



Abstract— In this paper, we report experimental results of

our approach for retrieval large-scale XML collection, to

improve both efficiency and effectiveness of XML Retrieval.

We propose new XML compression algorithm that allows

supporting Absolute Document XPath Indexing and Score

Sharing Algorithm by a Top-Down Scheme approach. It has

been discovered that these steps reduce the size of the data

down by 91.87 % compare to GPX, and reduce the length of

Score Sharing processing time down to 44.18% when

compared to before the compression. In terms of processing

time, our system required an average of one second per topic

on INEX-IEEE and an average of ten seconds per topic on

INEX-Wiki better than GPX system. In addition, we explain

the comprehensive description of our XML retrieval system,

with performance experiments on large-scale corpora on INEX

collections.

Index Terms— XML Retrieval, Compression Strategies,

Ranking Strategies

I. INTRODUCTION

HE widespread use of Extensible Markup Language

(XML) [1] documents in digital libraries has led to the

development of information retrieval (IR) methods

specifically designed for XML collections. Most traditional

IR systems are limited to the whole document retrieval;

however, since XML documents separate content and

structure, XML-IR systems are able to retrieve the relevant

portions of documents. This means that users who interact

with an XML-IR system potentially receive highly relevant

and precise material.

Recently, the Initiative for the Evaluation of XML
Retrieval (INEX) [2] has provided an excellent test corpus

on XML information retrieval and queries [3]. The corpus

contains marked up with context, and queries included

articles from IEEE journals and Wikipedia. There are two

main performance issues in Information Retrieval;

effectiveness and efficiency. In the past, much research was

mainly aimed to improve only effectiveness. In recent years,

research has been focused on the efficiency of the trend of

retrieval large-scale collection. In this paper, we present our

approach toward improving the efficiency by using

compression technique.

This paper is organized as follows; Section 2 reviews

related works. Section 3 explains the implementation of our

system overview and new XML compression algorithm.

Manuscript received January 20, 2011; revised February 07, 2011. This

work was supported in part by the Graduate School of Kasersart University.

Wichawong T. is with the Kasetsart University, Bangkok, Thailand

(phone: 6687-696-1333; e-mail: g5184041@ ku.ac.th).

Jaruskulchai C. is with the Kasetsart University, Bangkok, Thailand (e-

mail: fscichj@ku.ac.th).

Section 4 show the experiment, conclusions and further

work are drawn in Section 5.

II. RELATED WORKS

A. XML Compression Schemes

Recently, researches on XML data compression stress

the reduction of XML data size. Each method has its own

techniques. XML data compression can be divided into three

types: 1) data compression 2) tag compression and 3) data

and tag compression. Several compression strategies have
been developed in XML as follows;

XMill [4] is a technique which compresses both data and

tag in order to reduce the size by starting with separating the

tag, which is composed of elements and attributes, from the

data, which is a character. After that, the data groups’

relationships will be organized. The same data will be in the

same group. The next step is the data compression by using

gzip [5] so that the data will come out in the same file since

grouping requires understanding of the data definitions

which depend on the application type. XMill allows user

check the data definition. The disvantage of XMill that data

cannot be search through the compressed data. However,

XMill is the first research that made researchers realizes the

importance of the problem and how to solve it in XML data

compression. Data that has been compressed is not in the

form of XML schema structure.

XGrind [6] is a technique which compressed data and tag
but the user can still search for data after the compression.

This qualification results from the fact that the compressed

data still maintain the structure of the old data. However,

XGrind will compress only XML data that has DTD

structure so some data set that does not have DTD will result

in having the user waste time in creating DTD for XML data

set that they wanted to compress.

XPRESS [7] uses the technique in compressing both the

data and the tag. Its advantages are the same as XGrind: it

can search for the data after the compression. Nevertheless,

XPRESS does not use DTD. In addition, XPRESS presented

a new idea which uses reverse arithmetic encoding, which is

a method in organizing data so that the search for XPath

expressions can be done effectively. Furthermore, XPRESS

has developed the search of data type without having to use

the information from users. However, the use of XPRESS is

limited because XPRESS cannot understand documents that
use ID and IDREF. It also does not have a way to

decompress data back into normal XML.

