
 

  

Abstract—Following a new harmonic balance method, 

approximate solutions of van der Pol’s equation have been 

determined near the limit cycle. The method is extendable to 

higher order nonlinear differential system having a limit 

cycle. In this paper a second approximate solution of 

Mulholland equation (a third order differential equation) is 

found. The solution shows a good agreement with the 

numerical solution. 

 

Index Terms— Harmonic balance method, Limit cycle, 

Nonlinear oscillation, Periodic solution. 

I. INTRODUCTION 

Self-excited systems (SES) have a long history in the 

field of mechanics [1-2]. A self-excited oscillator is a 

system, which has some source of energy upon which it can 

draw. One of its most prominent features is the existence of 

stable limit cycle in phase space, emerging from a balance 

between energy gain and dissipation. The limit cycle 

topology is independent by the initial conditions. Recently, 

SESs have been proposed as fundamental tools for the 

control and reduction of friction [3-4]. The possible 

influence of self-excitation dynamics on friction force is 

based on the idea that when a limit cycle is established, 

then limited change of external conditions cannot destroy it 

and system persists on its frictionless oscillating motion. 

In SES the damping is a function of position and the 

most general picture can be described by Lienard’s 

differential equation, .0)()( =++ xgxxfx &&& µ  

Equations of this kind arise directly in various 

mechanical applications. One of the studied equations 

within this class is the van der Pol’s equation 

0)1( 2 =−++ xxxx &&& ε , which posses an unique limit 

cycle. 

Many analytical approaches have been developed for 

approximating periodic solutions of Eq. (1). The most 

widely used methods are the perturbation methods, whereby 

the solution is expanded in power series of a small 
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parameter, ε . The LP method [5], KBM method [6] and 

multi-time expansion method [7] are important among 

them. 

The harmonic balance (HB) method [8-17] is another 

technique for determining periodic solutions of nonlinear 

differential equations by using the truncated Fourier series. 

Since the derivation of higher approximation is 

complicated, the first and second approximate solutions are 

usually determined. The advantage of HB method is that 

the solution gives desired result though nonlinearities 

become significant. 

Recently, Shamsul [18] has presented a new technique 

for obtaining higher approximation of some strongly 

nonlinear differential systems. His [18] technique is easier 

than the existing HB method and the solutions cover the 

general initial value problem (i.e. [ βα == )0(,)0( xx & ]).      

Usually, it is required to solve a set of nonlinear algebraic 

(or algebraic-transcendental) equations according to HB 

method. The numerical solution of those equations gives 

excellent results; but many authors (see [9-17] for details) 

modify the HB solution to determine all unknown 

coefficients in analytical approach. 

Some authors extended the perturbation methods to 

tackle nonlinear oscillations described by a third order 

differential equations. Gottlieb [21-22] used the HBM to 

investigate limit cycles of both second- and third order 

nonlinear problems. The aim of the articles [21-22] was 

qualitative type studies; but the authors did not clearly 

determine the approximate solutions of those problems. The 

aim of the present article is to find the approximate 

solutions of the third order nonlinear problems (especially 

Mulholland equation) based on the new HBM (presented 

[18-19]). The solution shows a good agreement with 

numerical solution though the nonlinear term becomes 

significant. 

II. THE METHOD 

Let us consider a nonlinear differential equation 

   ),,( xxxfxxxx &&&&&&&&& ε=+++ ,                                  (2) 

where ε  is a constant. In general Eq. (2) has damped 

solution; but in some of the cases it has periodic solution 

(e.g., near limit cycle of Mulholland equation). 

A periodic solution of Eq. (2) is chosen in the form 

LLL+++= )3sin3cos(cos 33

3 ϕϕϕ dcaax    (3) 

where a  and ϕ&  are constants. In general the unknown 

functions, )(ac j  and ),(ad j  L,5,3=j  are determined 

together with a  and the initial phase, 0ϕ .  
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According to the KBM method an approximate solution 

is chosen in powers of small parameter ε , namely 

LL
3

2

2

1 ),(),(cos εϕεϕεϕ +++= auauax  where both 

)(ta  and )(tϕ  are time dependent functions satisfying two 

first order differential equations L&
2

1 )( εε += aAa , 

L&
2

1 )( εεωϕ ++= aB  and the unknown function 

LL ,,,, 2121 BBAA  are determined subject to the condition 

that L,, 21 uu  exclude the first harmonics. The constant 

ω  is the unperturbed frequency of the oscillation (for 

Mulholland equation, 1=ω ). In general KBM method is 

used to discuss transient. However the method is used to 

investigate periodic solution in which a&  vanishes and ϕ&  

becomes constant (see [18]). Clearly, the approximate 

solution Eq. (3) is chosen in a form of the KBM method; 

but the determination of the phase )(tϕ , and unknown 

functions ),(, )( adac jj  L,5,3=j  are different from the 

KBM method. 

Now substituting Eq. (3) into Eq. (2) and expanding the 

function ),,( xxxf &&&  in a Fourier series, we obtain  
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By comparing the coefficients of equal harmonic, we 

obtain 
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When 0≠ω , we use a new parameter 1)( <<εµ , with 

)1(Ο=ε  and solve all the equations of Eq. (5) in powers of 

µ  as 
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Differentiating Eq. (3) twice with respect to t  and 

substituting 0=t , we obtain the initial conditions 

equations 
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Thus from Eqs. (6)-(7), we measure the values of 

)0(),0( xx &  and )0(x&& . 

