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Abstract—In this paper, we have discussed the meromorphic
p-valent functions that satisfy the differential subordinations

z(Ip(r, λ)f(z))(j+1)

(Ip(r, λ)f(z))(j)
≺ (1 +

A−B

a

βz

1 + Bz
)(p + j), z ∈ ∆∗,

where β is complex number and Ip(r, λ) is salagean Operator.
Also we study coefficient inequalities and hadamard product
(convolution) and found radius of starlikeness and convexity. We
investigate some interesting properties on A∗

p(λ, r, j, β, a, A, B);
too.

Index Terms—Meromorphic multivalent function, Differen-
tial subordinations, multiplier transformation, differential op-
erator, complex order.

I. INTRODUCTION

LET A be the class of function analytic in
∆ = {z ∈ C : |z| < 1} and Ap the subclass of A such

that included of functions f(z) of the form

f(z) = ez−p −
2p−1∑

n=p−1

tn−p+1z
n−p+1 + 2F1(a, b; c; z),

(n ≥ p; p ∈ N = {1, 2, 3, · · · }, e > 0) (1.1)

which are analytic and meromorphic p-valent in the annulus
∆∗ = {z : 0 < |z| < 1, z ∈ C} = ∆− {0}. Also

2F1(a, b; c; z) =
∞∑

n=0

(a, n)(b, n)
(c, n)n!

zn

(a, n) =
Γ(a + n)

Γ(a)
= a(a + 1, n− 1), c > b > 0, c > a + b

and
tn−p+1 =

(a, n− p + 1)(b, n− p + 1)
(c, n− p + 1)(n− p + 1)!

.

These functions are analytic in the unit disk ∆. For more
details on hypergeometric functions 2F1(a, b; c.z) see [1],
[4].

Definition 1 : A function f ∈ Ap is said to be in the class
S∗p(α) of meromorphic p-valently starlike functions of order

α, if it satisfies Re
{
−zf ′(z)

f(z)

}
> α, (0 ≤ α < p, z ∈ ∆∗).

We write S∗p(0) = S∗p , the class of meromorphic p-valently
starlike functions in ∆∗.

A function f ∈ Ap is said to be in the class Cp(α) of
meromorphic p-valently convex of order α, if it satisfies
Re

{
−

(
1 + zf ′′(z)

f ′(z)

)}
> α, (0 ≤ α < p, z ∈ ∆∗).
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Definition 2 : For two functions f and g, analytic in ∆∗ we
say f is subordinate to g denoted by f ≺ g if there exists a
Schwarz function w(z), analytic yuin ∆ with w(0) = 1 and
|w(z)| < 1, such that f(z) = g(w(z)), z ∈ ∆. Also, we say
that g is superordinate to f [5].
Definition 3 : Motivated by the multiplier transformation on
Ap, we define the operator Ip(r, λ) by the following infinite

series when f(z) = z−p +
∞∑

n=p+1
anzn then

Ip(r, λ)f(z) = z−p +
∞∑

n=1+p

(
n + λ

p + λ

)r

anzn, (λ ≥ 0)

(1.2)
Sǎlǎgean derivative operators [6] is closely related to the
operators Ip(r, λ). Also Uralegaddi and Somanatha [7] stud-
ied I1(r, 1) = Ir. The operator I1(r, λ) = Iλ

r was studied
recently by Cho and Srivastava [3] and Cho and Kim [2].
Definition 4 : Differential operator, for each f(z) = z−p +
∞∑

n=p+1
anzn we have

f (j)(z) =
(−1)j(p + j − 1)!

(p− 1)!
z−(p+j)+

∞∑
n=1+p

n!
(n− j)!

anzn−j

(1.3)
where n, p ∈ N, p > j, and j ∈ N0 = {0} ∪N . For j = 0
we have f (0)(z) = f(z).
Definition 5 : A function f ∈ Ap is said to be in the class
Ap(r, j;h) if it satisfies the following subordination

z(Ip(r, λ)f(z))(j+1)

(p + j)(Ip(r, λ)f(z))(j)
≺ h(z) (1.4)

where in this paper we choose

h(z) = 1 +
A−B

a

βz

1 + Bz
, z ∈ ∆,

where −1 ≤ B < A ≤ 1, 0 < B < 1, a > 0 and
β(6= 0) is a complex number, so we denote A∗

p(λ, r, j;h) =
A∗

p(λ, r, j, β, a,A, B).
We say that f(z) is superordinate to h(z) if f(z) satisfies

the following

h(z) ≺ z(Ip(r, λ)f(z))(j+1)

(p + j)(Ip(r, λ)f(z))(j)

where h(z) is analytic in ∆ and h(0) = 1.