XPACK [8] is a way to compress XML data, which uses

grammatical approaches in XML data compression and

decompresses. The main component of XPACK is the

Grammar Generator, which creates the grammar. The

second component is the Compressor which compresses the

data. The last component is the Decompressor which

XML Retrieval More Efficient

Using Compression Technique

Tanakorn Wichaiwong and Chuleerat Jaruskulchai

T

decompresses the compressed data by using the old structure

of the data. However, XPACK cannot manage XML data

that has mixed content element (which is an element

composed of element and characters), limiting users to

search for data in compressed XML.

XSchemaTag [9] is a technique that compresses only

XML tag and that technique still enables to search and

maintain documents because the data is already in the form

of XML. The quality comes from compressed data, which
has the old data structure. However, with XSchemaTag

scheme not take into account of the frequency of tag

occurrences and the counter of tag position.

The GPX [10] search engine is using a relational

database implement an inverted list data structure. It is a

compromise solution provides the convenience of a DBMS

at the cost of somewhat reduced performance, which may

otherwise be possible. For example, the XPath as following:

/article[1]/bdy[1]/sec[5]/p[3]

This could be represented by two expressions, a Tag-set

and an Index-set as below;

 Tag-set: /article/bdy/sec/p

 Index-Set: 1/1/5/3

The original XPath can be reconstructed from the tag-set

and the index-set. The GPX assigns to each tag set and each

index-set a hash code and create auxiliary database tables

mapping the hash codes to the corresponding tag-set and

index-set entries. These hash tables are small enough to be

held in memory and so decoding is efficient. The GPX takes

15 seconds to load all table data and takes an average of 7.2

seconds per topic. Sometimes, it takes longer than 30

seconds, depending on the type of query on a 3GHz PC with

2 GB RAM. Unfortunately, this method has not been

focused on the efficiency.

The relative inverted-path list (RIP list) [11], the list

contains all the structure information and has uniqueness in

preorder of XML nodes, which are traversed in depth first

order. The list adopts all the distances between nodes and

their child node as follows;

Node ID: {Distance, Term Frequency}

The RIP list has high accessibility to the parent node ID
from each Node ID. The RIP merges the numbers of terms

contained in every node, the scores of retrieved nodes and

the numbers of query terms contained in each node.

III. XML RETRIEVAL MODEL

A. Our System Overview (XMLIR)

Our system uses a relational DBMS as a storage back
end and query processing methods are based on Full-Text

Search (FTS). In the following, we discuss the schema setup

using MySQL [12] engine generally available release:

5.1.51. In figure 1, depicts the overview of XML retrieval

system. For the initial step, we consider a simplified XML

data model, but disregarding any kind of Meta markup

including comment, link in the form of XLink or ID/IDRef

and attributes. The main components of the XML retrieval

system are including;

1. The ADXPI Indexer, when new documents are

entered, the Indexer parses and analyzes the tag and

content data to build the list of leaf-nodes.

2. The cADXPI Compressor that analyzes the tag and

counter to build the structure index store in

MySQL database.

3. The ADXPI Indexer will get all of structure index

to construct the leaf-node index store in MySQL
database.

4. Score Sharing Algorithm, which allows assigning

the parent scores by sharing score from leaf node to

their parents by a Top-Down Scheme approach.

Figure 1. XML Retrieval System Overview

B. Absolute Document XPath Indexing

In previous reports [13], a single inverted file can hold

the entire reference list, while the suitable indexing of terms
can support the fast retrieval of the term-inverted lists. To

control overlap and reduce the cost of Joined on DBMS, we

used the Absolute Document XPath Indexing (ADXPI)

scheme to transform each leaf element level into a document

level. For instance, take a document named x1.

