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Abstract—The n-dimensional hypercube network Qn is one
of the most popular interconnection networks since it has
simple structure and is easy to implement. The n-dimensional
augmented cube, denoted by AQn, an important variation of
the hypercube, possesses several embedding properties that
hypercubes and other variations do not possess. The advantages
of AQn are that the diameter is only about half of the diameter
of Qn and they are node-symmetric. Recently, some interesting
properties of AQn were investigated. A graph G contains two-
equal path partition if for any two distinct pairs of nodes
(us, ut) and (vs, vt) of G, there exist two node-disjoint paths
P and Q satisfying that (1) P joins us and ut, and Q joins
vs and vt, (2) |P | = |Q|, and (3) every node of G appears
in one path exactly once. In this paper, we first use a simple
recursive method to construct two edge-disjoint Hamiltonian
cycles in AQn for any integer n > 3. We then show that the
n-dimensional augmented cube AQn, with n > 2, contains two-
equal path partition.

Index Terms—edge-disjoint Hamiltonian cycles, two-equal
path partition, augmented cubes, hypercubes, parallel comput-
ing

I. INTRODUCTION

PARALLEL computing is important for speeding up
computation. The design of an interconnection network

is the first thing to be considered. Many topologies have
been proposed in the literature [3], [7], [8], [9], [10], and the
desirable properties of an interconnection network include
symmetry, relatively small degree, small diameter, embed-
ding capabilities, scalability, robustness, and efficient routing.
Among those proposed interconnection networks, the hyper-
cube is a popular interconnection network with many attrac-
tive properties such as regularity, symmetry, small diameter,
strong connectivity, recursive construction, partition ability,
and relatively low link complexity [24]. The architecture of
an interconnection network is usually modeled by a graph,
where the nodes represent the processing elements and the
edges represent the communication links. In this paper, we
will use graphs and networks interchangeably.

The n-dimensional augmented cube AQn was first pro-
posed by Choudum et al. [6] and possesses some proper-
ties superior to the hypercube. The diameter of augmented
cubes is only about half of the diameter of hypercubes and
augmented cubes are node-symmetric [6]. Recently, some
interesting properties, such as conditional link faults, of
the augmented cube AQn were investigated. Choudum and
Sunitha proved AQn, with n > 2, is pancyclic, that is, AQn

contains cycles of arbitrary length [6]. Hsu et al. considered
the fault hamiltonicity and the fault hamiltonian connectivity
of the augmented cube AQn [13]. Wang et al. showed that
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AQn, with n > 4, remains pancyclic provided faulty vertices
and/or edges do not exceed 2n − 3 [26]. Hsieh and Shiu
proved that AQn is node-pancyclic, in which for every node
u and any integer l > 3, the graph contains a cycle C of
length l such that u is in C [11]. Hsu et al. proved that
AQn is geodesic pancyclic and balanced pancyclic [14].
Recently, Chan et al. [5] improved the results in [14] to
obtain a stronger result for geodesic-pancyclic and fault-
tolerant panconnectivity of the augmented cube AQn. In
[19], Ma et al. proved that AQn contains paths between
any two distinct vertices of all lengths from their distance to
2n−1; and that AQn still contains cycles of all lengths from
3 to 2n when any (2n − 3) edges are removed from AQn.
Xu et al. determined the vertex and the edge forwarding
indices of AQn as 2n/9+(−1)n+1/9+n2n/3−2n +1 and
2n−1, respectively [27]. Chan computed the distinguishing
number of the augmented cube AQn [4]. Lee et al. studied
the Hamiltonian path problem on AQn with a required node
being the end node of a Hamiltonian path [18].

