
A Decidable Instance of the Inclusion Problem for
Rational Relations

Wojciech Fraczak, Stéphane Hassen

Abstract—We study an instance of the inclusion problem for
rational relations over words. In this paper we show how to
check if a one generator submonoid {w}∗ ⊆ (Σ∗)d is included
in the prefix closure of a rational relation R ⊆ (Σ∗)d given by
a multi-tape finite automaton.

Index Terms—formal language, inclusion problem, multitape
automata

I. INTRODUCTION

Multi-tape finite automata play an important role in many
areas of the theoretical computer science, computational
linguistics, and even software engineering, [2], [5]. However,
unlike the usual (one-tape) automata, the multi-tape automata
are “difficult”. For the rational word relations, the semantic
domain of finite multi-tape automata, the membership prob-
lem is decidable wheras equality, and thus inclusion, are not
[6], [7].

In this paper we study a particular case of the inclusion
problem of rational word relations. Let M = {w}∗ be a one
generator submonoid of (Σ∗)d and R ⊆ (Σ∗)d a rational
word relation given by a finite multi-tape automaton. We
want to check if M ⊆ ↓R, i.e., if the set of all prefixes of
R, denoted by ↓R, includes M (or, equivalently, if for every
k ≥ 0, wk is a prefix of an element of R).

Firstly, we show that the problem is indeed decidable
by providing an exponential time, but simple, algorithm
solving it. Secondly, we show that, assuming the number of
dimensions d being a constant, the problem can be solved in
a polynomial time. It is worth noting that for d = 1 and when
R is not necessarily prefix-closed the problem of checking
if w∗ ⊆ R is co-NP-hard [8], [4].

II. DEFINITIONS

Let Σ be a finite set of letters, usually called alphabet. By
Σ∗ we denote the set of all words which are finite sequences
over Σ. The empty word is denoted ε.

A multiword of dimension d ≥ 1, also called d-word,
is a d-dimensional vector of words. The ith dimension of
a multiword w will be refered to by w[i]. We introduce the
notation (i, u), where i ∈ {1, . . . , d} and u ∈ Σ∗, to describe
the multiword having the empty word ε on each dimension
but the i-th one which is u, i.e.:

(i, u)[k] def=
{
u if k = i
ε otherwise.

The set (Σ∗)d of all d-words over an alphabet Σ constitute
a monoid where the concatenation is defined componentwise

(u[1], . . . , u[d]) · (v[1], . . . , v[d]) def= (u[1]v[1], . . . , u[d]v[d])

Département d’informatique et d’ingénierie, Université du Québec en
Outaouais, C.P. 1250, succursale Hull, Gatineau (Qué) Canada, J8X 3X7.

and the neutral element 1 is the d-word composed by ε on
each of its dimensions.

The length |w| of a multiword w is its total number of
letters. Also, if S is a set, by |S| we denote its cardinality.
Active dimention of a multiword w, denoted by d(w), is the
set of all non-empty dimensions of w, i.e., i ∈ d(w) if and
only if w[i] 6= ε, for i ∈ {1, . . . , d}.

Given a set D of dimensions, D ⊆ {1, . . . , d}, and a
d-word w, the multiword w \D is defined as:

(w \D)[i] def=
{
ε if i ∈ D
w[i] otherwise

Intuitively, w\D represents the deactivation of dimensions D
in w. For example, we have: w \{1, . . . , d} = w \d(w) = 1.

Let u,w ∈ (Σ∗)d be two multiwords. We say that u is a
prefix of w if there exists a multiword v such that uv = w.
In such a case v is unique and it will be denoted by u−1w.

The set of all prefixes of a multiword w will be denoted
by ↓w.

Proposition 1: Let w ∈ (Σ∗)d be a multiword. We have:

|↓w| =
d∏
i=1

(|w[i]|+ 1) ≤
(⌈
|w|
d

⌉
+ 1
)d

.

Given two multiwords u,w we define the rotation of w by
u which consists in concatenating w with u and removing
the leading u from it, i.e.:

u@w def= u−1wu.