<?xml version="1.0"?>

<article>

 <title>xml</title>

 <body>

 <section>

 <title>xml</title>

 <p>information</p>

 <p>retrieval</p>

 </section>

 </body>

</article>

Figure 2. The Example of XML Element Tree

Figure 2 depicts the example of the XML element trees

then we can build an index by ADXPI expression identifies

a leaf XML node that has text contain within the document,

relative to document and their parents are following;

x1/article[1]/title[1]: “xml”

x1/article[1]/body[1]/section[1]/title[1]: “xml”
x1/article[1]/body[1]/section[1]/p[1]: “information”

x1/article[1]/body[1]/section[1]/p[2]: “retrieval”

C. Compression of ADXPI Algorithm

The representation of the ADXPI is more problematic,

because each unique XPath is repeated in the inverted list

for each term in the same node, and the XPath repeated in

many files. We find out the way to encoded tags and the

compression algorithm like XMill might be effective, but we

considered this again to be unnecessary, particularly given

the processing overheads. We have adopted the following

simple compression scheme using Dictionary Mapping and

easy to reconstruct the original XPath. Finally, the database

schema consists of the following tables and adding FTS

index to LeafNode.Details and figure 3 depicts the example

of data store in MySQL table as follows;

CREATE TABLE LeafNode (

 ID int(11) NOT NULL AUTO_INCREMENT,

 xPath varchar(1000) DEFAULT NULL,

 Details text,

 PRIMARY KEY (ID),

 UNIQUE KEY id (ID),

 FULLTEXT KEY Details (Details)

) ENGINE=MyISAM DEFAULT CHARSET=latin1$$;

CREATE TABLE Structure (
 sID int(11) NOT NULL,

 sName varchar(500) DEFAULT NULL,

) ENGINE=MyISAM DEFAULT CHARSET=latin1$$;

Counter :=0;
For each List in LeafNodeList
 For each Path in List.Split(‘/’)
 If NodeList.ContainKey(Path) Then
 NodeList[Path] NodeList[Path] +1;
 Else
 NodeList.Add(Path,1);
 End If
 End For
End For
NodeList NodeList.SortbyValue();
For each Path in NodeList
 FinalList.Add(Path,Counter);
 Counter Counter + 1;
End For
Return FinalList;

Figure 3. The details of Compression Algorithm

In figure 3, depicts the details of a compression
algorithm and in the following algorithm description,

indentation is used to denote the details of algorithm

processing:

1. Fetch all leaf node entries from the collection list.

2. For each list, create data structure to store tag name

and frequency, we call Dictionary<tag,freq> data

type.

3. Split all tag and counter from the leaf and add to

Dictionary<tag,freq>, for instance, the leaf node is:

/article[1]/body[1]/section[1]/p[1].

We can split them as follows;

1
st
 tag is “article[1]”, frequency is 1.

2
nd

 tag is “body[1]”, frequency is 1.

3
rd

 tag is “section[1]”, frequency is 1.

and “p[1]”, frequency is 1.

4. For each tag has to check in Dictionary<tag,freq>

list as follows;
If Dictionary<tag,freq> has contain tag then freq is

accumulate by freq = freq + 1

Otherwise add new tag and 1 to

Dictionary<tag,freq> list.

5. When already processed all of a list from 2 then

create the Final Dictionary<tag,map> list by sorting

freq from Dictionary<tag,freq>list. The map is a

sequence of tag in Final list.

6. Return Final Dictionary<tag,map> list to store in

DB.

article

body title

section xml

p p title

retrieval information xml

Remind to our example, the compression algorithm

processing is following;

x1/article[1]/title[1]: “xml”

x1/article[1]/body[1]/section[1]/title[1]: “xml”

x1/article[1]/body[1]/section[1]/p[1]: “information”

x1/article[1]/body[1]/section[1]/p[2]: “retrieval”

We can split all leaf-node and construct the dictionary

list as follows;
1

st
 tag is “article[1]”, frequency is 4.

2
nd

 tag is “title[1]”, frequency is 2.

3
rd

 tag is “body[1]”, frequency is 3.

4
th

 tag is “section[1]”, frequency is 3.

5
th

 tag is “p[1]”, frequency is 1.

6
th

 tag is “p[2]”, frequency is 1.

Following the result list as above, we sort the dictionary

list by frequency than the final dictionary with map as

follows;

1
st
 tag is “article[1]”, frequency is 4.