Two Hamiltonian cycles in a graph are said to be edge-
disjoint if they do not share any common edge. The edge-
disjoint Hamiltonian cycles can provide advantage for algo-
rithms that make use of a ring structure [25]. The following
application about edge-disjoint Hamiltonian cycles can be
found in [25]. Consider the problem of all-to-all broadcasting
in which each node sends an identical message to all other
nodes in the network. There is a simple solution for the
problem using an N -node ring that requires N − 1 steps,
i.e., at each step, every node receives a new message from
its ring predecessor and passes the previous message to its
ring successor. If the network admits edge-disjoint rings,
then messages can be divided and the parts broadcast along
different rings without any edge contention. If the network
can be decomposed into edge-disjoint Hamiltonian cycles,
then the message traffic will be evenly distributed across all
communication links. Edge-disjoint Hamiltonian cycles also
form the basis of an efficient all-to-all broadcasting algorithm
for networks that employ warmhole or cut-through routing
[17].

The edge-disjoint Hamiltonian cycles in k-ary n-cubes
has been constructed in [1]. Barden et al. constructed the
maximum number of edge-disjoint spanning trees in a hy-
percube [2]. Petrovic et al. characterized the number of edge-
disjoint Hamiltonian cycles in hyper-tournaments [23]. Hsieh
et al. constructed edge-disjoint spanning trees in locally
twisted cubes [12]. The existence of a Hamiltonian cycle
in augmented cubes has been shown [6], [13]. However,
there has been little work reported so far on edge-disjoint
properties in the augmented cubes. In this paper, we use a
recursive construction to show that, for any integer n > 3,
there are two edge-disjoint Hamiltonian cycles in the n-



dimensional augmented cube AQn.
Finding node-disjoint paths is one of the important issues

of routing among nodes in various interconnection networks.
Node-disjoint paths can be used to avoid communication
congestion and provide parallel paths for an efficient data
routing among nodes. Moreover, multiple node-disjoint paths
can be more fault-tolerant of nodes or link failures and
greatly enhance the transmission reliability. A path partition
of a graph G is a family of node-disjoint paths that contains
all nodes of G. For an embedding of linear arrays in a
network, the partition implies every node can be participated
in a pipeline computation. Finding a path partition and its
variants of a graph has been investigated [15], [16], [20],
[21], [22]. In this paper, we study a variation of path partition,
called two-equal path partition. A graph G contains two-
equal path partition if for any two distinct pairs of nodes
(us, ut) and (vs, vt) of G, there exists a path partition {P,Q}
of G such that (1) P joins us and ut, (2) Q joins vs and
vt, and (3) |P | = |Q|. In this paper, we will show that the
augmented cube AQn, with n > 2, contains two-equal path
partition.

The rest of the paper is organized as follows. In Section II,
the structure of the augmented cube is introduced, and some
definitions and notations used in this paper are given. Section
III shows the construction of two edge-disjoint Hamiltonian
cycles in the augmented cubes. In Section IV, we show that
augmented cubes contain two-equal path partition. Finally,
we conclude this paper in Section V.

II. PRELIMINARIES

We usually use a graph to represent the topology of an
interconnection network. A graph G = (V,E) is a pair of
the node set V and the edge set E, where V is a finite set
and E is a subset of {(u, v)|(u, v) is an unordered pair of
V }. We will use V (G) and E(G) to denote the node set and
the edge set of G, respectively. If (u, v) is an edge in a graph
G, we say that u is adjacent to v. A neighbor of a node v
in a graph G is any node that is adjacent to v. Moreover,
we use NG(v) to denote the set of neighbors of v in G. The
subscript ‘G’ of NG(v) can be removed from the notation if
it has no ambiguity.