II. MAIN RESULTS

In the following theorem we obtain coefficient bound for
this class.

Theorem 2.1 : Let the function f(z) of the form (1.1),
be in Ap. Then the function f(z) belongs to the class



A∗
p(λ, r, j, β, a,A, B) if and only if∑∞
m=p+1 γr

λ(m, p)(aδ(m, j + 1)(1−B)− δ(m, j)
(p + j)(a(1 − B) − (A − B)β))km < e(B − A)βη(p, j)
(2.1) where j is any odd number we show j ∈ 2N0 + 1, and
p ∈ N,−1 ≤ B < A ≤ 1, 0 < B < 1, 0 < a, 0 < e, and β
is a nonzero complex number. The result is sharp for the
function f(z) given by complex number
f(z) = ez−p +

eβ(B−A)η(p,j)
γr

λ(m,p)(aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B)−(A−B)β)z
q,

q ≥ 1 + p.

Proof : The function f(z) in the theorem can be expressed
in the form

f(z) = ez−p +
∞∑

n=2p

kn−p+1z
n−p+1,

or

f(z) = ez−p +
∞∑

m=p+1

kmzm (2.2)

where m = n − p + 1 and km = (a,m)(b,m)
(c,m)m! , km ≥ 0 and

also we have for all r, j ∈ N0

(Ip(r, λ)(f(z)))(j) = e (−1)j(p+j−1)!
(p−1)! z−(p+j) +∑∞

p+1

(
m+λ
p+λ

)r (
m!

(m−j)!

)
kmzm−j

= eη(p, j − 1)z−(p+j) +∑∞
m=p+1 γr

λ(m, p)δ(m, j)kmzm−j (2.3)
Now,assume that the condition (2.1) is true. We must show
that f ∈ A∗

p(λ, r, j, β, a,A, B), or equivalently we prove
that∣∣∣∣ az(Ip(r, λ)f(z))(j+1) − a(p + j)(Ip(r, λ)f(z)(j)

(p + j)R(Ip(r, λ)f(z))(j) −Baz(Ip(r, λ)f(z))(j+1)

∣∣∣∣ < 1.

(2.4)
where R = aB + (A−B)β. But we have∣∣∣ az(Ip(r,λ)f(z))(j+1)−a(p+j)(Ip(r,λ)f(z))(j)

(p+j)R(Ip(r,λ)f(z))(j)−Baz(Ip(r,λ)f(z))(j+1)

∣∣∣ =∣∣∣∣∣∣
∞P

m=p+1
aγr

λ(m,p)(δ(m,j+1)−a(p−j)δ(m,j))kmzm+p

eη(p,j)(R−Ba)+
∞P

m=p+1
γr

λ(m,p)km((p+j)Rδ(m,j)−Baδ(m,j+1))

∣∣∣∣∣∣
≤

∞P
m=p+1

aγr
λ(m,p)km(δ(m,j+1)−a(p−j)δ(m,j))

eη(p,j)(B−A)β−
∞P

m=p+1
γr

λ(m,p)km((p+j)Rδ(m,j)−Baδ(m,j+1))


< 1.
The last inequality by (2.1) is true.