2
nd

 tag is “body[1]”, frequency is 3.

3
rd

 tag is “section[1]”, frequency is 3.

4
th

 tag is “title[1]”, frequency is 2.

5
th

 tag is “p[1]”, frequency is 1.

6
th

 tag is “p[2]”, frequency is 1.

As a result, the indexes of leaf-node and structure store

in DB as below;

The Leaf-node indices:

x1/1/4: “xml”

x1/1/2/3/4: “xml”

x1/ 1/2/3/5: “information”

x1/1/2/3/6: “retrieval”

The Structure indices;

1 : article[1]

2 : body[1]

3 : section[1]

4 : title[1]

5 : p[1]

6 : p[2]

D. Leaf-Node Scoring Scheme

The Leaf-Only indexing is closest to traditional
information retrieval since each XML node is a bag of

words of itself, and can be scored as ordinary plain text

document then we calculate the leaf element score of its

context using Vector Space Model of MySQL Full Text

Search as following;

 ()

 l
()

 ()

(.)

 l

(1)

Note that;

LeafScore(e, Q) measures the relevance of element e to a

query Q.

Wt is the inverse element frequency weight of a term t.

tft is the frequency of a term t occurring in an element e.

len(e) is the length of an element e.

U is the number of unique terms in element e.

N is the total number of an element in the collection.

et is the total element of a term t occur.
Qtft is the frequency of a term t occurring in a query Q.

E. Score Sharing Function

In previous reports [14], we compute the scores of all

elements in the collection that contain query terms. We must

consider the scores of elements by accounting for their

relevant descendents. The scores of retrieved elements are

now shared between leaf node and their parents in the

document XML tree according to the following scheme.

 () ()
 ()

(2)

Note that;

PNode is a current parent node.

β is tuning parameter.

If {0 – 1}, then preference is given to the leaf node over

the parents.

Otherwise, preference should be given to the parents.

n is the distance between the current parent node and the

leaf node.

IV. EXPERIMENT SETUP

In this section, we present and discuss the results that

were obtained at INEX collections. We performed with the

Wikipedia collection. This experiment was done on Intel

Pentium Dual-Core 1.87 GHz with the memory of 1 GB,

Microsoft Windows XP Professional and using Microsoft

Visual C#.NET 2008 system on MySQL engine generally

available release: 5.1.51.

A. INEX Collection Tests

The document collections are following the INEX-IEEE

document collection contains total of 16,819 articles from

24 IEEE Computer Society journals, covering the period of

1995-2004 and totaling 764 megabytes in size and 11
million elements in its canonical form. The Wikipedia XML

Corpus of the English Wikipedia in early 2006 [15] that

contains 659,338 Wikipedia articles and the total size is 4.6

GB without images and 52 million elements. On average an

article contains 161.35 XML nodes, where the average

depth of a node in the XML tree of the document is 6.72.

Indexing these collections took between 5 minutes for

INEX-IEEE and 60 minutes for INEX-Wikipedia. After

that, our system uses the index in experiments.

B. INEX Evaluations

As for INEX-IEEE effectiveness, we refer to the relative

and absolute precision values as well as the non-interpolated

mean average precision (MAP), which displays absolute

(i.e., user-perceived) precision as a function of absolute

recall using official relevance assessments provided by

INEX. Furthermore, the following, more sophisticated and

XML-specific metrics were newly introduced for the INEX-
IEEE benchmark. The normalized extended Cumulated Gain

(nxCG) metrics are an extension of the Cumulated Gain

metrics that consider the dependency of XML elements

(e.g., overlap and near-misses) within an evaluation.

As for INEX-Wikipedia effectiveness [16], we refer to

the main ranking of INEX competition based on iP[0.01]

instead of the overall measure MAiP, allowing us to

emphasize precision at low recall levels.

Our experiment targets CO Task only as well as systems

that accept CO queries. Note that CO queries are terms
enclosed in the <title> tag. Then, only the Focused Task

remains in the INEX during the period 2005-2008. Thus, the

system is evaluated only using Focused Task according to

the inex_eval and EvaJ tools provided by INEX.