A path P , represented by 〈v0 → v1 → · · · → vt−1〉, is a
sequence of distinct nodes such that two consecutive nodes
are adjacent. The first node v0 and the last node vt−1 visited
by P are called the path-start and path-end of P , denoted
by start(P ) and end(P ), respectively, and they are called
the end nodes of P . Path 〈vt−1 → · · · → v1 → v0〉 is
called the reversed path, denoted by Prev, of P . That is, Prev

visits the nodes of P from end(P ) to start(P ) sequently. In
addition, P is a cycle if |V (P )| > 3 and end(P ) is adjacent
to start(P ). A path 〈v0 → v1 → · · · → vt−1〉 may contain
other subpath Q, denoted as 〈v0 → v1 → · · · → vi → Q →
vj · · · → vt−1〉, where Q = 〈vi+1 → vi+2 → · · · → vj−1〉.
A path (or cycle) in G is called a Hamiltonian path (or
Hamiltonian cycle) if it contains every node of G exactly
once. A graph G is Hamiltonian connected if, for any two
distinct nodes u, v, there exists a Hamiltonian path with end
nodes u, v. Two paths (or cycles) P1 and P2 connecting a
node u to a node v are said to be edge-disjoint iff E(P1) ∩
E(P2) = ∅. Two paths (or cycles) Q1 and Q2 of graph G
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Fig. 1. (a) The 2-dimensional augmented cube AQ2, and (b) the 3-
dimensional augmented cube AQ3 containing AQ0
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are called node-disjoint iff V (Q1)∩ V (Q2) = ∅. Two node-
disjoint paths Q1 and Q2 can be concatenated into a path,
denoted by Q1 ⇒ Q2, if end(Q1) is adjacent to start(Q2).

Definition 1. A graph G contains two-equal path partition if
for any two distinct pairs of nodes (us, ut) and (vs, vt) of G,
there exist two node-disjoint paths P and Q satisfying that
(1) start(P ) = us and end(P ) = ut, (2) start(Q) = vs and
end(Q) = vt, (3) |P | = |Q|, and (4) V (P )∪V (Q) = V (G).

Now, we introduce augmented cubes. The node set of the
n-dimensional augmented cube AQn is the set of binary
strings of length n. A binary string b of length n is denoted
by bn−1bn−2 · · · b1b0, where bn−1 is the most significant
bit. We denote the complement of bit bi by bi = 1 − bi

and the leftmost bit complement of binary string b by
b = bn−1bn−2 · · · b1b0. We then give the recursive definition
of the n-dimensional augmented cube AQn, with integer
n > 1, as follows.

Definition 2. [6] Let n > 1. The n-dimensional augmented
cube, denoted by AQn, is defined recursively as follows.
(1) AQ1 is a complete graph K2 with the node set {0, 1}.
(2) For n > 2, AQn is built from two disjoint copies
AQn−1 according to the following steps. Let AQ0

n−1 denote
the graph obtained by prefixing the label of each node
of one copy of AQn−1 with 0, let AQ1

n−1 denote the
graph obtained by prefixing the label of each node of
the other copy of AQn−1 with 1. Then, adding 2n edges
between AQ0

n−1 and AQ1
n−1 by the following rule. A node

b = 0bn−2bn−3 · · · b1b0 of AQ0
n−1 is adjacent to a node

a = 1an−2an−3 · · · a1a0 of AQ1
n−1 iff either

(i) ai = bi for all n−2 > i > 0 (in this case, (b, a) is called
a hypercube edge), or
(ii)ai = bi for all n− 2 > i > 0 (in this case, (b, a) is called
a complement edge).

It was proved in [6] that AQn is node transitive, (2n −
1)-regular, and has diameter dn

2
e. According to Definition

2, AQn contains 2n nodes. Further, AQn is decomposed
into two sub-augmented cubes AQ0

n−1 and AQ1
n−1, where

AQi
n−1 consists of those nodes b with bn−1 = i. For each i ∈

{0, 1}, AQi
n−1 is isomorphic to AQn−1. For example, Fig.

1(a) shows AQ2 and Fig. 1(b) depicts AQ3 consisting of two
sub-augmented cubes AQ0

2, AQ1
2. The following proposition

can be easily verified from Definition 2.

