

Abstract—Reducing time to market in spite of increasing the

system’s functionality and reuse of software on different
platforms increase the need for revising the development
methodologies for smart card based applications. The Model
Driven Architecture (MDA) is a design methodology
addressing these emerging requirements. This paper proposes
a model driven framework for the development of smart card
application. This framework allows developers to model the
system in a high level modeling language without considering
the target platform. The proposed framework transforms
platform independent models to platform specific models
which are closer to implementation and finally transform the
models to executable source code, automatically. Furthermore,
we describe the design and implementation of the proposed
framework.

Index Terms— Smart Card, Smart Card Application, MDA,

Software Development, UML, XML

I. INTRODUCTION

The closed architecture of today's smart card operation
systems and lack of high-level Application Programming
Interfaces (APIs), have turned card-application development
to a very difficult and time-consuming task, requiring high
specialized programmers and dedicated software tools [11].
Existing applications usually work only with a specific type
of card, reader and platform, resulting in increased
dependence on specific vendors and suppliers [10]. These
emerging demands are addressed by the model driven
architecture.

Model Driven Architecture (MDA) is an approach to
software development that focuses on the production of
high-level models that are used as the basis for automating
system implementation [1]. As in all engineering disciplines
there is a gap between system models and the actual system
under construction. The goal of MDA is to reduce that gap
by automating coding and implementation through the
creation of knowledge-based tools. The MDA approach
centers on the definition of a Platform Independent Models
(PIM) using a high-level specification language. The goal is
to develop models that are precise enough to support code
generation, so that a PIM may be transformed into one or
more Platform Specific Models (PSM) for the actual
implementation. The advantage of the MDA approach is that
models and code are more easily kept up to date and
incremental, iterative development is facilitated by the direct

Manuscript received December 26, 2010. This work was supported in

part by the Jahade Daneshgahi Fars.
A. Nikseresht is with the University of Applied Science and Technology

Jahade Daneshgahi Shiraz, Iran (phone: +987112357294 e-mail:
anikseresht@shirazu.ac.ir).

 K. Ziarati is Assistant Professor of Computer Science and Engineering
Department, Shiraz University, Iran (e-mail: ziarati@shirazu.ac.ir).

transformation from model to code. While MDA is
technically neutral about the syntax or structure of the high-
level models, UML [16] has emerged as a common
foundation for MDA modeling. UML has been used across a
wide variety of domains, from computational to physical,
making it suitable for specifying systems independently of
whether the implementation is software or hardware. The
recent addition of action semantics to UML has led to
development of executable UML (xUML) which supports
the direct execution of UML models [2]. In this paper we
provide both a framework and a methodology that facilitates
Smart Card application development, covering all Smart
Card application specific requirements and needs. For this
purpose the framework includes a set of tools and APIs to
develop smart card application, thus ensuring cost-
effectiveness, independence from suppliers and
interoperability with existing systems and the web. The
paper is organized as follows. Section 2 gives an overview
on related works which separate target platform from
Application development. In section 3 we describe the
Architecture description. Section 4 covers the proposed
system design methodology.

II. RELATED WORK

Three major APIs are available when you're writing client-
side applications: the Open Card Framework [11], the Java
Card RMI Client API [19], and the Security and Trust
Services API (SATSA) [20]. The Open Card Framework
(OCF) is an open standard, providing architecture and a set
of APIs that enable application developers and service
providers to build and deploy smart card aware solutions in
any Open Card compliant environment [11]. The reference
implementation has been developed using the Java
programming language, so it is the ideal solution for
application development in Java. For regulation of the smart
card itself, Open Card relies on ISO-7816 [7], therefore it
can be used together with any compliant smart card. OCF
consists of the OCF Core, on which the several Card Service
and Card Terminal components are plugged. The Card
Services (supplied by the card providers) encapsulate the
card operating system functionality and on card application
dependencies, shielding the application from changes in
those components. Accordingly, the Card Terminals
(supplied by the reader providers) encapsulate the reader
device functionality. This approach ensures that differences
or changes in the card operating system, in the card terminal
or in the application management scheme used by the card
issuer do not impact the user application code [10, 11]. The
applications developed against OCF high-level APIs can
work with different cards and readers by just plugging the
corresponding Card Service and Card Terminal
implementations into the architecture. OCF also offers APIs