In the experiment of data compression, the effectiveness

in data compression is the proportion of compression, which

can be found by using;

(3)

And the effectiveness of response time is the proportion

which can be found by using;

 (4)

C. Experiment Results

In this section, we present the results of evaluation of the

Score Sharing scheme with and without cADXPI technique.

Although, in principle, any XML document part can be

retrieved, some document parts tend to be more likely to be

relevant. Table II and Table III show the distribution of

elements over tag-names and counter. In this case, the most

frequently are mapping to the short number of compression

method.

As shown in Table I and figure 4, the uses of cADXPI

compression technique reduces the data size down by 91.87

% compare to GPX system, and reduce the length of Score

Sharing processing time down by 44.18% when compared to

before the compression as the show in Table VI and figure

5. We are using the appropriate parameter base on INEX

measure for Focused Task at iP[0.10]. The total number of
leaf node is 2,500 to compute the sharing score and the

parameter for β is 0.10 then we report the effectiveness of

our system for 29 topics of INEX 2005, 114 topics of INEX

2006, 99 topics of INEX 2007 and 70 topics of INEX 2008

as shown in Table IV and Table V.

TABLE I. COMPARE DATA SIZE AFTER COMPRESSION

Collections
Size (MB)

%
GPX ADXPI cADXPI

INEX-IEEE 2,048 629.91 579.35 71.71

INEX-Wikipedia 15,360 1,910.87 1,248.61 91.87

TABLE II. DISTRIBUTION OF TOP 10 ELEMENTS IN INEX-IEEE

Elements
INEX-IEEE

Frequency Tag Mapping

article[1] 1,494,676 0

bdy[1] 1,370,545 1

sec[3] 317,390 2

sec[4] 262,472 3

sec[2] 258,482 4

p[1] 240,679 5

st[1] 239,648 6

ss1[1] 219,646 7

ss1[2] 215,361 8

sec[5] 173,315 9

TABLE III. DISTRIBUTION OF TOP 10 ELEMENTS IN INEX-WIKIPEDIA

Elements
INEX-Wikipedia

Frequency Tag Mapping

article[1] 6,360,427 0

body[1] 5,704,185 1

section[1] 1,863,653 2

title[1] 1,545,969 3

section[2] 1,225,624 4

p[1] 1,066,149 5

section[3] 717,764 6

name[1] 656,295 7

p[2] 549,743 8

section[4] 420,855 9

TABLE IV. THE EFFECTIVENESS ON INEX-IEEE FOCUSED TASK

OVERLAP=OFF, QUANT=GEN

TOPIC nxCG@5 nxCG@10 nxCG@25 nxCG@50

2005 0.2508 0.1910 0.1603 0.0864

TABLE V. THE EFFECTIVENESS ON INEX-WIKI FOCUSED TASK

TOPIC iP[0.00] iP[0.01] iP[0.05] iP[0.10] MAiP

2006 0.5580 0.5126 0.4072 0.3389 0.1290

2007 0.4800 0.4169 0.3186 0.2539 0.0987

2008 0.6838 0.5740 0.4262 0.3411 0.1187

Figure 4. Graph showing the size of data

Figure 5. Graph showing the processing time

TABLE VI. COMPARE SCORE SHARING PROCESSING TIME (Β=0.10)

Number of Leaf

Node (N)

Response Time (ms) %

ADXPI cADXPI Decompress

2500 0.058 0.041 0.015 3.45

5000 0.078 0.043 0.021 17.95

7500 0.104 0.067 0.023 13.46

10000 0.135 0.092 0.031 8.89

30000 0.388 0.122 0.218 12.37

50000 0.606 0.147 0.266 31.85

75000 0.725 0.183 0.268 36.69

100000 0.867 0.216 0.276 44.18

V. CONCLUSIONS

In this paper, we propose new XML compression

algorithm that allows supporting ADXPI indexing and score

sharing function by a Top-Down Scheme approach, and a

comprehensive description of our system, with performance

experiments on large-scale corpora on INEX collections. It

has been discovered that these steps reduces the size of the

data down by 91.87 % compare to GPX, and reduce the

length of score sharing processing time down by 44.18%

when compared to before the compression. In terms of

processing time, our system required an average of 1 second
per topic on INEX-IEEE and an average of 10 seconds per

topic on INEX-Wikipedia better than GPX system.

