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Abstract—In this paper, we derive a highly accurate
numerical method for the solution of one-dimensional wave
equation with Neumann boundary conditions. This hyper-
bolic problem is solved by using semidiscrete approximations.
The space direction is discretized by wavelet-Galerkin method
and the time variable is discretized by using various classical
finite difference schemes. The numerical results show that this
method gives high favourable accuracy while compared with
the exact solution.

Index Terms—hyperbolic problem, semidiscrete approxi-
mations, stability, wavelet-Galerkin method.

I. INTRODUCTION

IN this paper, we consider numerical solution of one-
dimensional wave equation

∂2u

∂t2
− α

∂2u

∂x2
= f, a < x < b, t > 0 (1)

with initial conditions

u(x, 0) = g(x),
∂u

∂t
(x, 0) = h(x), a < x < b (2)

and boundary conditions

∂u

∂x
(a, t) = c(t),

∂u

∂x
(b, t) = d(t), t > 0, (3)

where α is a positive constant and f is a constant, or
a function of any or of both the independent variables
x and t. Second order hyperbolic partial differential
equations (PDE) like (1) appear in connection with
structural dynamics. Several methods exist for the solu-
tion of second order hyperbolic equations with Dirichlet
and other boundary conditions, for example, [2], [3], [7].
But their solution with Neumann boundary conditions
is hardly available in the literature.

Usually, hyperbolic problems are solved by using
semidiscrete approximations. For the solution of problem
(1)-(3) in the present paper, the space direction is dis-
cretized by using wavelet-Galerkin method and the time
variable is discretized by using various classical schemes
originating from finite difference methods. Wavelets in
consideration here are Daubechies compactly supported
wavelets [6] which are differentiable.

Wavelet applications to the solution of PDE problems
are relatively new. Some recent applications are [1],
[4], [5], [9] among many more. To discretize a PDE
problem by wavelet-Galerkin method, the Galerkin bases
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are constructed from orthonormal bases of compactly
supported wavelets. This can be done in a number of
ways. In this paper, we construct these basis functions
as in Choudhury and Deka [4], which is a variant of
Glowinski et al. [8]. .

In Section 2, we explain the approximation of the
Sobolev space Hm(a, b) using Daubechies scaling func-
tions. Section 3 elaborates the method for the solution
of problem (1)-(3). In Section 4, we demonstrate the
method with the help of a numerical example. Section 5
concludes the paper.

II. APPROXIMATION OF SOBOLEV SPACES IN
DAUBECHIES BASES

For a positive integer N , consider two functions φ, ψ ∈
L2(R) defined by

φ(x) =
∑

k

akφ(2x − k), ψ(x) =
∑

k

bkφ(2x − k), (4)

where {ak}k∈Z and {bk}k∈Z are two specific sequences [6]
such that ak = bk = 0 for k /∈ {0, 1, . . . , S}, S = 2N − 1.
The functions φ and ψ are called dbN scaling function
and dbN wavelet function respectively, where N is called
their order. These functions are compactly supported
with supp(φ) = supp(ψ) = [0, S]. They are available in
wavelet toolbox of MATLAB 6 for 1 ≤ N ≤ 45. They
satisfy the properties (3.9)-(3.12) in [4].

The integer translates and dilates of φ and ψ are
defined as

φn,k(x) = 2
n
2 φ(2nx − k), ψn,k(x) = 2

n
2 ψ(2nx − k), (5)

for n, k ∈ Z.
Now, for all n ∈ Z, we define

Vn = L2-closure(span{φn,k : k ∈ Z}). (6)

We recall here that for an open interval (a, b) and for
an integer m ≥ 1, the space

Hm(a, b) = {u ∈ Hm−1(a, b) : u′ ∈ Hm−1(a, b)} (7)

is called the Sobolev space of order m, which is a Hilbert
space with inner product 〈u, v〉m =

∑m
i=0

∫ b

a
u(i)v(i)dx

and associated norm ‖.‖m. It may be noted here that
H0(a, b) = L2(a, b).

Let N be any positive integer and let φ and ψ be the
dbN scaling function and wavelet function respectively.
Then by Theorem 1.1 in [8], there exists an integer
m, 0 ≤ m < N, such that the Sobolev space Hm(a, b)



can be approximated by the restrictions of translates and
dilates of φ to (a, b).

