
 

  
Abstract— This paper presents a novel differential evolution 

algorithm (called CCDE) using self-adaptive scaling factors, 
chemotaxis by BP technique, and cooperative strategy to 
enhance the performance of traditional DE algorithm. The 
CCDE consists of modified mutation strategy which is 
implemented from each individual and includes the momentum 
of each individual, the self-adaptive scaling factor strategy 
which adopts the fuzzy logic system to improve  convergence 
speed, the chemotaxis by BP technique, and optimal learning 
rate which enhances the local search ability and convergence. 
The cooperative strategy could generate extra vectors to search 
the solution. Finally, the CCDE algorithm is demonstrated by a 
comparative study on function optimization. 
 

Index Terms—Optimization, Differential evolution, 
Chemotaxis, Cooperative Strategy, back-propagation  
 

I. INTRODUCTION 
N the past decades, many investigators have proposed 

many effective approaches to solve the optimization 
problem, such as genetic algorithm, electromagnetism-like 
algorithm, particle swarm optimization, etc [2, 4-5, 8, 14]. 
Evolutionary algorithms (EAs) have received attention for 
their potential as global optimization techniques [3, 10, 13]. 
As a method of solving optimization problems, a powerful 
stochastic global optimization differential evolution (DE) 
algorithm was proposed [15-16]. DE utilizes mutation and 
recombination operations as searching mechanisms and 
selection operators to determine the most promising regions 
of the search space. It creates new candidate solutions by 
combining the parent individual and several other individuals 
by randomly choosing from the same population. A 
candidate replaces the parent only if it has a better fitness 
value. This is a rather greedy selection scheme that often 
outperforms traditional EAs [3, 10]. 

Although the DE algorithm benefits from the 
aforementioned advantages, the DE convergence velocity is 
slow for high dimensional optimization problems. In addition, 
DE is sensitive to algorithm parameters, such as low 
precision, and it cannot easily determine the global optimal 
solution if these parameters are not properly met. Therefore, 
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the selection of the scaling factor F, and CR is very important 
and difficult. In our experience, the larger value of F can 
converge quickly, but usually at a local minimum. Inversely, 
small value of F converges slowly. In literature [19], F was 
selected by experienced human operators.  

In order to improve the performance of DE algorithm, this 
paper proposes a DE algorithm (called CCDE algorithm) 
with novel strategies, includes the modified mutation strategy, 
the self-adaptive scaling factor using fuzzy logic system, 
chemotaxis by BP technique with adaptive learning rates, and 
the simple cooperative strategy. The modified mutation 
strategy consists of a mutation strategy of traditional DE, the 
best information, and the momentum term. In addition, the 
momentum term provides the past information, which 
advances the ability of searching the optimal solution. The 
adaptive scaling factor F is established by fuzzy logic 
systems. The generation number and change of fitness value 
are used to generate changes in F using a fuzzy approach. 
Subsequently, the chemotaxis by BP technique supplies the 
algorithm with the searching ability in the neighborhood. In 
addition, the concept of the chemotaxis is derived from the 
bacterial foraging algorithm [6, 17]. In the neutral medium, if 
the bacterium swims up a nutrient gradient, its behavior seeks 
increasingly favorable environments. We adopt the 
chemotaxis concept for our CCDE algorithm. Many 
literatures [1, 11-12] indicate that the cooperative strategy 
lead to a significant improvement in performance.  

This paper is organized as follows. Section II introduces 
the proposed novel hybrid differential evolution algorithm 
CCDE. The experimental results of function optimization are 
introduced in Section III. Finally, the conclusion is given.  

 
II. A NOVEL HYBRID DIFFERENTIAL EVOLUTION 

ALGORITHM- CCDE 
This section introduces the proposed novel hybrid 

differential evolution algorithm CCDE. Figure 1 shows the 
flowchart of the CCDE algorithm. The CCDE algorithm is 
proposed by using (a) the modified mutation strategy which 
is implemented from each individual and includes the 
momentum of each individual; (b) the chemotaxis by BP 
technique with the optimal learning rates to search the better 
situation in the neighborhood; (c) the simple cooperative 
strategy to generation extra vectors for searching the solution; 
and (d) self-adaptive scaling factors to improve the 
performance. The CCDE algorithm would improve the 
precision, and enhance the convergence speed. Firstly, the 
optimization problem is formula as   
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Minimize )(Θf  

subject to ,S∈Θ  { }DdS d
D ,...,1 , =ℜ∈ℜ∈Θ= θ  

where D is dimension of the problem and; )(Θf  is the 
objective function that is minimized. Each vector Θ  
represents a solution. 

