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A Mixed Quadrature Rule by Blending
Clenshaw-Curtis and Gauss-Legendre Quadrature
Rules for Approximation of Real Definite Integrals
in Adaptive Environment

Rajani B. Dash and Debasish Das

Abstract - A mixed quadrature rule blending Clenshaw-Curtis
five point rule and Gauss-Legendre three point rule is formed.
The mixed rule has been tested in adaptive environment and it is
found to be more effective than that of Clenshaw-Curtis five point
rule.
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[. INTRODUCTION
Real definite integrals of the type

1(f)=]s(0)ar

a

(1.1)

have been successfully approximated by several Authors [1],
[2], [3] by applying the mixed quadrature rule. The method
involves construction of a symmetric quadrature rule of higher
precision as a linear combination of two other rules of equal
lower precision.

If we consider a Gauss- Legendre rule and a Clenshaw-
Curtis rule having same precision, Clenshaw-Curtis rule is
better than Gauss-Legendre rule. An n-point Gaussian rule is
of precision 2n-1, while the precision of an n-point Clenshaw-
Curtis rule is . In general, Gauss type rule is of higher precision
than that of Clenshaw-Curtis type rule when same number of
abscissae are used.

In this paper, taking the advantage of the fact that Gauss-
Legendre 3-point rule and Clenshaw-Curtis 5-point rule are of
same precision (i.e. precision 5), we formed a mixed quadrature
rule of higher precision (i.e. precision7) taking linear
combination of these rules. The mixed rule so formed has been
tested on different definite integrals giving better results than
Clenshaw-Curtis quadrature rule in adaptive environment.

II. THE CLENSHAW-CURTIS QUADRATURE RULE
The Clenshaw-Curtis method [4] essentially approximates a

function f{r)over any interval [o — &, + k] using the Chebyshev
polynomials 7, (x) of degree n

f0)=F(x)= % aT,(x)

r=0

(-l=x<1) 2.1)

where, a, are the expansion coefficients and ).' denotes a

finite sum whose first term is to be halved before begining to
sum. That is,
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1
F(x)=ZaoTo (x)+ aifi (x) + a1 (x) ...+ a, T, (x) (22
Collocating with f (o +hx) at the n + 1 points
X~_COS(EJ 1 =0,1
= cos| — |, (i=0L.n)  (2.3)

one can evaluate the expansion coefficients q,. .

The Chebyshev polynomials 7, (x;) can be expressed as

T,

r

(xl-)zcos(rcosfl(xl-)) r=0

7iT
=cos| —
n

(2.4)

non

Then

(2.5)

The notation Y "means that the first and last terms are to be

halved before summation begins.
The orthogonality of the cosine function [5] with respect to

1
n

T
the points *; = COS( j is expressed by

n r=k=0or n
nn T 7
E) cos(%)cos(%): g O<r=k<n (2.6)
0 r+k
Substituting Eq(2.6) into Eq(2.5), gives
Ear 0<r=k<n
nn 2
> flo+mx)T.(x)=na. r=k=n
=0 0 r+k
Hence
2 nn
=¥ fla+m)T(x) (r=01..,n-1)
ni=0
a. =
" non 2.7
lz f(a+hx)T(x)  (r=n) @7)
=0

Denoting the integral of f(7) over the interval [o.—h, o+ h]

by /, and replacing ¢ by ¢ + hx , we get

1 =h}f(a+hx)dx
-1
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Assuming [ =1, , we write

nao 1
=hY. a,[T.(x)dx

r=0 -1
Substituting the values of «, (as given in Eq 2.7), we get
" 2 non

=h§: ,z S(o+hx)T, jT

-2

Since .[ T ( 7 (r=even), (2.8)
nn X
weget In= h;) wif (ot ;) (2.9 (a))
B 4 nn 1 T ]
where i =~ Eo 2] (%) (i=0,1,...,n) (2.9 (b))

r=even

With n=4,

I, :T}’S[f(oﬁh)+8f[(x+%]+12f((x)+8f((xf%]+f(0t*h)} (2.10)

[I. CONSTRUCTION OF THE MIXED QUADRATURE RULE
OF PRECISION SEVEN

We choose Clenshaw-Curtis five point rule

_ }lf(X)dszccs(f)

lls{f( )+8f(\/—j+12f(0)+8f(—\/1§j+f(—1)} 3.1)

and the Gauss-Legendre three point rule

J.f deRGL:; )

pilt] o

Each of the rules(3.1) and (3.2) is of precision five. Let
Ece, (f) and Eg,, (/) denote the errors in approximating the

integral /() by the rules (3.1) and (3.2) respectively. Using

Maclaurin’s expansion of functions in Egs (3.1) and (3.2), we
get

I(f)=Reeg (f)+Ecey (f) (3.3)
and I(f)=Ror, (/) +Eg, (f) (3.4)
where
| 1
ECCS(f):315x5!f(6)( )+360><7!f(8)( )
1 88
EGL-3(f):175x90f(6)( )+1125><8!f(8)( )

1 1
Now multiplying the equations (3.3) and (3.4) by r and BT

respectively, and then adding the resulting equations, we obtain
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1(£)=5[12Rec, ()= SR, (£) ]+ 5[ 12Ecc, (1)~ 5Ear, (1)
or 1(f) =Recsony (f) +Eccsory (f) (3.5)

1
where  Reeyor, (/) =7[12RCC5 (f)=5Rqy, (f)} (3.6)
This is the desired mixed quadrature rule of precision seven

for the approximate evaluation of /( /). The truncation error
generated in this approximation is given by

Eccgor, (f) =%[12ECCS (f)=35Eqy, (f)}

1
,mf(g)(0)+ (3.7)

The rule (3.6) may be called a mixed type rule as it is
constructed from two different types of rules of the same
precision. (i.e, precision 5)

IV. ERROR ANALYSIS

An asymptotic error estimate and an error bound of the rule
(3.6) are given in theorems 4.1(a) and 4.1(b), respectively.