We shift the support of φ from [0, S] to [a, b] by using
the transformation y = b−a

S x + a and let

In = {k ∈ Z : supp(φn,k) ∩ (a, b) 	= ∅}. (8)

Considering Vn as defined in (6), we define the space
Vn(a, b) to be the set of restrictions of all functions in
Vn to (a, b). In fact, we take

Vn(a, b) = span{φn,k|(a,b) : k ∈ In}. (9)

Since (a, b) is bounded, the space Vn(a, b) is finite
dimensional and is a closed subspace of Hm(a, b). By
Proposition 4.1 in [4], dim(Vn(a, b)) = 2nS + S − 1 and
a basis for Vn(a, b) is given by

{φn,k ∈ Vn(a, b) : 1 − S ≤ k ≤ 2nS − 1}. (10)

III. SOLUTION METHODOLOGY

Since PDE (1) is of second order in space with
Neumann boundary conditions (3), the solution space
for spatial direction for problem (1)-(3) is H1(a, b).
Multiplying equation (1) by a function v ∈ H1(a, b) and
integrating by parts with respect to x in (a, b), we get

∫ b

a

(
∂2u

∂t2
v + α

∂u

∂x

dv

dx

)
dx

=
∫ b

a

fvdx + α[d(t)v(b) − c(t)v(a)], (11)

which is the variational (weak) form of problem (1)-(3).
In Glowinski et al. [8], it is established that N ≥ 3

is sufficient for the solution of problems of second order
(in space). So, we let N ≥ 3 be any integer and let φ be
the dbN scaling function. Considering the basis {φn,j}
of Vn(a, b) in Section 2, the approximate solution of the
variational problem (11) can be taken as

un(x, t) =
∑

j

zn,j(t)φn,j(x). (12)

Applying Galerkin method to problem (11) with the
approximate solution (12), we get a system of second
order ordinary differential equations in z = [zn,j ]:

Mz̈ + Az = F, (13)

where A, M and F are the stiffness matrix, the mass ma-
trix and the force vector respectively whose elemments
are given by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Aij =
∫ b

a αφ′
n,jφ

′
n,idx,

Mij =
∫ b

a φn,jφn,idx,

Fi =
∫ b

a
fφn,idx + α[d(t)φn,i(b)

−c(t)φn,i(a)].

(14)

There are several methods available to integrate equa-
tion (13). The most widely used method in structural

dynamics is the Newmark family of time integration
schemes [10]:

{
zs+1 = zs + Δtżs + Δt2

[(
1
2 − μ

)
z̈s + μz̈s+1

]
,

żs+1 = żs + Δt [(1 − λ) z̈s + λz̈s+1] ,
(15)

where λ and μ are parameters that control the accuracy
and stability of the scheme and zs refers to the value of
z at time t = ts = sΔt.

The following schemes are special cases of (15):
1. The linear acceleration scheme: λ = 1

2 , μ = 1
6 ;

conditionally stable;
2. The constant-average acceleration scheme: λ = 1

2 , μ =
1
4 ; unconditionally stable;
3. The Galerkin scheme: λ = 3

2 , μ = 4
5 ; unconditionally

stable;
4. The backward difference scheme: λ = 3

2 , μ = 1;
unconditionally stable.

For all schemes in which μ < λ
2 and λ ≥ 1

2 , the stability
requirement is

Δt ≤ 1
ω

√
2

λ − 2μ
, (16)

where ω is the maximum natural frequency of the
associated problem.

The use of (15) in (13) gives the system of linear
equations

M̂s+1zs+1 = F̂s,s+1, (17)

where

⎧⎪⎪⎨
⎪⎪⎩

M̂s+1 = As+1 + a0M,

F̂s,s+1 = Fs+1 + M(a0zs + a1żs + a2z̈s);

a0 = 1
μ(Δt)2 , a1 = a0Δt, a2 = 1

2μ − 1.