CCDE algorithm starts with initial population vectors, 
which are randomly generated when no preliminary 
experimental knowledge about the searching space is 
available, in order to start CCDE algorithm, we must decide 
the population size PS, the maximum generation G, and 
D-dimensional parameters vectors, and we must generate 
parameters randomly.  

The pth vector of the population at generation g is denoted 
as ),,,()( 21 pDppp g θθθ L=Θ , p=1,…, PS, g=1,2,…,G . 
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Fig. 1. Flowchart of the proposed CCDE algorithm. 

 
TABLE I:  THE 3×3 FUZZY RULES TABLE FOR THE SCALING FACTORS 

         eΔ  
Generation 

Zero Small Big 

Small Increasing Increasing Fixing 

Medium Increasing Fixing Decreasing

Big Fixing Decreasing Decreasing
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Fig. 2. Membership functions of fuzzy system; (a) input variable-Δe. (b) 

input variable- generation; (c) output variable-
321

 and , , βββ . 

 
Fig. 3. Membership functions of fuzzy system; (d) The corresponding 

surface of 
321

 and , , βββ . 
 

A. Mutation with Self-adaptive Scaling Factor F 
A differential vector which is composed of the best vector 
bestΘ  and each vector )(gpΘ  and the momentum term 

)1()( −Θ−Θ gg pp  to constitute the modified mutation 
strategy [20], utilizing the modified mutation strategy could 
maintain the diversity since the agent searches the optimal 
solution from each vector )(gpΘ  rather than the best 

individual bestΘ .  
By information sharing concept, the differential vector 

which is composed of the best individual bestΘ  and each 

vector )(gpΘ  could provide a proper direction to the 

optimal solution. For each population vector )(gpΘ , p = 1, 2, 
3,…, PS, g=1,2,…,G , the mutation vector is generated as 
follows: 

))1()(())((

))()(()()1(

32
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where F1, F2, and F3 ∈ [0,1] are the scaling factors (or 
mutation factors), r1, r2∈{1,2,…, PS}, and p≠r1≠r2. The 
differential vector is the deviation between two randomly 
selected population vectors )(

1
grΘ  and )(

2
grΘ . 



 

The scaling factors F1, F2, and F3 are also adjusted by 
fuzzy logic systems, the inputs of the fuzzy system are 
changes of fitness value, Δe, and generation number, g, and 
the corresponding outputs are 321  and  , βββ . The adjustment 
is shown as follows: 

.3 ,2 ,1    , =×= iFF iii β                 (2)                
The 3×3 fuzzy rules table are described in Table I. The 
corresponding membership functions for inputs Δe, 
generation, and output 321  and , , βββ  are shown in Fig. 2. (a), 
2(b), and 2(c), respectively. The consequence 321  and , , βββ  
is deduced from Δe and generation by taking the max-min 
composition. The center of area (COA) method is used as the 
defuzzification strategy. Figure 3 shows the corresponding 
surface of 321  and , , βββ . The fuzzy system is constructed 
by the following IF-THEN rules 

IF eΔ  is Zero and generation is Small,  
THEN 321  and , , βββ  are Increasing. 

IF eΔ  is Small and generation is Small,  
THEN 321  and , , βββ  are Increasing. 

IF eΔ  is Big and generation is Small,  
THEN 321  and , , βββ  are Fixing. 

IF eΔ  is Zero and generation is Medium,  
THEN 321  and , , βββ  are Increasing. 

IF eΔ  is Small and generation is Medium,  
THEN 321  and , , βββ  are Fixing. 

IF eΔ  is Big and generation is Medium,  
THEN 321  and , , βββ  are Decreasing. 

IF eΔ  is Zero and generation is Big,  
THEN 321  and , , βββ  are Fixing. 

IF eΔ  is Small and generation is Big,  
THEN 321  and , , βββ  are Decreasing. 