 

Example 

Consider the Mulholland equation  

.))(1( 222 xxxxxxxxx &&&&&&&&&&&& +−−−=+++ ε          (8) 

Let us consider a truncated form of Eq. (3) as  

  .)3sin3cos(cos 33

3 ϕϕϕ dcaax ++=                     (9) 

From Eq. (8) and Eq. (9), we easily obtain 
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where HOH stands for the higher order harmonics. 

 

Comparing the coefficients of equal harmonics, we 

obtain 
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Herein four unknown quantities 33 ,,, dcaϕ&  will be 

calculated from four nonlinear equations of Eq. (10). 

According to the KBM method, two nonlinear algebraic-

transcendental equations are usually solved to calculate a  

and 0ϕ  for the same initial conditions whatever the order of 

the approximate solution is. But we have to solve four 

equations for the harmonic balance solution according to 

the proposed method. It is not difficult to solve numerically 

the system described by Eq. (10). But we solve the said 

nonlinear algebraic-transcendental system with less effort 

according to the principle of [18]. According to [18], we 

shall be able to find an approximate solution of equation 

(10) in the form of Eq. (6) as  
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From Eq. (11) we obtain 33 ,,, dca ϕ&  and then ϕ . 

Finally, substituting the values of 33 ,, dca  and ϕ  into 

Eq. (7) 

We obtain the values of )0(),0( xx &  and )0(x&& , which represents 

the initial values of xx &,  and x&&  for the steady-state solution. 

 

 

 

4 Results and Discussion:   

In order to test the accuracy of an approximate 

solution, some authors [13,16,18] compared analytical 

solutions to those obtained by the numerical techniques. We 

have compared such an approximate solution of the 

Mulholland equation Eq. (8) to the numerical solution for 

different values of ε . 

First of all we plot in Fig. 1(a), the second 

approximate solution of Eq. (8) for 1.0=ε  with initial 

conditions 

[ 814538.0)0(,002111.0)0(,825878.0)0( −=−== xxx &&& ] in 

which the unknown coefficients 33 ,,, dca ϕ&  are calculated 

by the Eq. (11) and substituting these values in Eq. (7), we 

obtain )0(),0( xx &  and )0(x&& . Then corresponding numerical 

solution has been computed by Runge-Kutta (fourth-order) 

method. In Fig. 1(b), the second approximate perturbation 

solution (see Appendix A) and the corresponding 

numerical solution have been plotted for the same values of 

ε  with the initial conditions 

[ 799395.0)0(,0)0(,8102.0)0( −=== xxx &&& ].  Comparing 

the figures, it is clear that the harmonic based solution of 

Eq. (8) shows a better coincidence with the numerical 

solution than the perturbation solution (originally presented 

by Mulholland [20]). 

In Fig. 2(a), we have plotted the second approximate 

solution and the numerical solution when 5.0=ε . In this 

case we have calculated the initial conditions 

[ 80101.0)0(,01215.0)0(,867282.0)0( −=−== xxx &&& ]. The 

figure indicates that the harmonic based solution again 

shows a good coincidence with the numerical solution. In 

Fig. 2(b), we have also compared the perturbation solution 

to the numerical solution when 5.0=ε .  (in this case with 

initial conditions are 

[ 784784.0)0(,0)0(,771.0)0( −=== xxx &&& ]). In this figure 

the perturbation solution has greatly deviated from the 

numerical solution. Thus increasing with the values of ε , 

the perturbation solution loses it suitability while the 

harmonic based solution shows a good agreement with the 

numerical solution. 

Appendix A 

A second approximate solution (perturbation) of Eq. (8) 

is [20] 
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where 098.0,82.0 10 −== αα  and    

)(0024.0084.01 32 εεεω Ο++−=  
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Fig. 1(a): Harmonic balance solution of Eq. (8) is denoted by ( −−ο ) and 

corresponding numerical solutions is denoted by (—). Here a , ϕ& , 3c  and 

3d  are calculated by Eq. (11) with initial conditions 

[ 814538.0)0(,002111.0)0(,825878.0)0( −=−== xxx &&& ] when 

1.0=ε . The values of unknowns are 825548.0=a , 

991517.0=ϕ& , 00059.03 =c , 001261.03 −=d   

 
 

 

 

Fig. 1(b)
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Fig. 1(b): Perturbation solution of Eq. (8) (see [20]) with initial conditions 

[ 799395.0)0(,0)0(,8102.0)0( −=== xxx &&& ] when 1.0=ε  is 

denoted by (-�-) and corresponding numerical solutions is denoted by (—). 

The values of unknowns are 098.0,82.0 10 −== αα  

, 991624.0=ω . 

 

 

 

 
 

 

 
 

 



 

Fig. 2(a)
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Fig. 2(a): Harmonic balance solution of Eq. (8) is denoted by ( −−ο ) and 

corresponding numerical solutions is denoted by (—). Here a , ϕ& , 3c  and 

3
d  are calculated by Eq. (11) with initial conditions 

[ 80101.0)0(,01215.0)0(,867282.0)0( −=−== xxx &&& ] when 

5.0=ε . The values of unknowns are 865815.0=a , 954601.0=ϕ& , 

002259.03 =c , 00636.03 −=d . 

 
 

 

Fig. 2(b)
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Fig. 2(b): Perturbation solution of Eq. (8) (see [20]) with initial conditions 

[ 721149.0)0(,0)0(,771.0)0( −=== xxx &&& ] when 5.0=ε  is 

denoted by (-�-) and corresponding numerical solutions is denoted by (—). 

The values of unknowns are 098.0,82.0 10 −== αα  , 9586.0=ω . 

 

 