MDA Based Framework for the Development of
Smart Card Based Application

Alireza Nikseresht, Koorush Ziarati

for card file management, including file creation, deletion,
and update, as well as tools for establishing the necessary
security mechanisms on the card, i.e. create Public Key
structures, load/generate user keys and certificates, enable
secure messaging functionality etc.
Java Card RMI (JCRMI) is based on the J2SE RMI
distributed-object model. This approach provides an object-
centric model, in which the APDU [7] communication and
handling are abstracted. Instead, you deal with objects. This
simplifies the programming and integration of Java Card
technology-based devices. In the RMI model a server
application creates and makes accessible remote objects, and
a client application obtains remote references to the server's
remote objects, and then invokes remote methods on them.
In JCRMI, the Java Card applet is the server, and the host
application is the client.

Security and Trust Services API (SATSA) is a set of
optional packages for J2ME that defines a client-side API to
access what are referred to as security elements: devices
such as smart cards.

III. ARCHITECTURE DESCRIPTION

The layered approach lets designers separate the
application development from the platform and card
implementation details. As shown in Fig. 1, the architecture
comprises four separate layers, which establish the
necessary interfaces between the system's distributed parts,
from the Card to the end-user application.

In the following paragraphs we attempt a closer look to
each layer, explaining the functionality and implementation
details of the major structural modules.

A. Hardware Layer

Smart Card applications are not standalone, but rather part
of an end-to-end application. A Smart Card application
typically comprises four parts: 1-The back-end application
that provides access to back-office services such as security
or electronic-payment information stored in databases. 2-
The host application which accesses Applications on the
smart card using one of a number of interfaces for card
access, such as the APDU commands or the Open Card
Framework API, etc. 3- The card reader, card terminal, or
card acceptance device, provides the physical interface
between the host application and on-card Application. 4-
The application part resident on the card henceforth called
card-resident application.

The card-resident part comprises the data kept on the card
in the context of an application. Thus, developing a card-
side application involves building a file structure, where a
single DF contains several DFs and EFs representing the
required fields [4]. However, this approach has serious
drawbacks: accessing these data requires a dedicated
external application, which has knowledge of all card-side
implementation details from the beginning. Furthermore, if a
new standard evolves, the application file structure has to
change completely in order to include new fields or remove
others. This could be a daunting task, especially when
talking for applications requiring large number of individual
fields.

Capitalizing on the latest developments of smart card

technology (increased processing power and available
memory); we use a document-based model for the
development of card-side applications. Each separate
application comprises an XML document, which includes
all the necessary elements (fields) for its purpose of use.
These documents are stored on single Elementary Files, one
for each separate application. Thereby we avoid building
complex card file structures, which is very difficult to
modify or update in the future. The corresponding XML
schemas for the document description, reside at the host site
or on a public web location and they are handled in the
upper layers of the architecture. Furthermore, external
applications can access the card resident parts without
having knowledge of the specific card-side implementation
details. XML-based approach is a fast and convenient way
of designing and deploying flexible and extensible card-side
applications. Applications can be developed independently
(by third parties) as XML documents. The cardholder can
download them from the web directly to the card, through a
procedure transparently handled by the Framework.

B. Middleware Layer

The primary goal of this layer is to hide complexity,
while achieving maximum independence from card and
reader manufacturers. This layer is based on PC/SC standard
[18]. Currently, the use of Smart Cards in the PC
environment is hampered by the lack of interoperability at
several levels. First, the industry lacks standards for
interfacing PC to IFD (Interface Device or Card Reader).
This has made it difficult to create applications that can
work with IFD from a variety of vendors. Attempts to solve
this problem in the application domain invariably increase
costs for both development and maintenance. It also creates
a significant problem for the PC user in that an IFD used
with one application may not work with future applications.

Fig. 1. The Overall Architecture of system.

Second, there is no widely accepted high-level programming
interface for common Smart Card functionality [18].
Encapsulation of Smart Card interfaces can dramatically
simplify application development and reduce costs by
allowing low-level interface software to be shared across
multiple applications. In addition, a standardized high-level
interface allows applications to reduce their dependency on
a specific Smart Card implementation, making it far more
likely that an application will be able to use future, enhanced
Smart Cards. To increase the flexibility and independence of
PC-based software components necessary to deal with
multi-application Smart Card, it is also important to reflect
the different roles of Smart Card vendors and Smart Card
issuers through the mechanisms provided for Smart Card
application deployment. Only by separating Smart Card
technologies from the Smart Card applications can specific
Smart Card technologies become transparent to Smart Card
based PC applications when dealing with Smart Card
applications. Third, mechanisms to allow multiple
applications to effectively share the resources of a single
Smart Card are not defined. These are critically important as
we rapidly move toward the deployment of multiple-
application Smart Cards and generic cryptographic Smart
Cards that will be used as part of a multiprocessing PC
environment. Without agreed upon standards for device
sharing, it becomes effectively impossible for application
developers to ensure that they can complete an operation
using Smart Card services without interruption.