For example, (a, aba, a)@(aba, ab, ε) = (baa, ba, ε).
By @w we denote the set of all rotations of w, i.e. u ∈ @w

if and only if there is a v such that u = v@w.

Proposition 2: Let w ∈ (Σ∗)d be a multiword. We have:

|@w| ≤ |↓w|.

Proof: The key point is to notice that the rotation
operation is length preserving.

When d = 1, consider w to be written on a ring torus.
Then the number |@w| of rotations of w is the number of
distinct words of length |w| that can be read on this torus.
When |w| ≤ 1, there is only one such word, w itself. Hence
|@w| = 1. Otherwise, the word read depends on which letter
is considered to be the first. Hence |@w| ≤ |w|. When d >
1, consider d tori, one torus for each dimension. For each
dimension the previous reasoning holds and the number of
different words read on the d tori is the number of rotations
of w:

|@w| =
d∏
i=1

|@w[i]| ≤
d∏
i=1

|w[i]| ≤ |↓w|.

Subsets of (Σ∗)d are called relations on words. The
rational operations (concatenation, union and Kleene-star
operation) are defined as usual. Let R,R′ ⊆ (Σ∗)d:

RR′
def= {uv | u ∈ R and v ∈ R′}

R+R′
def= R ∪R′

R∗
def= ∪

k∈N
Rk, with Rk def=

{
{1} if k = 0
RRk−1 if k > 0

We define ↓R as the set of all prefixes of R, i.e.:

↓R def= ∪
w∈R
↓w.

A common way to define relations on words is by au-
tomata. We present here a straight generalization of one-tape
finite automata.

A multi-tape finite automaton of dimension d, or d-tape
automaton for short, is a tuple A = (Q,Σ, d, δ, I, F) where
Q is a finite set of states, Σ an alphabet, d > 0 a number
of tapes (dimensions), δ ⊆ Q× (Σ∗)d×Q a finite transition
relation, and I, F ⊆ Q are sets of initial and final states,
respectively.

An execution π ∈ δ∗ starting in state q and ending in state
p is a sequence of transitions π = (q0, u0, p0) . . . (qk, uk, pk)
such that q = q0, p = pk, and for all i ∈ {1, . . . , k}, qi =
pi−1. We then say that the state p is accessible from q and
that q is co-accessible from p. The label λ(π) of execution π
is the d-word u0u1 · · ·uk. If p = q then π can be the empty
sequence of transitions, describing the empty execution with
label 1.

An execution starting in an initial state is called an initial
execution. An initial execution ending in a final state is said
to be accepting. The set of labels of all accepting executions
defines a relation R(A) ⊆ (Σ∗)d.

It is well known that the family of all relations which can
be defined by a finite multitape automaton coincides with
the closure of the finite relations by rational operations. The
elements of this family are called rational relations.

III. PRELIMINARY RESULTS

In the multitape automaton model presented here we
haven’t considered an order on tapes since rational relations
are closed by “tape swapping”. As pointed in [1], if the
alphabet Σ is a singleton, rational relations correspond to
the rational commutative languages. Thus, in this case the
general inclusion problem is decidable (e.g., using the Pres-
burger arithmetic decidability results, [3]).

Let’s now give properties in the general case, |Σ| ≥ 1.

Proposition 3: Let R1, R2 ⊆ (Σ∗)d. If R1R2 = R2R1,
then (R1 +R2)∗ = R∗1R

∗
2.

Proof: Firstly, we show that (R1 + R2)k ⊆ R∗1R
∗
2,

for every k ≥ 0. Indeed, since we have (R1 + R2)k =⋃k
i=0R

i
1R

k−i
2 , and Ri1 ⊆ R∗1, Rk−i2 ⊆ R∗2, for every

k ≥ i ≥ 0.
The inclusion R∗1R

∗
2 ⊆ (R1 +R2)∗ holds for any relations

(i.e., even if R1R2 6= R2R1) because R∗1 ⊆ (R1 + R2)∗,
R∗2 ⊆ (R1+R2)∗, (R1+R2)∗(R1+R2)∗ = (R1+R2)∗, and
the concatenation is monotonous with respect to the inclusion
order.