IF eΔ  is Big and generation is Big,  
THEN 321  and , , βββ  are Decreasing. 

 

B. Chemotaxis By Back-propagation Technique 
The idea of the chemotaxis by BP technique is deduced 

from bacterial foraging algorithm [6, 17]. Bacterial foraging 
algorithm is inspired by the pattern exhibited by bacterial 
foraging behaviors. Bacteria have the tendency to gather in 
the nutrient-rich areas by an activity called “chemotaxis”. If a 
bacterium finds a favorable environment, it searches a better 
situation until it cannot find any more. We adopt this concept 
and BP technique to search the optimal solution in the 
neighborhood.  

The update law of trial vector )1( +′ gvp  is represented as  

,
)1(
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where Dd ,...,2,1=  and )(gdη  is the learning rate. After we 
get the trial vector )1( +′ gvp , the fitness value of the trial 

vector ))1(( +′ gvf p  is compared with the fitness value of the 

parent vector ))(( gf pΘ . If the trial vector )1( +′ gvp  is better 

than the parent vector )(gpΘ , the trial vector )1( +′ gvp  is 
going to get into the chemotaxis procedure. Otherwise, the 
trial vector )1( +′ gvp  becomes the parent vector )(gpΘ , and 
skip the chemotaxis procedure. The update is expressed as 
follows: 
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We implement the back-propagation algorithm to get the 
chemotaxis vector )1( +′′ gvp , which is denoted as 

,
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where Dd ,...,2,1= . After we get the chemotaxis vector 
)1( +′′ gvp , the fitness value of the chemotaxis vector 

))1(( +′′ gvf p  is compared with the fitness value of the trial 

vector ))1('( +gvf p . If the chemotaxis vector )1( +′′ gvp  is 
better than the trial vector )1( +′ gvp , the chemotaxis vector 

)1( +′′ gvp  replaces the trial vector )1( +′ gvp . Repeat the 
chemotaxis procedure until the chemotaxis vector )1( +′′ gvp  
is not better than the trial vector )1( +′ gvp . The update is 
expressed as follows: 
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Moreover, the learning rates play an important role in the 
chemotaxis by BP technique. If the proper learning rates are 
chosen, the convergence is guaranteed. According to the 
literature [7], we can obtained the optimal learning rate from 
the Lyapunov stability analysis is  
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where D is the dimension. 
 

C. The Simple Cooperative Strategy  
Although competition among individual vectors usually 

improves their performance, much greater improvements can 
be obtained through cooperation. Many researchers apply the 
cooperative approach to improve their algorithm. Various 
cooperative approaches have been proposed and analyzed.  

A typical example is the cooperative co-evolutionary 
genetic algorithm which is proposed [12]. The cooperative 
strategy is that the solution vector is split into its constituent 
components and assigned to multiple populations [1]. In this 
configuration, each population is then optimized a single 
component of the solution vector (i.e. a one-dimensional 
optimization problem). We adopt the spirit of cooperative 
strategy into CCDE algorithm. 

The simple cooperative strategy in CCDE algorithm is to 
generate extra individuals by the populations. On the other 
hand, the solution vector is split into populations areas. Now, 
we obtain Ps copies of the solution vector. The Ps jth in jth 
copy are replaced with the Ps jth in the parent )(gpΘ  



 

(j=1,2,…, Ps). For example, we use the trial vector )1( +′ gvp  
(p=1,2, …, Ps ) which is obtained by the chemotaxis by BP 
technique to generate the cooperative vector Cj  (j=1,2,…, Ps). 
The cooperative vector Cj is generated by replacing the trial 
vector )1( +′ gvp  with the parent )(gpΘ . The cooperative 
process is described in Fig. 4 and Fig. 5. If the cooperative 
vector Cj is better than the trial vector )1( +′ gvp , the 

cooperative vector Cj replaces the trial vector )1( +′ gvp . The 

trial vector )1( +′ gvp  is updated as follows: 
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where j=1,2,..., Ps . 
    

)1(' +gv pD )(gpDΘ

)1('1 +gv D

)1('2 +gv D

)1(' +gv pd

)(1 gDΘ

)(2 gDΘ

)(gpdΘ
 

Fig. 4. Representation of trial vector )1( +′ gvp
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Fig. 5. The simple cooperative process for D dimension. 