To optimize the benefit to both the industry and end
users, it is important that solutions to these issues be
developed in a manner that supports a variety of operating
environments and a broad base of applications. Only
through this approach can we support the needs of all
constituencies and encourage development of Smart Card-
based PC applications, as a cost-effective solution to
meeting requirements in a very diverse set of markets.

Smart Card technology offers a vital addition to the
security infrastructure of the PC and network environments.
It is an enabling technology for network commerce in
general. To achieve this potential, however, it is essential
that a consistent framework exists into which the diverse
efforts of application developers, network technology
vendors, and Smart Card technology vendors can be
coherently channeled. PC/SC is a standard addressing these
emerging requirements. Because this layer is based on
PC/SC, it inherits all these property from PC/SC.

C. Card Access Layer

The Card Access Layer sits between the Middleware and
the end-user applications, handling the interaction with the
card-residing XML applications. In fact, it turns row data
communication to XML documents exchange. It includes
three basic modules: 1-The Card Access Module provides
the tools for accessing the card-residing XML applications.
The Card Access Module is responsible for retrieving the
stored information in the form of an XML document. 2- The
XML Processing Module provides the necessary
functionality (e.g. XML parser) for processing the XML
documents. It also includes XML compression tools, which
can be used to reduce the documents Size in order to
overcome card memory limitations. 3- The Cryptographic
Module provides additional, application-level security

features. 4- The Application Interface provides high level
functions to access on card data, this is an interface between
front-office application and other layer that allows front-
office application have a transparent view of the smart card.

D. Presentation Layer

The upper layer of the architecture is the Presentation
Layer. It includes the various front-office applications that
make use of Smart Card.
Based on the Card Access Layer functionality, the user
applications interact with the smart card transparently.
Developers can independently deploy Graphical User
Interfaces (GUIs) for interacting with the card applications,
using various technologies and tools.

IV. SYSTEM DESIGN

Software modeling is becoming a critical process in
software development. Modeling technologies have matured
to the point where it can offer significant leverage in all
aspects of software development [15].
For example, the Unified Modeling Language (UML)
provides a rich set of modeling notations and semantics, and
allows developers to understand, specify and communicate
their application designs at a higher level of abstraction [16].

The notion of model-driven development aims to build
application design models and transform them into running
applications [13]. Given modern modeling technologies, the
focus of software development has been shifting away from
implementation technology domains toward the concepts
and semantics. System design in our approach as shown in
Fig. 2 is guided by the idea of the MDA introduced by the
Object Management Group (OMG). The primary goals of
the MDA are portability, interoperability, and reusability of
applications achieved by architectural separation of
concerns [3]. For separating the application logic from the
underlying platform, models with various levels of detail
and focus are used. A model is a formal specification of a
system and provides an abstraction, i.e. the model includes
certain classes of information while suppressing other ones.
The selection of which classes of information to include or

suppress depends on the purpose and the focus of the model.
A particular selection of such information classes is denoted
as a viewpoint. Widely used viewpoints in the design of
distributed computer systems are platform independent and
platform specific viewpoints, which separate the application
logic from the underlying platform technology. The MDA

Fig. 2. System Design Proces

proposes such viewpoints – denoted as Platform
Independent Model (PIM) and Platform Specific Model
(PSM) – and defines their role in the design of a system [3].

A. Platform Independent Model

A PIM is a formal specification of the structure and
function of a system that abstracts away technical details
[16]. In our approach the PIM structures the overall
application into data to be stored on card and methods that
work on data. So the PIM contains some classes and their
relations, which expressed in unified modeling language.