Proposition 4: Let R1, R2 ⊆ (Σ∗)d be two non-empty
relations. If R1R2 = R2R1, then ↓(R1R2)∗ = ↓(R∗1R∗2).

Proof: Since R1R2 = R2R1, we have (R1R2)∗ ⊆
R∗1R

∗
2. Hence ↓(R1R2)∗ ⊆ ↓(R∗1R∗2).

If w ∈ R∗1R
∗
2 then w ∈ Rk1R

l
2, for some integers k, l.

Thus, w ∈ ↓(Rmax(k,l)
1 R

max(k,l)
2) = ↓(R1R2)max(k,l) ⊆

↓(R1R2)∗.

Proposition 5: If R is a rational relation then so is ↓R.
Proof: Given an automaton A = (Q,Σ, d, δ, I, F) defin-

ing a rational relation R = R(A), we build an automaton
↓A which defines the relation ↓R = R(↓A). Without loss of
generality we assume that in A the transitions are labeled by
words of length at most 1.

We set ↓A = (Q× 2
d,Σ, d, δ′, I ′, F ′), where:

• 2
d denotes the set of all subsets of {1, . . . , d};

• transitions are defined by:

δ′ = {(p,D)
w\D−−−→ (q,D) | (p, w, q) ∈ δ}

∪ {(p,D) 1−→ (p,D ∪ {i}) | i ∈ {1, . . . , d}}.

• initial states are: I ′ = I × {∅};
• final states are: F ′ = F × {{1, . . . , d}}.
Intuitively, ↓A mimics the behavior of A, however, in ↓A,

at any moment we may decide to stop reading any dimension
i by taking a transition of the form (p,D) 1−→ (p,D ∪ {i}).

The following lemma states that deciding the problem of
the inclusion of a one-generator submonoid w∗ in a prefix-
closed relation ↓R is the same as checking the inclusion
of the monoid ((1, w[1]) + . . . + (d,w[d]))∗ induced by d
generators, one per tape (dimension).

Lemma 6: Let w ∈ (Σ∗)d and R ⊆ (Σ∗)d. We have:

w∗ ⊆ ↓R ⇐⇒ ((1, w[1]) + . . .+ (d,w[d]))∗ ⊆ ↓R.

Proof: Since ↓R is prefix-closed, w∗ ⊆ ↓R if
and only if ↓w∗ ⊆ ↓R. By Propositions 4 and
3 we have: ↓w∗ = ↓ ((1, w[1])∗ · · · (d,w[d])∗) =
↓ ((1, w[1]) + . . .+ (d,w[d]))∗.

IV. PROBLEM STATEMENT

Let R(A) ⊆ (Σ∗)d be a rational relation given by a finite
multi-tape automaton A = (Q,Σ, d, δ, I, F), and w ∈ (Σ∗)d

a multi-world. We want to check whether w∗ is included in
the prefixes of R(A):

w∗
?
⊆ ↓R(A).

In the next section we give a simple procedure which
will always produce a correct answer. A straightforward
implementation of the algorithm is highly inefficient since
it may have to explore all paths in A of length up to
|Q| × |↓w| × d. On the other hand, our presentation makes
the main ideas of the procedure clear and it facilitates the
correctness proof. Later, in Section VI, we discuss how the
performance of the algorithm can be improved.

V. DECISION ALGORITHM

Without loss of generality, we assume that the automaton
A = (Q,Σ, d, δ, I, F) is co-accessible, i.e., there is a path
from every state in Q to a state in F .

For every state q ∈ I , we build a rooted tree Tq , which
represents executions of A starting in q. The edges of Tq

are labeled by d-words, according to transitions of A. The
vertexes of Tq are labeled by pairs (p, u), where the first
component, p, is a state from Q, and the second component,
u, is a rotation of w, where some dimensions may have been
deactivated, i.e., u ∈ @(w \D) for some D ⊆ {1, . . . , d}.