Conversely, assume that f(z) ∈ A∗
p(λ, r, j, a, β,A, B). We

must show that the condition (2.1) holds true. We have∣∣∣∣ az(Ip(r, λ)f(z))(j+1) − a(p + j)(Ip(r, λ)f(z))(j)

(p + j)R(Ip(r, λ)f(z))(j) −Baz(Ip(r, λ)f(z))(j+1)

∣∣∣∣ < 1

where R = aB + (A−B)β. So by 2.3 we have∣∣∣∣∣ ∞∑
m=p+1

aγr
λ(m, p)kmzm−j(δ(m, j + 1)− (p + j)δ(m, j))

∣∣∣∣∣∣∣∣∣∣(eη(p, j)(R−Ba) +
∞∑

m=p+1
γr

λ(m, p)kmzm−j((p + j)R

∣∣∣∣∣
|δ(m, δ(m, j))−Baδ(m, j + 1))| < 1.
Since Re(z) < |z|, so we have

Re[(
∞∑

m=p+1
aγr

λ(m, p)kmzm+p(δ(m, j + 1) −

(p + j)δ(m, j)))/(e(B − A)βη(p, j) +

∞∑
m=p+1

γr
λ(m, p)kmzm+p((p+j)Rδ(m, j)−Baδ(m, j+1)))]

< 1.
We choose the values of z on the real axis and letting
z → 1− then we have
[(

∞∑
m=p+1

aγr
λ(m, p)(δ(m, j+1)−(p+j)δ(m, j))km)/(e(B−

A)βη(p, j)−
∞∑

m=p+1
γr

λ(m, p)((p+j)Rδ(m, j)−Baδ(m, j+

1))km)] < 1,
and that

∑∞
m=p+1 γr

λ(m, p)(aδ(m, j + 1)(1 − B) −
δ(m, j)(p+j)(a(1−B)−(A−B)β))km < e(B−A)βη(p, j)
and the proof is complete. �

Corollary 2.1 ; Let f(z) ∈ A∗
p(r, j, β, a,A, B) then we have

km ≤ e(B−A)η(p,j)β
γr

λ(m,p)(aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B)−(A−B)β)) ,

m ≥ p + 1.

Corollary 2.2 : Let 0 ≤ r2 < r1 then

A∗
p(λ, r2, j, β, a,A,B) ⊆ A∗

p(λ, r1, j, β, a,A, B).

Proof : Suppose that f ∈ A∗
p(λ, r2, j, β, a,A, B) then∑∞

m=p+1(γ
r2
λ (m + p)(aδ(m, j + 1)(1 − B) − δ(m, j)(p +

j)(a(1−B)− (A−B)β)))/(e(B −A)βη(p, j))km

< 1.
We must prove∑∞

m=p+1(γ
r1
λ (m, p)(aδ(m, j + 1)(1 − B) − δ(m, j)(p +

j)(a(1−B)− (A−B)β)))/(e(B −A)βη(p, j))km

< 1.
But last inequality holds true if γr2

λ (m, p) < γr1
λ (m, p).

In view of hypothesis the preceding inequality definitely
holds true.
Corollary 2.3 : Let 0 ≤ a2 < a1 then

A∗
p(λ, r, j, β, a2, A, B) ⊆ A∗

p(λ, r, j, b, a1, A, B).

Theorem 2.2 : Let the function f(z) defined by (2.2) being
the class A∗

p(λ, r, j, β, a,A, B). Then
(i) (Ip(r, λ)f(z)) is meromorphically p-valent starlike of

order µ(0 ≤ µ < p) in the disk |z| < r1, where
r1 = r1(λ, r, j, β, a,A, B, µ) = infm≥p+1{

(aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B)−(A−B)β))
(B−A)βη(p,j)

} 1
m+p

×
{(

p−µ
m+µ

)} 1
m+p

.

(2.5)

(ii) (Ip(r, λ)f(z)) is meromorphically p-valent convex of
order µ(0 ≤ µ < p) in the disk |z| < r2, where
r2 = r2(λ, r, j, β, a,A, B, µ) = infm≥p+1{

(aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B)−(A−B)β))
e(B−A)βη(p,j)

ep(p−µ)
m(m+µ)

} 1
m+p

(2.6)

Proof: For showing (Ip(r, λ)f(z)) is meromorphically
p-valent starlike of order µ we must show
Re

{
−z(Ip(r,λ)f(z))′

Ip(r,λ)f(z)

}
> µ or equivalently∣∣∣∣ z(Ip(r, λ)f(z))′ + p(Ip(r, λ)f(z))

z(Ip(r, λ(f(z))′ + (2µ− p)(Ip(r, λ)f(z))

∣∣∣∣ < 1

or we can write



∣∣∣ z(Ip(r,λ)f(z))′+p(Ip(r,λ)f(z))′

z(Ip(r,λ(f(z))+(2µ−p)(Ip(r,λ)f(z))

∣∣∣ ≤
∞P

m=p+1
γr

λ(m,p)(p+m)km|z|m+p

2e(p−µ)−
∞P

m=p+1
γr

λ(m,p)(m+2µ−p)km|z|m+p
< 1

(2.7)
(|z| < r1, 0 ≤ µ < p).