B. Transform PIM to PSM

A transformation between two models roughly consists in
sets of rules that establish correspondences between
elements of the source model and elements of the target
model [8]. The MDA approach is used to generate internal
representations by means of model-based transformations,
implemented using QVT (Query, View, Transformation)
resources, standardized by OMG [14]. Figure 3 presents the
general scheme for model-based transformation, and shows
that transformations could be themselves considered as
models. Then, the concepts to be used in order to define
transformations must be defined using a meta-model.
The transformation of the PIM to PSM is accomplished by
defining some specifications of the target platform.
Specifications that are defined in this step are: 1- Card type.
2- Access privileges for each data elements or classes. 3-
Atomic operations [6]. After defining these specifications
we can start the transformation to produce PSM.

C. Platform specific Model

A platform specific model extends the specification in the
platform independent model with the details that define how
the system operates with the target platform. The PSM
extends PIM with the following information: 1-Some useful
methods to read/write from/to card, based on specification
that are defined in transformation. 2- Allocation of data
elements to on card XML files. 3- Cryptographic methods.
4- Additional constrains. Object Constraint Language (OCL)
provides means for formally specifying additional
constraints [12], without enhancing the complexity and
reducing the readability of the UML models. OCL is a
formal language for describing expressions on UML
models. It can be used to specify invariants that must hold
during the whole lifetime or only in particular states. With

OCL, constraints at model level and meta-model level can
be described.

V. CODE GENERATION

Code generation is the transformation of the PSM to code
considering the target platform. Our code generation
strategy is based on templates.

The code generator uses different templates according to
the specification in the PSM. Code generation starts with
defining the target programming language and defining the
middleware as we saw in section 3. The code generator
imports PSM models as XMI [17] descriptions and parses
them to constructs their in-memory objects, and then
validates [5] the models. After that it generates an
intermediate objects based on the transformation definitions.
Finally the code generator generates final compatible source
code and XML schemas based on one of the templates.

VI. CASE STUDY

Patient Health Card System mission is to provide
emergency medical information for each patient which is
stored on a smart card and carried by patients. One of the
key points to implementing this system is considering
standards in different layers. In this project we used PC/SC
standard for communication between application and card
reader. For communicating with card we used ISO7816
standard.

This Case Study is implemented in Shiraz Kosar hospital.
In this project we used our framework to design and
generate required source code. The generated code used
without any changed and it worked fine. This test showed
that it is a good framework to doing this kind of job. In this
system all patient emergency information will be saved on
smart card. Each patient has its own smart card that contains
his/her information. A copy of card information will be
saved on Hospital central database. This information
consists of patient personal information, Emergency
Contacts, Drugs which is used by patient, the patient
doctors, patient hypersensitive and patient disease history.
The smart card that we used in this project was an 8 KB
crypto memory smart card.

Fig. 4. Code Generation.

Fig. 3. General model to model transformation

The goal is implementing some methods to store and
retrieve the patient information on smart card in a certain
security condition.

According to our presented approach, first we should
design the PIM. The PIM consist of class diagrams and their
relations. We can see the patient Health Card System PIM in
figure 5. To draw the PIM models we use Argo UML which
is a free and open source tool. Argo UML can import/export
XMI files. This ability in addition to being open source
caused that we choose this tool. After designing PIM, we
must transform PIM to PSM. In this step the transformation
tool input PIM in XMI format The PSM file that is
generated can be edit by any tool that supports XMI. The
XMI file can be used in next step without change. However,
if you want you can change it and applying corresponding
transformation rules to generate PSM.
The Generated PSM is in XMI format, and it can be
imported by any tools that have ability to import XMI files.
We imported PSM XMI file in Argo UML to show the PSM
class diagrams. In figure 6 you can see the PSM class
diagrams.

The next step is code generation. In this step we import
PSM XMI file and generate the target source code. Then
you can easily include this source code in your program and
use it. The generated source code programming language is
compatible with Borland C++ Builder.

In transforming PIM to PSM we will create an application

class. This class is in charge of communicating with card
and reader. Application class hold information about
application and application file structures. Application class

Fig. 5. PIM class diagram.

Fig. 6. Generated PSM class diagrams.

Fig. 8. Application file structure.

is related to an application XML file which is stored on
card. This file contains general application information and
file structures. You can see a simple copy of this file in
figure 7.

For each application we will create a DF which is

contains some EFs. For each class we will create an EF. If
the class multiplicity is greater than 1 then we chooses
record oriented file structure. But if the class multiplicity is
1 we choose transparent file structure. In figure 8 you can
see the patient health card file structure which is located on
smart card.