The label of the root vertex of Tq is (q, w). Each outgoing
edge from a vertex labeled by (p, u) is in the correspondence
with a transition of A from state p. We follow the transitions
labeled by multiwords v such that v@u is defined. For such
a transition (p, v, q) ∈ δ, the corresponding edge in Tq is
labeled by v and the newly accessed vertex x is labeled by
(q, v@u \D), where D is the set of dimensions of the path
in Tq from an ancestor of x labeled by (q, v@u) to vertex
x. More precisely:
• If there is an ancestor y of vertex x in Tq labeled by

(q, v@u) and α is the multiword corresponding to the
label of the path from y to x, then D = d(α);
Intuitively, α represents a loop in A starting in q such
that α@(v@u) = v@u and v@u \ D represents v@u
with all dimensions of α deactivated.

• Otherwise, i.e., when none of the ancestors of x is
labeled by (q, v@u), D = ∅, and thus v@u\D = v@u.

If the newly created vertex x has a label of one of its
ancestors then the vertex x is removed from the tree.

The detailed pseudo-code of the above procedure is pre-
sented in Algorithm 1.

A. An example

Consider a ternary rational relation R defined by the
automaton of Fig. 1 and w = (ab, xy, ij). An initial part
of the search tree which proofs that w∗ ⊆ ↓R is depicted in
Fig. 3.

a = (a, ε, ε)
b = (b, ε, ε)
x = (ε, x, ε)
y = (ε, y, ε)
i = (ε, ε, i)
j = (ε, ε, j)

a
a

i

j

y

b

p

q

r

x

Fig. 1. A multi-tape relation R (all states are final).

B. Proof

Theorem 7: For any w ∈ (Σ∗)d and a multi-tape automa-
ton A such that all its states are co-accessible from a final
state, Algorithm 1 always terminates. The algorithm returns
“true” if and only if w∗ ⊆ ↓R(A).

Proof: The program terminates since the depth of every
search tree Tq is bounded by |Q| × |↓w| × d.

The algorithm reports “true” if there is a search tree Tq
with a witness leaf labeled by (p,1), see Fig. 3. In order to
show that indeed w∗ ⊆ ↓R(A), we prove that the (label
of the) witness path, α1β1α2β2 · · ·βn, has the following
properties:

p, (ab, xy, ij)

· · ·
a

p, (ba, xy, ij)

x

q, (ba, yx, ij)

y

q, (ba, xy, ij)

b

p, (ab, xy, ij)

p, (ε, ε, ij)

x

q, (ε, ε, ij)

· · ·

a

p, (ε, ε, ij)
removed

a

r, (ε, ε, ij)

i

p, (ε, ε, ji)

a

r, (ε, ε, ji)

j

r, (ε, ε, ij)

r, (ε, ε, ε)

x

q, (ab, yx, ij)

y

q, (ab, xy, ij)

Fig. 2. A fragment of search tree Tp for (ab, xy, ij)∗ ⊆ ↓R. “Fraction
nodes” represent label adjustments. Leaf “r, (ε, ε, ε)” = ”r, 1” is a witness
of the inclusion.

yk : (pk, αk@(. . .))

βk

y1 : (p1, α1@w)

β1

α1

α2

βn

x0 : (p0, w) = (q, w)

x1 : (p1, α1@w \ d(β1))

y2 : (p2, α2@(α1@w \ d(β1))

xn : (pn, αn@(. . .) \ d(βn)) = (p, 1)

xk : (pk, αk@(. . .) \ d(βk))

yn : (pn, αn@(. . .))

Fig. 3. A wintess path in a search tree Tq .

1) for every k1, k2, . . . , kn ≥ 0, multiword
α1β

k1
1 α2β

k2
2 · · ·βkn

n belongs to ↓R(A); and
2) for every l ≥ 0, there exist k1, k2, . . . , kn ≥ 0 such

that wl is a prefix of α1β
k1
1 α2β

k2
2 · · ·βkn

n .

The first property follows from the fact that, for i ∈
{1, . . . , n}, βi is a path in A from state pi to itself (a loop)
and that state pn = p is co-accessible from a final state.