The last inequality (2.7) holds true if∑∞
m=p+1 γr

λ(m, p) (m+µ)
e(p−µ)km|z|m+p < 1.

In view of (2.1), the last inequality holds true if(
γr

λ(m, p) m+µ
e(p−µ)

)
|z|m+p

≤ γr
λ(m,p)(aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B)−(A−B)β))

e(B−A)βη(p,j)

(m ≥ p + 1, p ∈ N )
which when solved for |z|, yields (2.5). (ii) For convexity,
we will show that

Re

{
−1− z(Ip(r, λ)f(z))′′

(Ip(r, λ)f(z))′

}
> µ

equivalently∣∣∣ z(Ip(r,λ)f(z))′′+(p+1)(Ip(r,λ)f(z))′

z(Ip(r,λ(f(z))′′+(2µ−p)(Ip(r,λ)f(z))′

∣∣∣ < 1
or we can write∣∣∣ z(Ip(r,λ)f(z))′′+(p+1)(Ip(r,λ)f(z))′

z(Ip(r,λ(f(z))′′+(2µ−p)(Ip(r,λ)f(z))′

∣∣∣ ≤
∞P

m=p+1
γr

λ(m,p)m(m+p)km|z|m+p

2ep(p−µ)−
∞P

m=p+1
γr

λ(m,p)m(m−p+2µ)km|z|m+p

≤ 1
(2.8) (|z| < r2, 0 ≤ µ ≤ p).

The last inequality (2.8) holds true if
∞∑

m=p+1

γr
λ(m, p)

m(m + µ)
ep(p− µ)

km|z|m+p ≤ 1.

(2.9)
According to Theorem 2.1 the inequality (2.9) is true if
γr

λ(m, p)m(m+µ)
ep(p−µ) |z|

m+p

≤ γr
λ(m,p)(aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B)−(A−B)β))

e(B−A)βη(p,j)

(m ≥ p + 1, p ∈ N )
or if
|z| ≤{

(aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B)−(A−B)β))
e(B−A)βη(p,j)

} 1
m+p{

ep(p−µ)
m(m+µ)

} 1
m+p

(m ≥ p + 1, p ∈ N ). The proof is completed.

III. IMPORTANT PROPERTIES

Theorem 3.1 : Suppose f(z) and g(z) belong to
A∗

p(λ, r, j, β, a,A, B) such that
f(z) = ez−p +

∑∞
m=p+1 kmzm,

g(z) = ez−p +
∑∞

m=p+1 Smzm. (3.1)
Then T (z) = ez−p +

∑∞
m=p+1(k

2
m + S2

m)zm is the class
A∗

p(λ, r, j, β, a,A1, B1) such that A1 ≥ (1 − B1)µ2 + B1

and B1 ≤ 1 where
µ = √

aeβη(1,j)δ(p+1,j+1)(B−A)√
γr

λ(p+1,1)(aδ(p+1,j+1)(1−B)−δ(p+1,j)(p+j)(a(1−B)−(B−A)β)
.

Proof : Since f, g ∈ A∗
p(λ, r, j, β, a,A, B) so Theorem

2.1 yields

∑∞
m=p+1[

γr
λ(m, p)aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B)−(A−B)β)

e(B−A)βη(p,j) km

]2

≤ 1∑∞
m=p+1[

γr
λ(m, p)aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B)−(A−B)β)

e(B−A)βη(p,j) Sm

]2

≤ 1.
We find from two last inequalities∑∞

m=p+1
1
2[

γr
λ(m, p)aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B)−(A−B)β)

e(B−A)βη(p,j)