VII. CONCLUSION

This paper presents a framework for developing cost-
effective, flexible and fast smart card based application that
make use of ISO 7816- compliant smart cards, on different
target platforms. This framework allows developers to
model the system in a high level modeling language and to
transform them toward final source code in a model driven
manner. Without this framework you would have to know
the specification of both the card and the card reader,
further, you would have to write code which communicates
only with this specific type of terminal and card. The
generated source code is very reliable and out of errors so it
save a lots of time in testing the system. Using this
framework will enhance the applications and services
available to the end consumer, enhance the marketplace for
application developers, enhance the marketplace for network
technology vendors, and enhance the marketplace for Smart
Card technology vendors.

ACKNOWLEDGMENT

Authors gratefully acknowledge the D.G.Dena Company
which has provided the facilities to implement the case
study in Shiraz Kosar Heart Hospital.

REFERENCES
[1] Anneke Kleppe, Jos Warmer, Wim Bast. "MDA Explained : The Model

Driven Architecture: Practice and Promise." Addison Wesley, April 21,
2003.

[2] Stephen J. Mellor, Marc J.Balcer. Executable UML A Foundation for
Model Driven Architecture. Addison Wesley, May 2002.

[3] OMG, "MDA Guide Version 1.0.1", Jun 12, 2003.
http://www.omg.org/mda.

[4] Wolfgang Rankl and Wolfgang Effing."Smart Card Handbook Third
Edition",John Wiley & Sons, 2004.

[5] Bhuvan Unhelkar, "Verification And Validation For Quality of
UML2.0 Models", Wily, 2005

[6] Silberschatz, Korth and Sudarshan , "Database System Concepts fifth
edition" 2006.

[7] ISO/IEC 7816-4, "Identification Cards, Integrated Circuit(s) Card With
Contacts",Part 4,1995.

[8] Stephane Bonnet1, Olivier Potonniee1, RaphaÄel Marvie, and Jean-
Marc Geib "A Model-Driven Approach for Smart Card Configuration
", Lecture Notes in Computer Science Publisher Springer Berlin /
Heidelberg , ISSN 0302-9743, Subject Computer Science, Volume
3286/2004,Book Generative Programming and Component
Engineering, 2004.

[9] A.Georgoulas, A.Giakoumaki, D.Koutsouris "A Multi-layered
Architecture for the Development of Smart Card-based Healthcare
Application", Engineering in Medicine and Biology Society, 2003.
Proceedings of the 25th Annual International Conference of the IEEE,
Sept. 2003

[10] IBM "OCF 1.2 Programmers Guide", Forth Edition December 1999.

[11] U.Hansmann, M.S.Nicklous, T.Schack,F.Seliger ,"Smart Card
Application Development Using Java",Spring 2000.

[12] J. Warmer and A. Kleppe "The Object Constraint Language Secound
Edition: Getting Your Models Ready For MDA." Addision-
Wesley,2003.

[13] S.Sendall and W.Kozaczynski, "Model Transformation: The Heart and
Soul of Model-Driven Software Development" IEEE Software, vol 20
no 5, Sep./Oct. 2003

[14] MOF QVT - QueryViews/Transformations. OMG doc. ptc/2005-11-
01, Nov. 2005.

[15] B. Selic, “The Pragmatics of Model-Driven Development” In IEEE
Software, vol. 20, no. 5, September/October, 2003.

[16] Object Management Group, UML 2.0 Superstructure Specification,
http://www.omg.org/, 2004.

[17] Object Management Group, MOF 2.0 XML Metadata Interchange,
http://www.omg.org/, 2004.

[18] PC/SC Standard, " Interoperability Specification for ICCs and
Personal Computer Systems",Revision 2.01.01 September 2005.

[19] Java Card Documentation
http://java.sun.com/products/javacard/RMI_Client_API.pdf

[20] Enrique Ortiz. The Security and Trust Services API (SATSA) for
J2ME: The Security APIs.
http://developers.sun.com/techtopics/mobility/apis/articles/satsa2.
September 2005.

Fig. 7. Application XML file.

<Application>
 <Provider>Shiraz University</Provider>
 <Version>1.0</Version>
 <ID>100101564</ID>
 <Name></Name>
 <EFs>
 <Patient FileType="Transparent" FileID="0XE1"/>
 <Doctors FileType="FixRecord" FileID="0XE2"/>
 <Drugs FileType="FixRecord" FileID="0XE3"/>
 <Hypersensity FileType="FixRecord" FileID="0XE4"/>
 <Desiase FileType="FixRecord" FileID="0XE5"/>
</EFs>
</Application>

