, 22) 

(40, 20, 12, 44, 20, 21) 
  

 
  

 
L2 (40, 20, 10, 46, 20, 22)     

 
 

TABLE VII 
EXPERIMENTAL RESULTS OF THE TOTAL IMBALANCE CATEGORISED BY THE 

FACTORIAL DESIGN RANGES  
±5 Factorial Design Range  

Problem 
Size 

α = 0.05 α = 0.1 
2 steps 1 step 2 steps 1 step 

S 4,711,318 4,711,318 4,711,312 4,711,318 
M1 3,897,588 3,898,570 3,904,980 3,898,132 
M2 4,417,522 4,398,016 4,223,788 4,450,278 
L1 2,707,348 2,707,127 2,707,348 2,707,127 
L2 2,850,473 3,073,620 2,850,473 3,073,620 

±3 Factorial Design Range 
Problem 

Size 
α = 0.05 α = 0.1 

2 steps 1 step 2 steps 1 step 
S 4,711,318 4,711,318 4,711,318 4,711,318 

M1 3,897,805 3,898,132 3,910,012 3,903,958 
M2 4,442,191 4,627,747 4,359,359 4,266,965 
L1 2,707,855 2,707,235 2,706,906 2,707,644 
L2 3,115,978 3,261,933 3,115,978 3,251,933 

 
 

TABLE VIII 
MINIMAL IMBALANCE RESULTS  

Problem 
Size 

Zone Area MZD DMZD 

S 3 10 2,369,022 4,711,312 
M1 5 30 1,240,214 3,921,208 
M2 10 30 1,240,214 4,123,082 
L1 5 50 487,741 2,706,391 
L2 10 50 483,741 2,740,483 



 

 
Fig.5. Imbalance Improvement on the MZD Categorised by Problem  

Sizes. 
 

 
(a) Imbalance Improvement on the DMZD Categorised by Problem Sizes 
{Small: 3 zones 10 areas, Medium: 5 zones 30 areas, Large: 10 zones 50 

areas}. 

 
(b) Imbalance Improvement on the DMZD Categorised by Number of 

Zones {5 zones 50 areas VS 10 zones 50 areas}. 

 
(c) Imbalance Improvement on the DMZD Categorised by Number of 

Areas {5 zones 30 areas VS 5 zones 50 areas}. 
 

Fig. 6.  Imbalance Improvement on the DMZD Categorised  
by Problem Sizes. 
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