Proposition 1. Let AQn be the augmented cube decomposed
into AQ0

n−1 and AQ1
n−1. For any b ∈ V (AQi

n−1) and i ∈
{0, 1}, b ∈ V (AQ1−i

n−1) and b ∈ N(b).

Let b is a binary string bt−1bt−2 · · · b1b0 of length t. We



denote bi the new binary string obtained by repeating b string
i times. For instance, (10)2 = 1010 and 03 = 000.

The following Hamiltonian connected property of the
augmented cube can be proved by induction.

Lemma 2. For any integer n > 2, AQn is Hamiltonian
connected.

Proof: We prove this lemma by induction on n, the
dimension of the augmented cube AQn. Obviously, AQ2 is
Hamiltonian connected since it is a complete graph with 4
nodes. Assume that AQk, with k > 2, is Hamiltonian con-
nected. We will prove that AQk+1 is Hamiltonian connected.
We first decompose AQk+1 into two sub-augmented cubes
AQ0

k and AQ1
k. Let u, v be any two distinct nodes of AQk+1.

There are two cases:
Case 1: u, v ∈ V (AQi

k), for i ∈ {0, 1}. By inductive
hypothesis, there is a Hamiltonian path P in AQi

k with end
nodes u, v. Let P = u → P ′ and let start(P ′) = w. By
inductive hypothesis, there is a Hamiltonian path Q in AQ1−i

k

such that start(Q) = u and end(Q) = w. By Proposition
1, u ∈ N(u) and w ∈ N(w). Then, u ⇒ Q ⇒ P ′ is a
Hamiltonian path of AQk+1 with end nodes u, v.
Case 2: u ∈ V (AQi

k) and v ∈ V (AQ1−i
k ), for i ∈ {0, 1}.

Let w be a node in AQi
k such that w 6= u and w 6= v. By

inductive hypothesis, there is a Hamiltonian path P in AQi
k

such that start(P ) = u and end(P ) = w. In addition, there
is a Hamiltonian path Q in AQ1−i

k such that start(Q) = w
and end(Q) = v. By Proposition 1, w ∈ N(w). Then, P ⇒
Q is a Hamiltonian path of AQk+1 with end nodes u, v.

By the above cases, AQk+1 is Hamiltonian connected. By
induction, AQn, with n > 2, is Hamiltonian connected.

III. TWO EDGE-DISJOINT HAMILTONIAN CYCLES

Obviously, AQ2 has no two edge-disjoint Hamiltonian
cycles since each node is incident to three edges. For
any integer n > 3, we will construct two edge-disjoint
Hamiltonian paths, P and Q, in AQn such that start(P ) =
0(0)n−300, end(P ) = 1(0)n−300, start(Q) = 0(0)n−310,
and end(Q) = 1(0)n−310. By Proposition 1, start(P ) ∈
N(end(P )) and start(Q) ∈ N(end(Q)). Thus, P and Q
are two edge-disjoint Hamiltonian cycles.

Now, we show that AQ3 contains two edge-disjoint Hamil-
tonian paths in the following lemma.

Lemma 3. There are two edge-disjoint Hamiltonian paths
P and Q in AQ3 such that start(P ) = 000, end(P ) = 100,
start(Q) = 010, and end(Q) = 110.

Proof: We prove this lemma by constructing such two
paths. Let
P = 〈000 → 010 → 011 → 001 → 101 → 111 → 110 →
100〉, and let
Q = 〈010 → 001 → 000 → 011 → 111 → 100 → 101 →
110〉.
Fig. 2 depicts the constructions of P and Q. Clearly, P and
Q are edge-disjoint Hamiltonian paths in AQ3.

By Proposition 1, nodes 000 and 100 are adjacent, and
nodes 010 and 110 are adjacent. Thus, we have the following
corollary.