 
D. Crossover  

The crossover vector )1( +gu p  is chosen by the trial 

vector )1( +′ gvp  and the mutation vector )1( +gvp  rather 

than the parent )(gpΘ . We give a corresponding number 

rand(d) for each parameter of the mutation vector )1( +gvp  
where rand(d)∈[0,1].  

The corresponding numbers are chosen randomly. If the 
random number is smaller than crossover rate (CR), we 
choose the parameter of the trial vector )1( +′ gvp  into the 

corresponding site of the crossover vector )1( +gu p .       
Otherwise, we choose the parameter of the mutation vector  
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After the crossover vector )1( +gu p  has been generated, the 
fitness value of )1( +gu p  will be compared with the fitness 
value of the trial vector )1(' +gv p , i.e., 
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E. Selection  

In order to produce better offspring, selection is an 
important operation. If the trial vector )1(' +gv p  has a less or 

equal fitness value than that of parent )(gpΘ , it replaces the 
parent vector in the next generation; otherwise, the parent is 
retained in the population. The corresponding equation is as 
follows: 
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The best individual bestΘ  is selected in each selection is 

.
 otherwise         

)())1(( if         )1(

⎪⎩

⎪
⎨
⎧

Θ

Θ≤+Θ+Θ
=Θ

best

bestpp
best

fgf g
         (13) 

After implementing the selection, we will check whether 
all vectors have been done in CCDE algorithm. If yes, the 
scaling factors F1, F2, and F3 will be adjusted by fuzzy logic 
systems. Finally, the stop criterion in maximum generation 
Gmax is checked in this paper. 

III. EXPERIMENTAL RESULT 
In order to illustrate the performance and viability of the 

proposed CCDE algorithm, the CCDE and DE are applied to 
solve the optimization of benchmark functions [18]. In 
addition, comparision results for illustrating the effectiveness 
of our modifications (modified mutation with self-adapting 
scaling factor, Chemotaxis by BP technique, cooperative 
strategy, and Chemotaxis by BP technique with optimal 
learning rate) are shown in Table III. The used benchmark 
test functions are introduced in Table II, detailed description 
of these twenty function can be found in [9, 18], where D 
denoted the dimension of test function, searching range is 
denoted range of variable which is defined to be symmetric 
about the origin, fmin is optimum value of function. 

Herein, the dimension of functions f1, f3, f5, f6, f8, f14, f15, f16, 
f17, and f18  is set to be two.   The dimension of  functions  f19, 
f20  is four. The value of five for the dimension of function  f2, 
f4, f7, f9, f10, f11, f12, and f13 are  selected. In this paper, we 
choose F =0.5 and CR=0.5, and maximum number of 
generation is 20 and population size is 50. 

 

A. Comparison Results between CCDE and DE 
Algorithms 
We set the population size is 50. The populations for all 

DE and CCDE variants were initialized using same random 
seeds, maximum number of generation is 20, F = 0.5 and CR 
= 0.5, the average results of 30 independent runs in Table III. 

For the function f1-f20, the comparison shows that CCDE 
gives better performance than DE, CCDE algorithm performs 
better than DE. 
    

 



 

B. Illustration Discussions  
To illustrate the performance and effectiveness of CCDE, 

several comparative experiments are shown to demonstrate 
the ability and advantages of the adopted modified strategies, 
e.g., chemotaxis by BP technique, self-adapting scaling 
factor, cooperative strategy, BP’s optimal learning. In order 
to make the comparison on fair, the populations for all 
algorithm comparsion variants were initialized using same 
random seeds, population size is 50, maximum number of 
generation is 20, F1=0.5, F2=0.5, F3=0.5 and CR=0.5,the 
average results of 30 independent runs in Table III. Some 
observations are found from Table III. From each column 
values of Table III (optimization results of twenty functions), 
we can observe that the CCDE’s results have better accuracy 
compared with the results using CCDE without using 
chemotaxis by BP technique, self-adapting scaling factor, 
cooperative strategy, and BP’s optimal learning, respectively. 
Thus, we could conclude that the chemotaxis by BP 
technique, self-adapting scaling factor, cooperative strategy, 
and BP’s optimal learning can improve the ability of 
optimization searching.   