Theorem 4.1(a)

Let f(x) bea sufficiently differentiable function in the closed

interval [-1, 1]. Then the error Eccor, (f) associated with the

rule Recyor, (/) is given by

[Eecsans (1) = 450 % 7v‘f
Proof

From Eq(3.5),

1(f)=Recsory (f)+ Eccsor, ()

where  Recsor, (f) =%[12Rcc5 (f)=35Rqy, (f)}

and Eccgor, (f) =%[12Ecc5 (f)-3Eqy, (f)}

1
Hence Eccsoy(r) = *Wxﬂf(g)(o)Jr
1 8
So ‘ECCSGL3 (f)‘ zm‘f( )(0)‘
Theorem 4.1(b)

The bound for the truncation error

Eceer, (f)=1(f) = Reeser, (f)

is given by
M
|Eccson, () Sm\(ﬂz —)| nmp €[-1L1]

f(7)(x)

where M = max
—1<x<1

Proof

1

mf(é)(”z) My e[-11]

We have Ecc, (f)~

1

mf(é’(m) n e[-11]

Eg, (f)=
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Hence  Eccyi,

:%[IZECCS (f)-5EaL, (1))

1
~ 55055/ ()= ) |
LT
~2050 1 1 ()4 (assuming my <my )
i

From this we obtain

1 N2 ()
22050 '[ 4 (x
Ni

il

22050 m

‘ECCSGL3 (f)‘ =

M
‘ECC56L3 (f)‘ < m‘(ﬂz —my)|

which gives only a theoretical error bound, as mn;,n, are

So

unknown points in [~1,1].It shows that the error in the

approximation will be less if the points 1;,n, are close to each
other.
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Corollary

The error bound for the truncation error Eccr, (f) isgiven
by

M
‘ECCSGL3 (f)‘ < (mj‘(nz _711)‘
Proof
We know from the theorem 4.1 (b) that

‘ECCsGL3 (f)‘ —— |2 -m)| N, €[-11]

M
22050
f(7) (x)

M = max
—1<x<1

where

|(n;—my)|<2, we have

M
11025

Choosing

‘ECC5GL3 (f)‘ <

V. NUMERICAL VERIFICATION
TABLE -1
Comparison of the mixed quadrature rule with Clenshaw-Curtis 5- point rule in approximation of some real definite integrals
by adaptive quadrature method.

Approximate value

Clenshaw-Curtis |2 Mixed quadrature | "= )
5-point quadrature | 7 z Maximum
5 | rule (Req,(£)) by 2 admissible
Integrals Exact value rule (R.. (f)) by E < adaptive — T | absolute
adaptive quadrature | < .”g quadrature : -"g error(¢)
method z 5 method zZ s
/2 dx
11 = '[ 1 1 0.999999824050772 2 11.000000097429282 1 |& =0.000001
o 1+cosx
Y
= '[ 544 1.047197551196503 | 1.047197543767417 6 |1.0471975494594741 3 | &, =0.000001
o S+4cosx
B ¢ dx
- _[1+25x 0.274680153389003 | 0.274680188936363 6 10.274680147293959| 3 |&; =0.000001
0
/2
14 '[COS x dx 0.666666666666... 0.666666655780439 6 10.666666666387270 3 |&, =0.000001
0
n/4 1
15 = J 1+sinx dx 0.5857864372626905] 0.585786436967197 0.585786438175938 1 | &5 =0.00000001
0
01
16 :J1+x 0.693147180559945 | 0.693147151845538 2 10.693147191045928 1 |&; =0.0000001
0
01
17 :JI_O 5y dx 1.143667254069416 | 1.143666134639847 1.143669272509230] 2 | &, =0.00001
0 .
(1
18 :j1+100x2 dx 0.147112767430373 | 0.147112762552179 8 10.147112867618549| 4 |&; =0.000001
0
tlnx
[9 :I X dx 0.240226506959101 | 0.240226563432822 2 10.240226480745529 1 &, =0.000001
1
¢
[10 = j o —1 dx 0.313261687518223 | 0.313261687317049 6 10.313261688035760| 2 |&,, =0.000000001
1
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VI. CONCLUSION

Above ten examples give a clear picture about the
effectiveness of imposing mixed quadrature rule in adaptive

environment. The mixed quadrature rule (RCCSGL3 ( f)) reduces

the number of steps required to approximate an integral in
adaptive quadrature mehtod in comparison to its constitute
Clenshaw-Curtis quadrature rule.
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