Corollary 4. There are two edge-disjoint Hamiltonian cycles
in AQ3.
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Fig. 2. Two edge-disjoint Hamiltonian paths in AQ3, where solid arrow
lines indicate a Hamiltonian path P and dotted arrow lines indicate the other
edge-disjoint Hamiltonian path Q
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Fig. 3. Two edge-disjoint Hamiltonian paths in AQ4, where solid arrow
lines indicate a Hamiltonian path P and dotted arrow lines indicate the other
edge-disjoint Hamiltonian path Q

Using Lemma 3, we prove the following lemma.

Lemma 5. There are two edge-disjoint Hamiltonian paths P
and Q in AQ4 such that start(P ) = 0000, end(P ) = 1000,
start(Q) = 0010, and end(Q) = 1010.

Proof: We first decompose AQ4 into two sub-
augmented cubes AQ0

3 and AQ1
3. By Lemma 3, there are two

edge-disjoint Hamiltonian paths P i and Qi, for i ∈ {0, 1},
in AQi

3 such that start(P i) = i000, end(P i) = i100,
start(Qi) = i010, and end(Qi) = i110. By Proposition
1, we have that

end(P 0) ∈ N(end(P 1)) and end(Q0) ∈ N(end(Q1)).

Let P = P 0 ⇒ P 1
rev and let Q = Q0 ⇒ Q1

rev, where P 1
rev and

Q1
rev are the reversed paths of P 1 and Q1, respectively. Then,

P and Q are two edge-disjoint Hamiltonian paths in AQ4

such that start(P ) = 0000, end(P ) = 1000, start(Q) =
0010, and end(Q) = 1010. Fig. 3 shows the constructions
of such two edge-disjoint Hamiltonian paths in AQ4. Thus,
the lemma hods true.

By Proposition 1, nodes 0000 and 1000 are adjacent, and
nodes 0010 and 1010 are adjacent. The following corollary
immediately holds true from Lemma 5.

Corollary 6. There are two edge-disjoint Hamiltonian cycles
in AQ4.

Based on Lemma 3, we prove the following lemma by the
same arguments in proving Lemma 5.

Lemma 7. For any integer n > 3, there are two edge-disjoint
Hamiltonian paths P and Q in AQn such that start(P ) =
0(0)n−300, end(P ) = 1(0)n−300, start(Q) = 0(0)n−310,
and end(Q) = 1(0)n−310.

Proof: We prove this lemma by induction on n, the
dimension of the augmented cube. It follows from Lemma
3 that the lemma holds for n = 3. Suppose that the
lemma is true for the case n = k (k > 3). Assume
that n = k + 1. We will prove the lemma holds when
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Fig. 4. The constructions of two edge-disjoint Hamiltonian paths in
AQk+1, with k > 3, where dotted arrow lines indicate the paths and
solid arrow lines indicate concatenated edges

n = k + 1. The proof is the same as that of Lemma 5. We
first partition AQk+1 into two sub-augmented cubes AQ0

k

and AQ1
k. By the induction hypothesis, there are two edge-

disjoint Hamiltonian paths P i and Qi, for i ∈ {0, 1}, in AQi
k

such that start(P i) = i0(0)k−300, end(P i) = i1(0)k−300,
start(Qi) = i0(0)k−310, and end(Qi) = i1(0)k−310. By
Proposition 1, we get that

end(P 0) ∈ N(end(P 1)) and end(Q0) ∈ N(end(Q1)).

Let P = P 0 ⇒ P 1
rev and let Q = Q0 ⇒ Q1

rev, where P 1
rev and

Q1
rev are the reversed paths of P 1 and Q1, respectively. Then,

P and Q are two edge-disjoint Hamiltonian paths in AQk+1

such that start(P ) = 0(0)k−200, end(P ) = 1(0)k−200,
start(Q) = 0(0)k−210, and end(Q) = 1(0)k−110. Fig. 4
depicts the constructions of such two edge-disjoint Hamil-
tonian paths in AQk+1. Thus, the lemma hods true when
n = k + 1. By induction, the lemma holds true.