Algorithm 1 Check whether w∗ ⊆ ↓ R(a)
Input: w: WORD, a: AUTOMATON

• type AUTOMATON = struct { Q: SetOf(STATE), δ: SetOf(TRANSITION), I: SetOf(STATE), . . .};
• type TRANSITION = (STATE,WORD,STATE);
-- Transition is a triple: (source state, transition label, destination state)

• type VERTEX = struct { parent: VERTEX, edge: WORD, label: (STATE,WORD) };
-- Search tree is represented as a set of vertexes, each carrying the pointer to its parent, the
-- label on the incoming edge (from the parent), and its actual label, i.e., a pair (state,word).

Output: true if w∗ ⊆ ↓ R(a), false otherwise
var result: BOOLEAN ;
result := false;
for all p ∈ a.I do

var root: VERTEX ;
root := {parent ← nil, edge ← 1, label ← (p,w)} ;
result := result or Explore(a, root) ;

end for
return result ;

function Explore(a,x): BOOLEAN
Input: a: AUTOMATON, x: VERTEX
Output: true if a vertex with label (∗, 1) is reachable from x

var s: STATE, w: WORD, result: BOOLEAN ;
(s,w) := x.label ; -- read the label of vertex x into local variables s and w
if (w == 1) then

return true ; -- We found a witness, so the inclusion holds.
end if
result := false;
for all (p, u, q) ∈ a.δ do

if (p == s) and u@w is defined then
var y: VERTEX, v: WORD ; -- New vertex y labeled (q, v) is being created...
if LabelAlreadyExists(x,(q,u@w)) then
v := u@w\ (Dims(x,(q,u@w)) ∪ d(u)) ;
if (u@w == v) then

break ; -- An ancestor with label (q, v) already exists: abandon y and continue with the for all loop.
end if

else
v := u@w ;

end if
y := {parent ← x, edge ← u, label ← (q, v) } ;
result := result or Explore(a,y) ;

end if
end for
return result ;

function LabelAlreadyExists(x, l): BOOLEAN
Input: x: VERTEX, l: (STATE,WORD)
Output: true if x or one of its ancestors is labeled by l, false otherwise

if (x == nil) then
return false

else if (x.label == l) then
return true

else
return LabelAlreadyExists(x.parent, l)

end if

function Dims(x, l): SetOf(INTEGER)
Input: x: VERTEX, l: (STATE,WORD)
Output: set of active dimensions between x and its ancestor (or itself) labeled by l. Vertex x or one of its ancestors MUST be labeled by l.

if (x.label == l) then
return ∅ ;

else
return d(x.edge) ∪ Dims(x.parent, l) ;

end if

Consider vertexes yk, xk (see Fig. 3) labeled respectively
by (pk, u) and (pk, u \ d(βk)), with u = αk@(. . .). Let i be
a deactivated dimension in xk, i.e., i ∈ d(u) ∩ d(βk).

By construction, we have u[i] = (α@w)[i], with α =
α1β

k1
1 α2β

k2
2 · · ·β

kk−1
k−1 αk for any k1, . . . , kk−1 ≥ 0, and

βk[i] 6= ε. There exist j, l ≥ 1 such that u[i]j = βk[i]l. Since
u[i] ∈ @w[i], there exist x, y ∈ Σ∗ such that w[i] = xy and
u[i] = yx. Because (α@w)[i] = (αβk@w)[i] = u[i], for all
l ≥ 0 there exists j ≥ 0 such that α[i](βk[i])l = x(yx)j .
Notice that j can be made arbitrary big by increasing l.
Hence, for every j ≥ 0 there will exist l ≥ 0 such that
w[i]j is a prefix of α(βk)l.

By Lemma 6 and the fact that for every j ≥ 0 and any di-
mension i we can always find sufficiently large k1, k2, . . . , kn
such that wj [i] ∈ ↓α1β

k1
1 α2β

k2
2 · · ·βkn

n , we conclude that wj

is a prefix of α1β
k1
1 α2β

k2
2 · · ·βkn

n .