]2

(k2
m + S2

m) < 1 (3.2)
But T (z) ∈ A∗

p(λ, r, j, β,A, B) if and only if∑∞
m=p+1 γr

λ(m, p)
aδ(m,j+1)(1−B1)−δ(m,j)(p+j)(a(1−B1)−(A1−B1)β)

e(B1−A1)βη(p,j)

(k2
m + S2

m) < 1 (3.3) where
−1 < B1 < A1 ≤ 1, 0 < B1 < 1 , however, (3.2) implies
(3.3) if
aδ(m,j+1)(1−B1)−δ(m,j)(p+j)(a(1−B1)−(A1−B1)β)

(B1−A1)

<
γr

λ(m,p)
2eβη(p,j)ξ

2

where
ξ = aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B)−(A−B)β)

(B−A) .
In other words

aδ(m, j + 1)(1−B1)
(B1 −A1)

<
γr

λ(m, 1)
eβη(1, j)

ξ2

which is equivalent to
B1−A1
1−B1

> aeβη(1,j)δ(m,j+1)
γr

λ(m,1)ξ2 .

Since A−B > B −A, so we can write
A1−B1
1−B1

>
aeβη(1,j)δ(p+1,j+1)(B−A)2

γr
λ(p+1,1)[(aδ(p+1,j+1)(1−B)−δ(p+1,j)(p+j)(a(1−B)−(A−B)β)]2

= µ2(3.4)
Now keeping B1 fixed in (3.4) we get A1 ≥ (1−B1)µ2+B1

and since A1 ≤ 1 then B1 ≤ 1.
�

Theorem 3.2 : Suppose f(z) and g(z) of the form
(3.1) belong to A∗

p(λ, r, j, β, a,A, B). Then convolution or
Hadamard product, two functions f and g belong to the
class that is (f ∗ g)(z) ∈ A∗

p(λ, r, j, β, a,A1, B1) where
A1 ≥ (1−B1)v2 + B1, B1 ≤ 1 and

v =
eβaδ(p + 1, j + 1)η(1, j)

γr
λ(p + 1, 1)τ2

and
τ = aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B1)−(A1−B1)β)

B−A .

Proof: Since f, g ∈ A∗
p(λ, r, j, β, a,A, B) so by applying

Cauchy-Schwarz inequality and Theorem 2.1, we obtain
∞∑

m=p+1

ξ
√

kmSm ≤ (
∞∑

m=p+1

ξkm)1/2(
∞∑

m=p+1

ξSm)1/2 ≤ 1

(3.5)
where
ξ =
γr

λ(m, p)aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B)−(A−B)β)
e(B−A)βη(p,j) .

We must find the values of A1, B1 so that
∞∑

m=p+1

µkmSm < 1 (3.6)



where
µ = γr

λ(m, p)aδ(m,j+1)(1−B1)−δ(m,j)(p+j)(a(1−B1)−(A1−B1)β)
e(B1−A1)βη(p,j)

Therefore by (3.5), (3.6) holds true if√
kmSm ≤ ξ

µ ,m ≥ p + 1, km 6= 0, Sm 6= 0,

since by (3.5) we have
√

kmSm < 1
ξ , therefore (3.7) holds

true if µ ≤ ξ2, which is equivalent by

γr
λ(m, p)aδ(m,j+1)(1−B1)−δ(m,j)(p+j)(a(1−B1)+(A1−B1)β)

e(A1−B1)βη(p,j) <

ξ2

or aδ(m,j+1)(1−B1)−δ(m,j)(p+j)(a(1−B1)−(A1−B1)β)
B1−A1

<
γr

λ(m,p)
eβη(p,j)τ

2

where
τ = aδ(m,j+1)(1−B)−δ(m,j)(p+j)(a(1−B1)−(A1−B1)β)

B−A

or we can write
aδ(m,j+1)(1−B1)

B1−A1
<

γr
λ(m,1)

eβη(1,j)τ
2.

In other words
1−B1

B1 −A1
<

γr
λ(m, 1)

eβη(1, j)aδ(m, j + 1)
τ2

then we have
B1 −A1

1−B1
>

eβaδ(p + 1, j + 1)η(1, j)
γr

λ(p + 1, 1)τ2
= v

Since A1 − B1 > B1 − A1 and keeping B1 fixed, we get
A1 > v(1−B1) + B1.
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