(18)

The vectors z0 and ż0 can be obtained by multi-
plying the initial conditions (2) by v, integrating and
approximating with (12). z̈0 can be calculated as an
approximation from (13) given by

z̈0 = M−1(F0 − Az0). (19)

At the end of each time step, the velocity vector żs+1

and the acceleration vector z̈s+1 are computed using the
relations{

z̈s+1 = a0(zs+1 − zs) − a1żs − a2z̈s,

żs+1 = żs + a3z̈s + a4z̈s+1,

(20)

where

a3 = (1 − λ)Δt, a4 = λΔt. (21)

IV. NUMERICAL RESULTS

Here the methodology for the solution of the hyper-
bolic IBVP (1)-(3) described above is demonstrated with
an example. The solution is performed using all the
four time discretization schemes. The computations are
performed by using MATLAB 6.5. The problem is:



0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−20

−10

0

10

20

30

40

50

t

u
(0

,t
)

Unstable solution (Δt=0.1, no. of time steps=50)

0 5 10 15 20
0

1

2

3

4

5

6

7

x 104

t

u
(0

,t
)

Stable solution (Δt=0.09, no. of time steps=250)

Fig. 1. λ = 1
2
, μ = 1

6
: db3(n=0) wavelet solution (−) and exact

solution (−−) at x=0

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∂2u
∂t2 − 1

4
∂2u
∂x2 = 0, 0 < x < 1, t > 0;

u(x, 0) = x, ∂u
∂t (x, 0) = ex, 0 < x < 1;

∂u
∂x (0, t) = 2 sinh

(
t
2

)
+ 1, t > 0,

∂u
∂x (1, t) = 2e sinh

(
t
2

)
+ 1, t > 0.

(22)

The problem is so constructed that its exact solution is

u(x, t) = 2ex sinh
(

t

2

)
+ x. (23)

For λ = 1
2 , μ = 1

6 , db3 scaling function is used for
spatial discretization. As this scheme is conditionally
stable, we have to find an upper limit of the time step
Δt using the stability condition (16). The square of the
maximum natural frequency of the associated problem
for n = 0 is 1298.2. Therefore, the maximum time step
is 1√

1298.2

√
2

1
2− 1

3
≈ 0.096. Figure 1 shows the exact,

unstable and stable solutions due to db3(n = 0) scaling
function at x = 0.

For λ = 3
2 , μ = 4

5 and λ = 3
2 , μ = 1, we also use

db3 scaling function for spatial discretization. As this
scheme is unconditionally stable, there is no restriction
on Δt. Table 1 shows the decay of maximum absolute
error for both the schemes with decreasing time step due
to db3(n = 0, 1, 2) scaling functions at t = 1.

For λ = 1
2 , μ = 1

4 , Table 2 shows the maximum
absolute errors between the exact and the computed
solutions at t = 1 due to db3(n = 0, 1, 2, 3) and
db4(n = 0, 1, 2, 3) scaling functions for Δt = 0.01 and
Δt = 0.001 respectively.

V. CONCLUSION
In this paper, we have analysed a method for numerical

solution of one dimensional wave equation with Neumann

Table 1: λ = 3
2 , μ = 4

5 and λ = 3
2 , μ = 1

Maximum absolute errors at t=1 due to db3 scaling
functions

Scheme Time step Maximum absolute error
(λ, μ) (Δt) n=0 n=1 n=2

λ = 3
2

1
5 0.0608 0.0599 0.0598

μ = 4
5

1
10 0.0312 0.0299 0.0298
1
20 0.0166 0.0151 0.0149
1
40 0.0093 0.0077 0.0074
1
80 0.0057 0.0040 0.0038

λ = 3
2

1
5 0.0649 0.0641 0.0640

μ = 1 1
10 0.0323 0.0310 0.0308
1
20 0.0169 0.0154 0.0151
1
40 0.0094 0.0078 0.0075
1
80 0.0057 0.0040 0.0038

Table 2: λ = 1
2 , μ = 1

4

Maximum absolute errors at t=1 due to db3 and db4
scaling functions

Scaling funcs. n Δt Maxi. absolute error
db3 0 10−2 2.0939× 10−3

1 10−2 3.4757× 10−4

2 10−2 5.4535× 10−5

3 10−2 1.1523× 10−5

db4 0 10−3 4.2155× 10−5

1 10−3 2.9833× 10−6

2 10−3 2.4169× 10−7

3 10−3 6.1729× 10−8

boundary conditions. The space direction is discretized
by using wavelet-Galerkin method and the time variable
is discretized by using classical finite difference schemes.
The main advantages of this method are that the schemes
are unconditionally stable (except one) and are useful
for problems with time-dependent boundary conditions
and with time-dependent source term. The method gives
high favourable accuracy. The efficiency of the developed
algorithm has been illustrated by a test problem.
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