As our future work, we are going to study how to infer

structural hints from CAS queries and experiment more

deeply on INEX 2009 collection.

REFERENCES

[1] Extensible Markup Language (XML) 1.1 (Second Edition).

http://www.w3.org/TR/xml11/

[2] INitiative for the Evaluation of XML Retrieval (INEX).

http://www.inex.otago.ac.nz/

[3] Geva, S. et al,. 2009. Overview of INEX 2009 Ad Hoc Track. The

INEX 2009 Workshop Pre-proceeding. Schloss Dagstuhl, Germany,

pp. 16-50.

[4] Liefke H. and Suciu D., “XMill: an Efficient Compressor for XML

Data.,” In Proceeding of the 2000 ACM SIGMOD International

Conference on Management of Data, pages 153-164, May 2000.

[5] Gailly J. L. and Adler M., “gzip: The compressor data,” Available at

http://www.gzip.org/

[6] Tolani P. M. and Haritsa J. R., “XGRIND: A Query-friendly XML

Compressor.,” In Proceedings of 18th International Conference on

Databases Engineering, February 2002.

[7] Min J.-K., Park M.-J., and C Chung.-W., “XPRESS: A Queriable

Compression for XML Data.,” In Proceeding of the 2003 ACM

SIGMOD International Conference on Management of Data, pages

122-133, June 9-12, 2003.

[8] Maireang K. and Pleurmpitiwiriyavach C., “XPACK: A Grammar-

based XML Document Compression,” In Proceeding of NCSEC2003

the7th National Computer Science and Engineering Conference,

October 28-30, 2003.

[9] Wichaiwong T. and Jaruskulchai C., “Improve XML Web Services’

Performance By Compressing XML Schema tag,” The 4th

International Technical Conference on Electrical

Engineering/Electronics, Computer, Telecommunications and

Information Technology, Chiang Rai, Thailand, May 9-12, 2007.

[10] Geva, S. 2005. GPX - Gardens Point XML Information Retrieval

INEX 2004. In: Fuhr, N., Lalmas, M., Malik, S., Szlavik Z. (eds.):

Advances in XML Information Retrieval: Third International

Workshop of the Initiative for the Evaluation of XML, Springer,

Lecture Notes in Computer Science LNCS, pp. 211-223.

[11] Tanioka, H. 2008. A Fast Retrieval Algorithm for Large-Scale XML

Data, Focused Access to XML Documents, LNCS, Vol. 4862,

Springer-Verlag, pp. 129–137.

[12] MySQL Full-Text Search Functions, Available at

http://dev.mysql.com/doc/refman/5.1/en/fulltext-search.html

[13] Wichaiwong T. and Jaruskulchai C., “XML Retrieval More Efficient

Using ADXPI Indexing Scheme,” The 4th International Symposium

on Mining and Web, Biopolis, Singapore, March 22-25, 2011.

[14] Wichaiwong T. and Jaruskulchai C., “A Simple Approach to

Optimize XML Retrieval,” The 6th International Conference on Next

Generation Web Services Practices, Goa, India, November 23-25,

2010.

[15] Denoyer L. and Gallinari P., 2006. The Wikipedia XML Corpus.

SIGIR Forum, pp. 64–69.

[16] Kamps, J. Pehcevski, J. Kazai, G. Lalmas, M. and Robertson, S. 2007.

INEX 2007 evaluation measures. In Focused access to XML

documents.

0

2,000

4,000

6,000

8,000

10,000

12,000

14,000

16,000

18,000

INEX-IEEE INEX-Wikipedia

Si
ze

 (M
B

)

GPX

ADXPI

cADXPI

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2500 5000 7500 10000 30000 50000 75000 100000

R
e
sp

o
n
se

 T
im

e
 (

m
s)

ADXPI cADXPI