By Proposition 1, nodes start(P ) = 0(0)n−300 and
end(P ) = 1(0)n−300 are adjacent, and nodes start(Q) =
0(0)n−310 and end(Q) = 1(0)n−310 are adjacent. It imme-
diately follows from Lemma 7 that the following theorem
holds true.

Theorem 8. For any integer n > 3, there are two edge-
disjoint Hamiltonian cycles in AQn.

IV. TWO-EQUAL PATH PARTITION

In this section, we will show that, for any n > 2, the n-
dimensional augmented cube AQn contains two-equal path
partition. That is, for any two distinct pairs of nodes (us, ut)
and (vs, vt) of AQn, there exist two node-disjoint paths
P and Q of AQn satisfying that (1) start(P ) = us and
end(P ) = ut, (2) start(Q) = vs and end(Q) = vt, (3)
|P | = |Q|, and (4) V (P ) ∪ V (Q) = V (AQn). We will
prove it by induction on n, the dimension of AQn. Initially,
AQ2 clearly contains two-equal path partition since it is a
complete graph with four nodes.

Lemma 9. AQ2 contains two-equal path partition.

Now, suppose that AQk, with k > 2, contains two-equal
path partition. We will prove that AQk+1 contains two-equal
path partition. First, we decompose AQk+1 into two sub-
augmented cubes AQ0

k and AQ1
k. Let (us, ut) and (vs, vt) be

any two pairs of distinct nodes in AQk+1. We will construct
two node-disjoint paths P and Q of AQk+1 such that P
joins us and ut, Q joins vs and vt, and |P | = |Q| = 2k. The
are four cases:

Case 1: us, ut, vs, vt are in the same sub-augmented cube.
Without loss of generality, assume that us, ut, vs, vt are
in AQ0

k. By inductive hypothesis, there is a path partition
{P 0, Q0} of AQ0

k such that |P 0| = |Q0|, start(P 0) = us,
end(P 0) = ut, start(Q0) = vs, and end(Q0) = vt. Let
P 0 = us → P ′ and Q0 = vs → Q′. Let wP = start(P ′)
and let wQ = start(Q′). Let (us, wP ) and (vs, wQ) be two
pairs of distinct nodes in AQ1

k. By inductive hypothesis, there
are two node-disjoint paths P 1 and Q1 of AQ1

k such that
|P 1| = |Q1| = 2k−1, start(P 1) = us, end(P 1) = wP ,
start(Q1) = vs, and end(Q1) = wQ. By Proposition 1,
us ∈ N(us), wP ∈ N(wP ), vs ∈ N(vs), and wQ ∈ N(wQ).
Let P = us ⇒ P 1 ⇒ P ′ and let Q = vs ⇒ Q1 ⇒ Q′. Then,
{P,Q} is a path partition of AQk+1 such that P joins us and
ut, Q joins vs and vt, and |P | = |Q| = 2k. The construction
in this case is shown in Fig. 5(a).
Case 2: us, ut, vs are in the same sub-augmented cube,
and vt is in another sub-augmented cube. Without loss of
generality, assume that us, ut, vs are in AQ0

k and that vt is
in AQ1

k. Let x be a node in AQ0
k such that x 6∈ {us, ut, vs}

and x 6= vt. By inductive hypothesis, there is a path partition
{P 0, Q0} of AQ0

k such that |P 0| = |Q0|, start(P 0) = us,
end(P 0) = ut, start(Q0) = vs, and end(Q0) = x.
Let P 0 = us → P ′ and let w = start(P ′). Consider
that w 6∈ {x, vt}. Let (us, w) and (x, vt) be two pairs
of distinct nodes in AQ1

