
Abstract - A mixed quadrature rule blending Clenshaw-Curtis
five point rule and Gauss-Legendre three point rule is formed.
The mixed rule has been tested in adaptive environment and it is
found to be more effective than that of Clenshaw-Curtis five point
rule.
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I. INTRODUCTION

Real definite integrals of the type

   
b
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I f f t dt  (1.1)

have been successfully approximated by several Authors [1],
[2], [3] by applying the mixed quadrature rule. The method
involves construction of a symmetric quadrature rule of higher
precision as a linear combination of two other rules of equal
lower precision.

If we consider  a Gauss- Legendre rule and a Clenshaw-
Curtis rule having same precision, Clenshaw-Curtis rule is
better than Gauss-Legendre rule. An n-point Gaussian rule is
of precision 2n-1, while the precision of an n-point Clenshaw-
Curtis rule is n. In general, Gauss type rule is of higher precision
than that of Clenshaw-Curtis type rule when same number of
abscissae are used.

In this paper, taking the advantage of the fact that Gauss-
Legendre 3-point rule and Clenshaw-Curtis 5-point rule are of
same precision (i.e. precision 5), we formed a mixed quadrature
rule of higher precision (i.e. precision7) taking linear
combination of these rules. The mixed rule so formed has been
tested on different definite integrals giving better results than
Clenshaw-Curtis quadrature rule in adaptive environment.

II. THE CLENSHAW-CURTIS QUADRATURE RULE
The Clenshaw-Curtis method [4] essentially approximates a

function f(t)over any interval  ,h h     using the Chebyshev

polynomials  rT x  of degree n

       
0

1 1'n

r r
r

f t F x a T x x


     (2.1)

where, ra  are the expansion coefficients and '  denotes a

finite sum whose first term is to be halved before begining to
sum. That is,
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Collocating with  f hx   at the n + 1 points
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,  0,1,...,i n (2.3)

one can evaluate the expansion coefficients ra .

The Chebyshev polynomials  r iT x  can be expressed as

    1cos cos 0r i iT x r x r  (2.4)
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The notation '' means that the first and last terms are to be

halved before summation begins.
The orthogonality of the cosine function [5] with respect to

the points cosi
i

x
n

 
  

 
 is expressed by
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Substituting Eq(2.6) into Eq(2.5), gives
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(2.7)

Denoting the integral of  f t  over the interval  ,h h   

by I, and replacing t by hx  , we get
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I h f hx dx


  

R.B.D.  Author is with the Department of Mathematics, Ravenshaw
University, Cuttack-753003 , Odisha, India.
(e-mail : rajani_bdash@rediffmail.com)
D.D. Author is with the Department of Mathematics, Ravenshaw
University, Cuttack-753003, Odisha, India.
(e-mail:debasisdas100@gmail.com)



Assuming nI I , we write
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Substituting  the values of ra (as given in Eq 2.7), we get
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where  
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With  n = 4,
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III. CONSTRUCTION OF THE MIXED QUADRATURE RULE
OF PRECISION SEVEN

We choose Clenshaw-Curtis five point rule
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and the Gauss-Legendre three point rule
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Each of the rules(3.1) and (3.2) is of precision five. Let

 
5CCE f  and  

3GLE f  denote the errors in approximating the

integral  I f  by the rules (3.1) and (3.2) respectively.  Using

Maclaurin’s expansion of functions in Eqs (3.1) and (3.2), we
get

     
5 5CC CCI f R f E f  (3.3)

and      
3 3GL GLI f R f E f  (3.4)

where
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Now multiplying the equations (3.3) and (3.4) by 
1
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 and
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respectively, and then adding the resulting equations,  we obtain
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This is the desired mixed quadrature rule of precision seven

for the approximate evaluation of  I f .  The truncation error

generated in this approximation is given by
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The rule (3.6) may be called a mixed type rule as it is
constructed from two different types of rules of the same
precision. (i.e, precision 5)

IV. ERROR ANALYSIS

An asymptotic error estimate and an error bound of the rule
(3.6) are given in theorems 4.1(a) and 4.1(b), respectively.

Theorem 4.1(a)

Let  f x  be a sufficiently differentiable function in the closed

interval [-1, 1]. Then the error  
5 3CC GLE f  associated with the

rule  
5 3CC GLR f  is given by
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Proof

From Eq(3.5),
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Theorem 4.1(b)

The bound for the truncation error
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is given by
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From this we obtain
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which gives only a theoretical error bound, as 1 2,   are

unknown points in  1,1 .It shows that the error in the

approximation will be less if the points 1 2,   are close to each

other.

Corollary

The error bound for the truncation error  
5 3CC GLE f  is given

by
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Proof

We know from the theorem 4.1 (b) that
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Choosing  1 2 2    , we have
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TABLE -1
Comparison of the mixed quadrature rule with Clenshaw-Curtis 5- point rule in approximation of some real definite integrals

by adaptive quadrature method.

V. NUMERICAL VERIFICATION



VI. CONCLUSION
Above ten examples give a clear picture about the

effectiveness of imposing mixed quadrature rule in adaptive

environment. The mixed quadrature rule   5 3CC GLR f  reduces

the number of steps required to approximate an integral in
adaptive quadrature mehtod in comparison to its constitute
Clenshaw-Curtis quadrature rule.
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