 

IV. CONCLUSION 
The CCDE algorithm adopts the modified mutation 

strategy to increase the diversity. The modified mutation 
strategy also provides a correct direction to the optimal 
solution by the momentum term and the best individual 
which is updated instantly. The self-adaptive scaling factor 
strategy improvement could increase the precision and 
convergence velocity. The chemotaxis by BP technique 
supplies the capability of searching in the neighborhood. In 
addition, we use the optimal learning rates to improve the 
ability of convergence. The simple cooperative strategy 
provides the capability of searching optimal solution by 
replacing the parameters of one population of the trial vector 
with the parameters of the same population of the parent 
vector. Therefore, CCDE algorithm has the ability of global 
optimization, advantages of faster convergent speed and 
higher precision. Experimental results of function 
optimization are shown to demonstrate the effectiveness of 
the proposed CCDE.  
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TABLE III 

COMPARISON RESULTS OF CCDE AND DE ALGORITHMS IN AVERAGED 30 INDEPENDENT RUNS. 
 

F Gen. CCDE 
 

DE CCDE without 
chemotaxis BP 

CCDE without 
Self-adapting scaling factor

CCDE without 
cooperative strategy 

CCDE without
optimal η 

  Mean value Mean value Mean value Mean value Mean value Mean value 
f1 20 1.3562E+00 2.2537E+02 1.3076E+02 6.7779E+00 2.9760E+01 2.9631E+01 
f2 20 2.8408E+00 2.3733E+01 1.3084E+01 3.6327E+00 1.6967E+01 3.1112E+00 
f3 20 1.7387E+00 4.0347E+02 3.0619E+02 2.0463E+00 7.1724E+00 5.8062E+00 
f4 20 8.3552E-02 2.1333E+00 1.3163E+00 9.7480E-02 9.7530E-02 8.8005E-02 
f5 20 2.2572E+00 2.9130E+02 9.4253E+01 4.4352E+01 1.0797E+02 1.5113E+01 
f6 20 6.8424E+00 2.3768E+02 1.4165E+02 2.2339E+01 2.9735E+01 1.8024E+01 
f7 20 1.5800E+00 9.4880E+00 7.8914E+00 1.6702E+00 5.3505E+00 1.7683E+00 
f8 20 -1.5188E+02 -9.7757E+01 -1.0964E+02 -1.1982E+02 -1.3662E+02 -1.0743E+02 
f9 20 2.1718E+00 1.5467E+01 1.4194E+01 2.2667E+00 1.4998E+01 2.4451E+00 
f10 20 5.2389E+00 1.4634E+01 1.3302E+01 6.3802E+00 1.3360E+01 5.8441E+00 
f11 20 1.4009E+00 2.4807E+01 1.9503E+01 3.5073E+00 1.1604E+01 1.5150E+00 
f12 20 1.9340E+00 1.1237E+02 1.6367E+01 3.3453E+00 6.7860E+00 2.0628E+00 
f13 20 2.8607E-01 6.1504E+02 1.8021E+01 7.2370E-01 6.1410E+00 1.2461E+01 
f14 20 2.9406E+00 3.4973E+01 2.3064E+01 3.3578E+00 6.5264E+00 4.1973E+00 
f15 20 -1.0257E+00 -7.2105E-01 -9.1144E-01 -1.0253E+00 -9.5154E-01 -9.8484E-01 
f16 20 6.1544E-01 2.1481E+00 1.7251E+00 7.2490E-01 8.5132E-01 6.9795E-01 
f17 20 3.4254E+00 4.2136E+00 3.4987E+00 4.0041E+00 3.5695E+00 3.8161E+00 
f18 20 -1.0258E+01 -1.8559E+00 -1.0176E+01 -1.0022E+01 -9.9662E+00 -8.7192E+00 
f19 20 -9.6705E+00 -2.1524E+00 -9.4761E+00 -9.0402E+00 -9.4559E+00 -9.2140E+00 
f20 20 -9.7425E+00 -1.3156E+00 -9.6996E+00 -9.6168E+00 -9.3156E+00 -9.1345E+00 

 
 