k. By inductive hypothesis, there
are two node-disjoint paths P 1 and Q1 of AQ1

k such that
|P 1| = |Q1| = 2k−1, start(P 1) = us, end(P 1) = w,
start(Q1) = x, and end(Q1) = vt. By Proposition 1, us ∈
N(us), w ∈ N(w), and x ∈ N(x). Let P = us ⇒ P 1 ⇒ P ′

and let Q = Q0 ⇒ Q1. Then, {P,Q} is a path partition of
AQk+1 such that P joins us and ut, Q joins vs and vt,
and |P | = |Q| = 2k. The construction in this case is shown
in Fig. 5(b). On the other hand, consider that w ∈ {x, vt}.
Since |V (AQ0

k)| = |V (AQ1
k|) = 2k > 4, we can easily

choose w and x such that w 6∈ {x, vt}. Then, we can build
two node-disjoint paths P and Q of AQk+1 by the same
technique.
Case 3: us, ut are in the same sub-augmented cube, and
vs, vt are in another sub-augmented cube. Without loss of
generality, assume that us, ut are in AQ0

k and that vs, vt are
in AQ1

k. By Lemma 2, there are Hamiltonian paths P and Q
of AQ0

k and AQ1
k, respectively, such that P joins us, ut and

Q joins vs, vt. Thus, {P,Q} is a path partition of AQk+1

with |P | = |Q| = 2k. Fig. 5(c) depicts the construction of
the two paths in this case.
Case 4: us, vs are in the same sub-augmented cube, and
ut, st are in another sub-augmented cube. Without loss of
generality, assume that us, vs are in AQ0

k and that ut, vt are
in AQ1

k. Let x, y be two distinct nodes of AQ0
k such that

x, y 6∈ {us, vs} and x, y 6∈ {ut, vt}. Let (us, x) and (vs, y)
be two pairs of distinct nodes in AQ0

k, and let (x, ut) and
(y, vt) be two pairs of distinct nodes in AQ1

k. By inductive
hypothesis, there are two node-disjoint paths P 0 and Q0

of AQ0
k such that |P 0| = |Q0| = 2k−1, start(P 0) = us,

end(P 0) = x, start(Q0) = vs, and end(Q0) = y. In
addition, there are two node-disjoint paths P 1 and Q1 of
AQ1

k such that |P 1| = |Q1| = 2k−1, start(P 1) = x,
end(P 1) = ut, start(Q1) = y, and end(Q1) = vt. By
Proposition 1, x ∈ N(x) and y ∈ N(y). Let P = P 0 ⇒ P 1

and let Q = Q0 ⇒ Q1. Then, {P,Q} is a path partition of
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k > 2, for (a) us, ut, vs, vt ∈ AQ0

k
, (b) us, ut, vs ∈ AQ0

k
and vt ∈

AQ1
k

, (c) us, ut ∈ AQ0
k

and vs, vt ∈ AQ1
k

, and (d) us, vs ∈ AQ0
k

and
ut, vt ∈ AQ1

k
, where dotted arrow lines indicate the paths, solid arrow lines

indicate concatenated edges, and the symbol ‘×’ denotes the destruction to
an edge in a path

AQk+1 such that P joins us and ut, Q joins vs and vt, and
|P | = |Q| = 2k. The construction in this case is shown in
Fig. 5(d).

By the above cases, we have that AQk+1 contains two-
equal path partition. By induction, AQn, with n > 2,
contains two-equal path partition. Thus, we conclude the
following theorem.

Theorem 10. For any integer n > 2, AQn contains two-
equal path partition.

V. CONCLUDING REMARKS

In this paper, we construct two edge-disjoint Hamiltonian
cycles (paths) of a n-dimensional augmented cube AQn, for
any integer n > 3. In addition, we prove that AQn, with n >

2, contains two-equal path partition. In the construction of
two edge-disjoint Hamiltonian cycles (paths) of AQn, some
edges are not used. It is interesting to see if there are more
edge-disjoint Hamiltonian cycles of AQn for n > 4. We
would like to post it as an open problem to interested readers.
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