VI. COMPLEXITY EVALUATION

The complexity of the decision procedure for w∗ ⊆ ↓R, as
presented above, is exponential in the size of the automaton
A for R, even for a fixed number of tapes d. However,
assuming d being a constant, one can elaborate a polynomial
time algorithm. For example, the following approach is
possible:

1) We start by constructing a digraph (instead of the tree)
whose vertexes are elements of Q × @w, where Q is
the set of states of automaton A and @w denotes the
set of all rotations of w; there is an edge labeled by
v ∈ (Σ∗)d from vertex (p, u) to vertex (p′, u′), i.e.,
(p, u) v→ (p′, u′), if and only if there exists a transition
p

v→ p′ in A and u′ = v@u. Since d is a constant, the
graph can be constructed in O(|@w||A|), where |@w|
is the number of rotations of w and |A| is the size of
the automaton (by size of an automaton we mean the
number of states plus the number of transition plus the
total length of transition labels).

2) We find all strongly connected components of the
constructed graphs accessible from an initial vertex,
i.e., (p, w) with p being an initial state in A. With every
such strongly connected component C we associate all
its dimensions: dimension i is attached to C if and only
if there is an edge with source and destination being
in C and labeled by u such that ui 6= ε, i.e., u reads
at least a letter on the dimension i. Let d(C) denotes
the set of those dimensions.
If there is C such that d(w) ⊆ d(C) then the algorithm
stops reporting success, i.e., w∗ ⊆ ↓R.
Otherwise, let C = {C | d(C) ∩ d(w) 6= ∅}, i.e., C is
the set of those strongly connected components which
touch active dimensions of w.
If C is empty, then the algorithm stops reporting failure,
i.e., w∗ 6⊆ ↓R.

3) For every C from C we generate a new sub-problem

(v \ d(C))∗ ⊆ ↓Rp

by choosing any vertex (p, v) from C; Rp is the
rational relation defined by A but with a single initial
state set to p.
Finally, w∗ ⊆ ↓R if and only if there exists at least one
of the sub-problems which is true. Since the depth of

the sub-problem generations is bounded by d (d being
constant), the number of all sub-problems to consider
is polynomial in |A| and |w|.

VII. CONCLUSIONS

In this paper we present an algorithm which decides
whether a one generator submonoid {w}∗ ⊆ (Σ∗)d is in-
cluded in the prefix closure of a rational relation R ⊆ (Σ∗)d.

So far, we were unable to solve a more general problem
when a submonoid is generated by more than one element.
It is still not clear for us if the later problem is decidable or
not.

REFERENCES

[1] Olivier Carton, Christian Choffrut, and Serge Grigorieff. Decision
problems among the main subfamilies of rational relations. Theoretical
Informatics and Applications, 40(2):255–275, 2006.

[2] Patrick C. Fischer. Multi-tape and infinite-state automata — a survey.
Commun. ACM, 8:799–805, December 1965.

[3] Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger
formulas, and languages. Pacific J. Math., 16(2):285–296, 1966.

[4] Peter Habermehl and Richard Mayr. A note on SLRE. Technical report,
LIAFA - Universit Denis Diderot, 2, place Jussieu, Paris Cedex 05,
France, 2000. http://homepages.inf.ed.ac.uk/rmayr/slre.ps.gz.

[5] Nils Klarlund. Mona & fido: The logic-automaton connection in
practice. In Selected Papers from the11th International Workshop on
Computer Science Logic, CSL ’97, pages 311–326, London, UK, 1998.
Springer-Verlag.

[6] M. O. Rabin and D. Scott. Finite automata and their decision problems.
IBM Journal of Research and Development, 3(2):114 –125, april 1959.

[7] Jaques Sakarovitch. Eléments de théorie des automates. Vuibert
Informatique, 2003.

[8] L. J. Stockmeyer and A. R. Meyer. Word problems requiring exponen-
tial time(preliminary report). In Proceedings of the fifth annual ACM
symposium on Theory of computing, STOC ’73, pages 1–9, New York,
NY, USA, 1973. ACM.

